
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 1 of 50 

SEVENTH FRAMEWORK PROGRAMME 

THEME 

FET proactive 1: Concurrent Tera-Device 

Computing (ICT-2009.8.1) 

PROJECT NUMBER: 249013 

 

Exploiting dataflow parallelism in Teradevice Computing 

D7.4 – Report on knowledge transfer and training 

Due date of deliverable: 31st December 2012 

Actual Submission: 20th December 2012 

Start date of the project: January 1st, 2010 Duration: 48 months 

Lead contractor for the deliverable: UNISI 

Revision: See file name in document footer. 

Project co-founded by the European Commission 

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013) 

Dissemination Level: PU 

PU Public 

PP Restricted to other programs participant (including the Commission Services) 

RE Restricted to a group specified by the consortium (including the Commission Services) 

CO Confidential, only for members of the consortium (including the Commission Services) 

Change Control 

Version# Author Organization Change History 

0.1 Marco Solinas UNISI Initial template 

1.0 Marco Solinas UNISI UNISI parts 

1.2 Marco Solinas UNISI Added contributions from partners 

2.1 Roberto Giorgi UNISI Final revision 

3.0 Marco Solinas UNISI Executive Summary and Introduction 

Release Approval 

Name Role Date 

Marco Solinas Originator 08.11.2012 

Roberto Giorgi WP Leader 28.11.2012 

Roberto Giorgi Coordinator 13.12.2012 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 2 of 50 

TABLE OF CONTENT 

GLOSSARY ...................................................................................................................................................4 

EXECUTIVE SUMMARY.............................................................................................................................7 

1 INTRODUCTION..................................................................................................................................8 

1.1 RELATION TO OTHER DELIVERABLES .................................................................................................... 8 

1.2 ACTIVITIES REFERRED BY THIS DELIVERABLE....................................................................................... 9 

1.3 SUMMARY OF PREVIOUS WORK (FROM D7.1, D7.2 AND D7.3).............................................................. 9 

2 NEW SIMULATION FEATURES ......................................................................................................10 

2.1 BRIEF OVERVIEW OF THE TERAFLUX EVALUATION PLATFORM (ALL WP7 PARTNERS) .............. 10 

2.2 T* INSTRUCTION AND BUILT-IN SUPPORT IN THE C LANGUAGE (UNISI, HP) ..................................... 11 

2.2.1 Brief Introduction to COTSon’s Implementation of T*................................................................... 13 

2.3 NEW T* BENCHMARKS (UNISI) .......................................................................................................... 16 

2.3.1 Matrix Multiplier ............................................................................................................................ 16 

2.3.2 Other Benchmarks .......................................................................................................................... 16 

2.4 SINGLE NODE T* TESTS (UNISI)......................................................................................................... 17 

2.4.1 T* Timing Model............................................................................................................................. 18 

2.5 MULTI-NODE T* TESTS (UNISI) ......................................................................................................... 19 

2.5.1 Framework design .......................................................................................................................... 20 

2.5.2 Demonstration of multi-node capability of the new distributed scheduler ..................................... 21 

2.6 POWER ESTIMATION USING MCPAT (UNISI) ...................................................................................... 21 

2.6.1 Off-line vs. on-line Power estimation ............................................................................................. 22 

2.7 EXECUTION OF USER LEVEL DDM ON COTSON (UCY) ..................................................................... 24 

2.8 INTEGRATING DDM TSU INTO COTSON (UCY)................................................................................. 25 

2.9 GCC BACKEND AND OPENSTREAM EXPERIMENTS ON COTSON (INRIA) .......................................... 25 

2.10 DOUBLE EXECUTION AND THREAD RESTART RECOVERY IN A SINGLE NODE (COTSON MODULES) 

(UAU, HP) ....................................................................................................................................................... 27 

2.10.1 FDU subsystem in COTSon........................................................................................................ 27 

2.10.2 Double execution and Recovery Support.................................................................................... 27 

2.11 HIGH LEVEL FAULT INJECTION TECHNIQUE (COTSON MODULES) (UAU) ......................................... 28 

2.12 TRANSACTIONAL MEMORY SUPPORT IN COTSON (UNIMAN) ........................................................... 30 

2.12.1 Functional Transaction Support................................................................................................. 30 

2.12.2 Adding timing support with COTSon.......................................................................................... 30 

3 DEVELOPMENT AND SIMULATION ENVIRONMENT AND SUPPORTS .................................32 

3.1 THE “TFX3”- TERAFLUX SIMULATION HOST .................................................................................... 32 

3.2 PIKE – AUTOMATIZING LARGE SIMULATIONS (UNISI) ...................................................................... 34 

3.2.1 Overall organization....................................................................................................................... 34 

3.2.2 Functions Exposed to the User ....................................................................................................... 35 

3.2.3 Current limits.................................................................................................................................. 36 

3.2.4 Examples......................................................................................................................................... 36 

3.3 THE ECLIPSE MODULE FOR TFLUX (UCY)......................................................................................... 39 

3.3.1 The Content Assistant Plug-in ........................................................................................................ 39 

3.3.2 The Side Panel Plug-in ................................................................................................................... 40 

3.4 SUPPORT TO THE PARTNERS FOR IMPLEMENTING COTSON EXTENSIONS (HP).................................... 43 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 3 of 50 

3.5 TUTORIAL SESSIONS ON OMPSS OPEN TO THE PARTNERS (BSC) ........................................................ 43 

APPENDIX A ...............................................................................................................................................45 

 

 

 

LIST OF FIGURES 
 

FIG. 1 TERAFLUX EVALUATION PLATFORM.................................................................................................................... 10 

FIG. 2 FIBONACCI(35): NUMBER OF THREADS IN FOUR SINGLE-NODE CONFIGURATIONS........................................................... 17 

FIG. 3 FIBONACCI(35): NUMBER OF THREADS (ZOOMED DETAIL OF THE PREVIOUS FIGURE) ...................................................... 18 

FIG. 4 TIMING MODEL FOR THE T* EXECUTION ................................................................................................................ 19 

FIG. 5 THE STRUCTURE OF THE FRAMEWORK FOR MULTI-NODE SIMULATION AS IT IS RUNNING ON OUR SIMULATION HOST. ............ 20 

FIG. 6 MULTI-NODE SIMULATION: FIBONACCI, WITH INPUT SET TO 40, AND MATRIX MULTIPLY, WITH MATRIX  SIZE 512X512, 

PARTITIONED IN A NUMBER OF BLOCKS EQUAL TO THE NUMBER OF CORES .................................................................... 21 

FIG. 7 POWER ESTIMATION SAMPLE OUTPUTS. ................................................................................................................ 23 

FIG. 8 RUNNING DDM ON COTSON, WITH FOUR NODES.................................................................................................. 24 

FIG. 9 BLOCKED MATRIX MULTIPLY RUNNING ON A FOUR CPU MACHINE .............................................................................. 25 

FIG. 10 PERFORMANCE DEGRADATION OF FIBONACCI(40) USING THREAD FAILURE INJECTION WITH FAILURE RATES PER CORE OF 10/S 

AND 100/S...................................................................................................................................................... 29 

FIG. 11 EXTERIOR VISION OF THE DL-PROLIANT DL585, MAIN TERAFLUX SIMULATION SERVER.............................................. 32 

FIG. 12 HOST VERSUS VIRTUAL SYSTEM ......................................................................................................................... 33 

FIG. 13 NUMBER OF VIRTUAL CORES VS MEMORY UTILIZATION IN HP PROLIANT DL585 G7 SERVER  (1 TB MEMORY, 64 X86_64 

CORES)............................................................................................................................................................ 33 

FIG. 14 EXECUTING PIKE IN SILENT MODE...................................................................................................................... 34 

FIG. 15 EXECUTING PIKE IN VERBOSE MODE................................................................................................................... 35 

FIG. 16 SIMNOW INSTANCE WITH TEST EXAMPLE – SINGLE SIMULATION............................................................................... 37 

FIG. 17 TWO SIMNOW WINDOWS IN CASE OF MULTIPLE SIMULATION PIKE RUN ................................................................... 38 

FIG. 18: THE CONTENT ASSISTANT PLUG-IN LISTING THE AVAILABLE DDM KEYWORDS............................................................. 39 

FIG. 19: THE CONTENT ASSISTANT PLUG-IN FILTERING THE DDM KEYWORDS STARTING WITH “DVM_” FOR THE SCHEDULING POLICY 

FIELD OF THE THREAD PRAGMA ............................................................................................................................ 40 

FIG. 20: THE SIDE PANEL PLUG-IN IMPORTED TO THE ECLIPSE PLATFORM.............................................................................. 40 

FIG. 21: THE SIDE PANEL PLUG-IN SHOWING A DROP-DOWN LIST FOR THE OPTIONS OF THE SCHEDULING MODE ........................... 41 

FIG. 22: THE SIDE PANEL PLUG-IN AUTOMATICALLY CLOSING THE DDM PRAGMAS ................................................................. 41 

FIG. 23: THE SIDE PANEL PLUG-IN SHOWING THE PROPERTIES OF A SELECTED PRAGMA ............................................................ 42 

FIG. 24 DATAFLOW GRAPH FOR THE BLOCKED MATRIX MULTIPLICATION ALGORITHM. ............................................................ 45 

 

 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 4 of 50 

Glossary  

Auxiliary Core A core typically used to help the computation (any other core than service 

cores) also referred as “TERAFLUX core” 

BSD BroadSword Document – In this context, a file that contains the SimNow 

machine description for a given Virtual Machine 

CDG Codelet Graph 

CLUSTER Group of cores (synonymous of NODE) 

Codelet Set of instructions 

COTSon Software framework provided under the MIT license by HP-Labs 

DDM Data-Driven Multithreading 

DF-Thread A TERAFLUX Data-Flow Thread 

DF-Frame the Frame memory associated to a Data-Flow thread 

DVFS Dynamic Voltage and Frequency Scaling 

DTA Decoupled Threaded Architecture 

DTS Distributed Thread Scheduler 

Emulator Tool capable of reproducing the functional behavior; synonymous in this 

context of Instruction Set Simulator (ISS) 

D-FDU Distributed Fault Detection Unit 

ISA Instruction Set (Architecture) 

ISE Instruction Set Extension 

L-Thread Legacy Thread: a thread consisting of legacy code 

L-FDU Local Fault Detection Unit 

L-TSU Local Thread Scheduling Unit 

MMS Memory Model Support 

NoC Network on Chip 

Non-DF-Thread An L-Thread or S-Thread 

NODE Group of cores (synonymous of CLUSTER) 

OWM Owner Writeable Memory 

OS Operating System 

Per-Node-Manager A hardware unit including the DTS and the FDU 

PK   Pico Kernel 

Sharable-Memory Memory that respects the FM, OWM, TM semantics of the TERAFLUX 

Memory Model 

S-Thread System Thread: a thread dealing with OS services or I/O 

StarSs A programming model introduced by Barcelona Supercomputing Center 

Service Core A core typically used for running the OS, or services, or dedicated I/O or 

legacy code 

Simulator Emulator that includes timing information; synonymous in this context of 

“Timing Simulator” 

TAAL TERAFLUX Architecture Abstraction Layer 

TBM TERAFLUX Baseline Machine 

TLPS Thread-Level-Parallelism Support 

TLS Thread Local Storage 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 5 of 50 

TM Transactional Memory 

TMS Transactional Memory Support 

TP Threaded Procedure 

Virtualizer Synonymous with “Emulator” 

VCPU Virtual CPU or Virtual Core 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 6 of 50 

The following list of authors will be updated to reflect the list of contributors to the writing of the document. 

Marco Solinas, Alberto Scionti, Andrea Mondelli, Ho Nam, Antonio Portero, Stamatis Kavvadias,  
Monica Bianchini, Roberto Giorgi 

Università di Siena 
 

Arne Garbade, Sebastian Weis, Theo Ungerer 
Universitaet Augsburg 

 
Antoniu Pop, Feng Li, Albert Cohen 

INRIA 
 

Lefteris Eleftheriades, Natalie Masrujeh, George Michael, Lambros Petrou, Andreas Diavastos, 
Pedro Trancoso, Skevos Evripidou 

University of Cyprus 
 

Nacho Navarro, Rosa Badia, Mateo Valero 
Barcelona Supercomputing Center 

 
Paolo Faraboschi 

Hewlett Packard Española 
 

Behram Khan, Salman Khan, Mikel Lujan, Ian Watson 
The University of Manchester 

 
2009-13 TERAFLUX Consortium, All Rights Reserved. 
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site and can be 
distributed to the Public. 

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document. The authors and the 
publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors or omissions. No liability is 
assumed for incidental or consequential damages in connection with or arising out of the use of the information contained in this document. 
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or copied in 
accordance with the terms of the License. The information in this document is a work in progress, jointly developed by the members of 
TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only. 
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned by or licensed 
to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials. Any use of the protected 
technology and related material beyond the terms of the License without the prior written consent of TERAFLUX is prohibited. This 
document contains material that is confidential to TERAFLUX and its members and licensors. Until publication, the user should assume that 
all materials contained and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from the 
nature of such materials (for example, references to publicly available forms or documents). 
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without the prior written 
consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The trademarks, logos, and service 
marks displayed in this document are the registered and unregistered trademarks of TERAFLUX, its members and its licensors. The 
copyright and trademarks owned by TERAFLUX, whether registered or unregistered, may not be used in connection with any product or 
service that is not owned, approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer 
confusion or that disparages TERAFLUX. Nothing contained in this document should be construed as granting by implication, estoppel, or 
otherwise, any license or right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner 
of any such trademark. 
Printed in Siena, Italy, Europe. 
Part number: please refer to the File name in the document footer. 

DISCLAIMER: 
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY TERAFLUX TO 
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT 
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT OF THIRD PARTY RIGHTS. 
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL 

DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING 

FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH 

ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, 

TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 7 of 50 

Executive Summary 

In this report, we provide a description of the integration activity, through the COTSon simulation 

platform, of the research of the TERAFLUX partners, as progressed during the third year of the 

project. Thanks to the common simulator tools and internal dissemination, partners have been also 

able to transfer their respective research knowledge to the other partners. 

The support for T* instructions has been implemented in the simulator: this means that partners are 

now able to run actual benchmarks containing the DATAFLOW Instruction Set Extension (T* ISE) 

designed in the previous period of the project. The Thread Scheduling Unit provides full support for 

the execution of TSCHEDULE, TDESTROY, TREAD and TWRITE (variants of these basic 

instructions are also implemented in the simulator, in order to meet some compiler needs highlighted 

by the partners working on WP4). An interface for injecting directly such T* built-ins in C 

applications is also available, and in this report we provide the description of some first kernel 

benchmarks (i.e., the Recursive Fibonacci and Matrix Multiply) exploiting this feature. The support of 

the GCC compiler for generating executable T* binaries directly from OpenStream annotated C code 

is also available to partners, and applications ready-to-compile are also published in the public 

repository. Finally, the support for multimode Transactional Memory is implemented in the simulator, 

and available to all the Partners and publicly available for download and run. We believe that all the 

above will enhance the capability of the research community to simulate Teradevice systems. 

The multi-node Distributed Thread Scheduler (DTS – a key element of the TERAFLUX Architecture) 

has been also implemented in COTSon, and is also publicly available for downloading and running 

experiments. In this report, we show how the very same T* application-binaries running on the single-

node configuration have been also successfully run in a multi-node system. This implementation of 

the multi-node DTS currently encompasses the functional implementation and a partial timing model 

(not fully connected with other component timing models). The support for power estimation is now 

integrated in the evaluation platform. The Fault Detection Unit (FDU) subsystem is also implemented 

in COTSon, providing support for double execution of threads, and thread restart/recovery, both in the 

single-node case. Moreover, in order to test the correctness and effectiveness of the fault detection 

mechanisms, the single-node DTS implementation has been extended with a high level fault injection 

technique, which is also described in this deliverable. Moreover, other Dataflow variants, like the 

Data-Driven Multithreading (DDM) - from the UCY Partner, have been also tested in COTSon, both 

in the single-node and multi-node configurations. 

All the newly implemented characteristics have been successfully integrated in the common platform 

also thanks to the support provided by the HP partner (which released COTSon at the very beginning 

of this project) to all the TERAFLUX partners. 

A new tool (called PIKE) for extending the knowledge details to perform “large target-machine” 

simulations has been realized and released in the public repository, to the TERAFLUX partners and, 

more in general, to the scientific community. This tool acts as a wrapper of the COTSon simulator, 

and simplifies the configuration process needed for running a set of simulations, thus speeding-up the 

evaluation process of newly-implemented research solution.  

The originally planned simulation server is available to all the TERAFLUX partners. 

Finally, tutorial sessions on OmpSS have been organized by BSC; such tutorials were open to all the 

TERAFLUX partners. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 8 of 50 

1 Introduction 

The main objective of the workpackage WP7 is to drive the integration of the research performed by 

each TERAFLUX partner. This is done mainly by means of a common simulation infrastructure, the 

COTSon simulator, which can be modified by partners in order to meet their research needs while 

transferring the reciprocal knowledge to the other partners. In this report, we provide a summary of 

the activities performed by the TERAFLUX Consortium during the third year of the project, working 

on the common evaluation platform (see section 2.1 for an introduction to this concept). 

As the content of this Deliverable shows, the knowledge transfer about the simulation infrastructure to 

the TERAFLUX Partners has been very successful. 

The T* instructions have been introduced as an extension of the x86_64 ISA, as designed in D7.2, and 

are now integrated in the simulator: we provide a high-level description of the fundamental 

mechanisms in section  2.2. Since an interface for writing C applications has also been realized, we 

report in section  2.4 a brief description of some kernel benchmarks that we realized, while the 

compiler support for generating T* applications is reported in section  2.9. The extension of the TSU 

to the multi-node case is now available to partners, as described in section  2.5; in section  2.4 we 

describe the first steps of the implementation of a timing model for T* instructions, in the single-node 

case, which is still an ongoing activity. The available mechanism for estimating power consumption is 

reported in section  2.6. 

In section  2.7 and  2.8, the activities performed for integrating in COTSon the DDM-style hardware 

scheduler are reported. The implementation of the FDU mechanisms for double execution and thread 

restart-recovery are described in section  2.10, while section  2.11 provides a description of the fault 

injection model. The enhanced support for Transactional Memory (for the multi-node case) to 

COTSon is discussed in section  2.12. 

Finally, in section  3 we describe the simulation environment and the support that was made available 

to the Partners, from both the hardware side and software side. Moreover, in section  3.5 we report on 

some training events on OmpSS, organized by BSC and opened to TERAFLUX partners. 

1.1 Relation to Other Deliverables 

The activities under the WP7 are related to the integration of the research performed in the other 

TERAFLUX workpackages. In particular, we highlight the following relations: 

• M7.1 (WP7): for the first architectural definition; 

• D2.1, D2.2 (WP2): for the definition of the TERAFLUX relevant set of applications; 

• D4.1, D4.3 (WP4): for the compilation tools towards T*;  

• D5.1, D5.2, D5.3 for FDU details; 

• D6.1, D6.2, D6.3 (WP6): architectural choices taken during the first 3 years of the project; 

• D7.1, D7.2, D7.3 (WP7): previous research under this WP. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 9 of 50 

 

1.2 Activities Referred by this Deliverable 

This deliverable reports on the research carried out in the context of Task 7.1 (m1-m48) and Task 7.3 

(m6-m40). In particular, Task 7.1 covers an ongoing activity for the entire duration of the project that 

ensures the tools are appropriately disseminated and supported within the consortium (see Annex 1, 

page 52), while Task 7.3 is related to the implementation in the common evaluation platform of the 

fault injection and power models (see Annex 1, page 53). 

 

1.3 Summary of Previous Work (from D7.1, D7.2 and D7.3)  

During the first two years, the TERAFLUX partners started using COTSon, and modified it in order 

to implement (test and validate) new features, to meet their research needs. In particular, we are able 

to boot a 1000+ cores machine, based on the baseline architectural template described in D7.1. The 

target architecture can exploit all the features added by the various partners to the common platform: 

this is very important for the integration of the research efforts carried out in the various TERAFLUX 

WPs. In particular, an initial FDU interface with the TSU (both DTS style and DDM style), has been 

described in D7.2, and further detailed in D7.3. Similarly, in D7.3 a first model for the development to 

monitor power consumption and temperature was reported. 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 10 of 50 

2 New Simulation Features 

2.1 Brief Overview of the TERAFLUX Evaluation Platform (ALL WP7 

PARTNERS) 

The TERAFLUX project relies on a common evaluation platform that is used by the partners with two 

purposes: i) evaluate and share their research by using such integrated, common platform, and ii) 

transfer to the other partners the reciprocal knowledge of such platform. 

In Fig. 1 is shown the high-level vision of the evaluation platform. 

TERAFLUX

EVALUATION
PLATFORM

APPS PERFORMANCE

METRICS

APP
OUTPUT

fib.c mmul.c

# cores

s
p

e
e

d
u

p

1        2        3         4         avg

mmulfib

APP

INPUT

 

Fig. 1 TERAFLUX evaluation platform. 

The APPS block represents the applications that researches can feed to the evaluation platform, as 

well as other “pipe-cleaner” benchmarks like the ones described in Section  2.3 of this document, or 

the ones coming from the activities of WP2. Another important point emerged by the WP2, is a proper 

choice of the inputs, in order to be able to show the performance at the “TERADEVICE level” (i.e., 

for at least 1000 complex cores, as discussed in previous deliverables like D7.1, D7.2, D7.3, i.e., 1000 

x 109 transistor devices). 

The TERAFLUX evaluation platform is the set of common tools available to partners: the extended 

simulator (i.e., the extended COTSon, see sections  2.2,  2.4,  2.8,  2.10, and  2.11), compilers (see 

section  2.9), the hardware for hosting simulations (see section  3.1), and external tools for power 

estimation (see section  2.6), or to easily configure and run the simulator (see section  3.2). The output 

block represents the outcome of the benchmarks, while the performance metrics are the set of 

statistics that can be obtained when executing benchmarks in the common platform (see sections  2.4 

and  2.5). Finally, in this context, the app output is necessary for verifying the application had 

executed correctly during the evaluation. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 11 of 50 

2.2 T* Instruction and Built-In Support in the C Language (UNISI, HP) 

In the TERAFLUX project, the T* Instruction Set Extensions (ISE) to the x86_64 ISA has been 

introduced for managing threads in a dataflow style by means of dedicated hardware units for 

executing the custom instructions. In order to experiment with these T* new instructions, we used a 

simulation mechanism which overloads a set of unused existing x86 instructions, thus allowing us to 

rely on very well tested virtualizer like SimNOW (part of COTSon).  

In order to simulate this feature in COTSon and have more flexibility in the register mapping of the 

compiler, we overload the semantic of a particular x86_64 instruction, called prefetchnta. This 

has the advantage of being a “hint” with no architecturally visible side-effect and does not clobber any 

architectural register. From the x86_64 instruction manual [x86]: 

prefetchnta m8 

where m8 is a byte memory address respecting the x86_64 indexed base + offset format ([x86], 

Chapter 2). This instruction is harmless to the core execution, since it is just a “cache hint”: that’s why 

we selected it as the mechanism to convey “additional information” into the simulator. It is also rich 

enough to support a large encoding space, as well as immediates and registers for T* instructions, as 

we describe in more details below. The “additional information” include the T* opcodes and its 

parameters, as introduced in D6.1, D6.2, as well as other T* new instructions, besides the 6 original 

ones introduced in D7.1, D6.2, whose need became clearer as we started experimenting with more 

complex code. Moreover, this instruction is a good match to the compilation tools because it doesn’t 

alter any content of the general purpose registers. For example, other user-defined functionalities of 

COTSon, and the initial T* implementation, use CPUID (see D7.1, D7.2), which has the unpleasant 

side effect of modifying RAX, RBX, RCX, RDX, which causes compiler complexity and unnecessary 

spill/restore overhead.  

In order to minimize the probability of overloading an instruction used in regular code, we selected as 

MOD R/M byte [x86] the value 0x84, which means that m8 specifies a (32-bit) memory address that is 

calculated as [%base]+[%index]*2scale+displacement32. The %base, %index register 

identifiers and the scale bits (2 bits), are packed in a so-called SIB byte [x86]. displacement32 is 

another 4 bytes. In such case, we have a total of 5 bytes (after the opcode and the MOD R/M byte) that 

are available for the encoding of T* ISE. We then defined a “magic value” (0x2daf), as a reserved 

prefix that indicates a prefetch of 0x2daf0000 (766,443,520 bytes) of a scaled index and base 

address, which is not something that has any conceivable use in practice. As a matter of fact, we 

tested routine execution of a running system for several billion instructions, as well as all the binaries 

shipped with our standard Linux distribution, without any occurrence of that instruction. With the 

above choices, the overloaded instruction encoding looks as follows: 

0f 18 84 rr XX II af 2d 

 0  1  2  3  4  5  6  7 

where 0x0F18 is the x86 opcode for prefetchnta, 0x84 is the value of the MOD R/M field of 

the prefetchnta instruction, 'rr' (1 byte, that was corresponding the SIB byte), 'II' (1 byte) and 

'XX' (1byte) are the two remaining byte from the displacement. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 12 of 50 

This allows us to use: 

• The rr value for encoding two x86 registers is used in the T* instruction. We currently chose 

to limit the registers to the core set available in both 32b and 64b x86 ISA variants for 

simplicity, but we may extend the choice to more 64b registers in the future if the need for 

additional registers arises 

• The XX value for encoding the T* opcode (for up to 256 opcodes) 

• The II value for encoding an 8-bit T* immediate, if needed (or other 2 registers like for the rr 

field). 

Let’s consider, as an example, what happens with a TREAD operation (see D6.2 Table 1) from the 

frame memory of a DF-thread, at the “slot” number 5. The compiler should then target such T* built-

in. For testing, we also provide a set of C-language built-ins that can be embedded in manual C code, 

and would be expressed DF_TREAD(5) as shown here (a more extensive example is provided in 

Appendix A for quick reference): 

uint64_t a; 

a = DF_TREAD(5); 

This will then be assembled as: 

prefetchnta 0x2daf050e(%rdx,%rdx,1) 

and will have a meaning: 

 TREAD $5, %rdx. 

In fact, the corresponding bytes representing the instruction will be: 

0F 18 84 12 0E 05 AF 2D 

The “container” of the custom instruction is therefore 0xOF1884…AF2D, which is already described 

above and is the same for all the custom instructions. The “useful bits” (underlined) are: 

• 0x12 specifies the identifier of the destination register of the TREADQI (which is connected 

to the destination variable ‘a’ by the gcc-macro expansion), 

• 0x0E is the T* opcode for TREADQI (TREAD with immediate value – other currently 

experimented opcodes are reported below), 

• 0x05, this is the immediate value of the DF_TREAD. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 13 of 50 

In Table 1, we provide the full list of all the T* ISE opcode (i.e., all the possible values for the XX 

field) introduced so far in the COTSon simulator. 

Table 1 OPCODEs for T* instructions (the instructions with the grey background in this table have been 

reported for completeness, but have not yet been fully implmented in the simulator) 

OPCODE INSTRUCTION OPCODE INSTRUCTION OPCODE INSTRUCTION 

0x01 TINIT 0x0D TSCHEDULEI 0x19 TDECREASEN 

0x02 TSCHEDULE 0x0E TREADQI 0x1A TDECREASENI 

0x03 TREAD 0x0F TWRITEQI 0x1B TWRITEP 

0x04 TWRITE 0x10 TSCHEDULEP 0x1C TWRITEPI 

0x05 TALLOC 0x11 TESCHEDULEPI 0x1D TWRITEQPI 

0x06 TFREE 0x12 TLOAD 0x1E TSCHEDULEZ 

0x07 TPOLL 0x13 TSTORE 0x1F TWRITE32P 

0x08 TRESET 0x14 TSTOREQI 0x20 TWRITE32PI 

0x09 TSTAMP 0x15 TSCHEDULEF 0x21 TSTOREP 

0x0A TDESTROY 0x16 TSCHEDULEFI 0x22 TSTOREPI 

0x0B TREADI 0x17 TCACHE   

0x0C TWRITEI 0x18 TDECREASE   

 

2.2.1 Brief Introduction to COTSon’s Implementation of T* 

The set of supported T* ISE, currently experimented, is the following. 

• tschedulepi %tid = %ip, %cnd, $sc: Schedules (conditionally) a thread with address in 

register %ip to be executed. Register %cnd holds the predicate. The immediate $sc holds the 

synchronization count (0..255). It returns a thread handle in register %tid, or 0 if the predicate 

is false1. The %tid is guaranteed to have bits 0..31 at 0 (see TWRITE). Constraint: %tid and 

%ip must specify the same register identifier (i.e., the same x86_64 register). For variable sc 

or sc > 255, the general version (TSCHEDULEP) is required. 

• tdestroy %dfr: Called at the end of a dataflow thread to signal the TSU the end of a thread 

execution and free up thread resources. To reduce simulation polling overhead, the thread is 

destroyed internally and returns the address of the next thread (if any available) in register 

%dfr; this slightly deviates from the previously defined syntax (just “TDESTROY”). It is a 

“peeling” optimization dealing with the (common) case when the queue of ready threads is 

not empty, so that there is no need to return to the polling loop. 

• treadqi %res = $im: Reads the 64b value stored at the $im (immediate) offset of the frame of 

the self-thread. This is the immediate form with $im < 256. For $im > 255 or variables, use 

the general form (TREAD). The offset immediate is expressed in 64b words (i.e. offset=2 is 

byte=16). 

                                                      
1
 Note: this implementation is slightly different from what described in D6.2 where we proposed to write %tid 

only in case of true condition that is tschedule(&%tid, %ip, %cnd, $sc). 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 14 of 50 

• twriteqi %tid, %tval, $im: Writes the 64b value in register %tval to the location at $im 

(immediate) offset of the frame of thread %tid. This is the immediate form with $im < 256. 

The offset $im is expressed in 64b words (i.e. offset=2 is byte=16). For $im > 255 or variable, 

use the general form (TWRITE). 

• talloc and tfree are encoded but semantics to be defined. 

The above instructions correspond to the instructions (TSCHEDULE, TDESTROY, TREAD, 

TWRITE, TALLOC, TFREE as introduced in the previous deliverable D6.2 (see Table 1). 

Additionally, we are currently experimenting with other instructions: 

• tschedule %tid = %ip, %sc: Schedules the thread (unconditionally), while the start address 

is located in register %ip. Register %sc contains the synchronization count. tschedule 

returns a thread handle in register %tid. By design, we decided to use thread handles 

expressed on 32 bits; moreover, for efficiency reasons we store such handles on the 32 most 

significant bits of %tid. In this way, we can do standard address arithmetic on thread handles 

(e.g., add an offset to obtain the address of an individual element of the thread frame) almost 

as if they were addresses. This is the general form used with variable sc or sc > 255. For 

immediate version (sc < 256), tschedulei is more efficient. 

• tschedulei %tid = %ip, $sc: Schedules thread (unconditionally) with address in register %ip 

to be executed. Immediate $sc holds the synchronization count (0..255). It returns a thread 

handle in register %tid. The %tid is guaranteed to have bits 0..31 at 0 (see TWRITE). 

Constraint: %tid and %ip must specify the same register identifier (i.e., the same x86_64 

register). For variable sc or sc > 255, the general version (TSCHEDULE) is required. 

• tschedulep %tid = %ip, %sccnd: Schedules thread (conditionally) with address in register 

%ip to be executed. Register %sccnd packs 'sc' (sync count) and 'cnd' (predicate) as  

%sccnd = (sc << 1) + cnd. It returns a thread handle in register %tid, or 0 if the 

predicate is false1. The %tid is guaranteed to have bits 0..31 at 0 (see TWRITE). This is the 

general form used with variable sc or sc>255. For immediate version (sc < 256), tschedulepi 

is more efficient. 

• tschedule %tid = %ip, %sc: Schedules the thread (unconditionally), with the start address in 

register %ip. Register %sc contains the synchronization count. tschedule returns a thread 

handle in register %tid. By design, we decided to use thread handles expressed on 32 bits; 

moreover, for efficiency reasons we store such handles on the 32 most significant bits of 

%tid. In this way, we can do standard address arithmetic on thread handles (e.g., add an offset 

to obtain the address of an individual element of the thread frame) almost as if they were 

addresses. This is the general form used with variable sc or sc > 255. For immediate versions 

(constant sc < 256), tschedulei is more efficient. 

• tread %res = %off: Reads the 64b value stored at the offset of %off register of the frame of 

the same thread. This is the general form of tread (see also TREADI) with variable (or > 256) 

offset. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 15 of 50 

• treadi %res = $im: Reads the 64b value stored at the $im (immediate) offset of the frame of 

the self-thread. This is the immediate form with $im < 256. For $im > 255 or variable, use the 

general form (TREAD). 

• twrite %tloc, %tval: Writes the 64b value from register %tval to the location stored in 

register %tloc. This is the general form of TWRITE (see also TWRITEI) with variable frame 

locations. The %tloc register packs a thread handle (tid) and offset (off), so that %tloc 

= tid + off.  tid is the return value of the tschedule instruction (and its variants) and is 

guaranteed to have the 32 least significant bits set to 0. Hence, tid and off can be used to 

construct the thread frame location, by adding the values or doing any other standard address 

arithmetic. 

• twritei %tid, %tval, $im: Writes the 64b value in register %tval to the location at $im 

(immediate) offset of the frame of thread %tid. This is the immediate form with $im < 256. 

The offset $im is expressed in bytes and has to be 64b aligned. For $im > 255 or variable, use 

the general form (TWRITE). This is just a different way to write the TWRITEQI. 

• tload %res: Loads the TSU frame values into a locally allocated memory chunk of size %res 

that is directly accessible by the thread with standard loads and stores. (Depending on the 

implementation of the TSU, it could be simply a no-op). 

• tstore %tloc, %ptr, %len: Writes the values in memory starting from address %ptr and 

length %len to the frame location %tloc. The %tloc register packs a thread handle (tid) and 

offset (off), so that %tloc = tid + off.  The value of tid is the return value of the TSCHEDULE 

instruction (and its variants) and is guaranteed to have the 32 least significant bits set to 0, so 

that a thread location can be constructed with standard address arithmetic (for example, tid 

could be the address of the frame). 

• tstoreqi %tloc, %ptr, $len: Immediate version of the TSTORE operation, with $len a 1-256 

immediate. 

Other instructions are used in the runtime: 

• tpoll %dfr: called within a worker thread, polls the TSU about work to do work (address of 

the dataflow thread to start) is returned in the register %dfr. Used in the runtime and not in the 

dataflow program. 

• tinit %nopr, %pstack: initializes a dataflow worker and sets the "no-operation" function in 

the register %nopr and a reserved region of memory in register %pstack. The no-operation 

function is used to optimize the simulation idle polling loop. The reserved stack is used to 

materialize the local frame (by tload, see above) so that it can be used by standard x86 load 

and store operation by the compiler. Used in the run-time and not in the dataflow programs. 

• treset %rs, %rn: resets the dataflow execution, freeing all threads and preparing for a new 

execution. The register %rs points to a string in memory of length stored in register %rn (for 

simulation debugging purposes). 

And finally, these instructions are used for debugging and tracing of execution statistics 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 16 of 50 

• tstamp %ts = %buf: collects per-core stats (instr, cycles, idles) in the memory pointed to by 

register %buf and returns the current value of simulation nanos in reg %ts. Can be used to 

address execution statistics (in a much more precise way than using performance counters) 

from a guest program. 

 

2.3 New T* Benchmarks (UNISI) 

By exploiting the T* ISE support for the C-language introduced in the section 2.1, new benchmarks 

have been implemented for running in the COTSon simulator. The Matrix Multiplier benchmark is 

already available in the COTSon repository, while the Radix Sort benchmark is going to be released in 

the near future. 

2.3.1 Matrix Multiplier 

The matrix multiplication algorithm chosen for the T* C-like implementation is the blocked matrix 

multiplication version, in which the result matrix C = A·B is recursively constructed as: 

∑ =
⋅=

s

c cbacab BAC
1

 

where Cab represents a sub-block of the result matrix. The input matrices A and B are required to be 

square for simplicity, and defined as: 

{ }
ijAA=      B = Bij{ } 

The input parameters that the algorithm needs for execution are two integers s and np, both required 

being power of 2: 

• s – number of rows and columns of the square matrices A, B and C; 

• np – total number of partitions (blocks). 

For example, running the application with s=32 and np=4, will perform a multiplication of 2x2 

blocked matrices, in which each block is composed by 16x16 elements. Details on the structure of the 

dataflow version of this benchmark are reported in Appendix A. 

The source code of the matrix multiplier algorithm is available to the TERAFLUX partners in the 

public SOURCEFORGE website [SF]. We report the code for quick reference in the Appendix A. 

 

2.3.2 Other Benchmarks 

A Dataflow version of the Recursive Fibonacci application has been implemented in C using the 

built-ins introduced in Section 2.2, similarly to the Matrix Multiplier described in previous section. 

The well-known Radix Sort benchmark, which is one of the kernel application included in the 

SPLASH-2 suite [Cameron95], has been also developed in the T* C-like style for our experiments. 

The implementation of this algorithm is still ongoing because it requires some protection mechanism 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 17 of 50 

for managing concurrent accesses to shared data. Since in the TERAFLUX project the Transactional 

Memory (TM) is supposed to be adopted for this purpose, the implementation of this benchmark will 

be completed in the near future by exploiting the new TM feature added by the UNIMAN partner to 

the COTSon platform. 

2.4 Single Node T* Tests (UNISI) 

In order to show the potential of the implementation of T*, we show here the possibility to collect 

some statistics (number of Dataflow Threads that are executing, running and waiting) related to the 

execution of some benchmarks on the modified COTSon platform. 

We selected for this sake Matrix Multiplier described in Section 2.2.1 or the Recursive Fibonacci 

(already introduced and described in previous deliverables D6.1, D6.2) as “pipe-cleaners”. The first 

step has been to code those examples by hand, in order to allow the WP4 to have some simple 

examples to target the proposed T* instructions. 

On the simulator side, the efforts in this year had been to support properly the execution of the 

Dataflow Thread (this is coded in the publicly available modules TSU, TSU2, TSU3 on the Source 

Forge website) 

DF Threads can be either waiting to become ready (i.e. their synchronization count has not reached 

zero), or already in the ready queue, waiting for execution once some core becomes available. In the 

single node experiments, we varied the number of cores from 1 to 32. In this context, simulations 

have been successfully performed. 

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18

Clock cycles (millions)

#
o

f 
th

re
a

d
s 

(t
h

o
u

d
a

n
d

s)

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18

Clock cycle (millions)

#
o

f 
th

re
a

d
s 

(t
h

o
u

sa
n

d
s)

TH_WAITING

TH_READY

TH_RUNNING

TOTAL

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18

Clock cycle (millions)

#
o

f 
th

re
a

d
s 

(t
h

o
u

sa
n

d
s)

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18

Clock cycle (millions)

#
o

f 
th

re
a

d
s 

(t
h

o
u

sa
n

d
s)

4 cores 8 cores

16 cores 32 cores

 

Fig. 2 Fibonacci(35): number of threads in four single-node configurations 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 18 of 50 

In the following, results of the execution of the Fibonacci benchmark are discussed. In particular, Fig. 

2 shows the number of threads waiting, ready and running in the system during the execution of the 

recursive computation of the 35th term of the Fibonacci series, targeting four different single node 

configurations (4, 8, 16 and 32 cores). The figure highlights two aspects. First, the maximum number 

of threads created in the system is 1.5M, over all different configurations. Second, the execution time 

is reduced by a half when the number of cores in the node doubles.  

These results show that the COTSon simulator is now able to support the T* execution model (a 

dataflow execution model) achieving almost perfect scaling. However, the timing model still has to be 

tuned up by connecting the existing memory hierarchy timing models of COTSon to the T* 

components: such activity is ongoing and briefly described in section 2.3.1. In Fig. 3, we also show a 

“zoom” of the bottom part of the thread graphs. For each configuration, except for the “startup” and 

“ending” phases, we observe that there is always a number of running DF-Threads equal to number of 

cores, demonstrating that the execution paradigm is always able to load the system. 

0

1

2

3

4

5

6

7

8

0 2000000 4000000 6000000 8000000 1E+07 1,2E+07 1,4E+07 1,6E+07 1,8E+07 2E+07

Clock cycle

#
o

f 
th

re
a

d
s

0

2

4

6

8

10

12

14

16

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 1E+07

Clock cycle

#
o

f 
th

re
a

d
s

TH_WAITING

TH_READY

TH_RUNNING

0

5

10

15

20

25

30

0 500000 1E+06 2E+06 2E+06 3E+06 3E+06 4E+06 4E+06 5E+06 5E+06

Clock cycle

#
o

f 
th

re
a

d
s

0

10

20

30

40

50

60

0 500000 1000000 1500000 2000000 2500000 3000000

Clock cycle

#
o

f 
th

re
a

d
s

4 cores 8 cores

16 cores 32 cores

 

Fig. 3 Fibonacci(35): number of threads (zoomed detail of the previous Figure) 

2.4.1 T* Timing Model 

Currently, the TSU implementation already provides functional execution for all T* instructions. In 

this section, we describe the implementation efforts for the timing model within the simulator, which 

assumes the baseline architecture described in D6.3 for the TERAFLUX DTS (Distributed Thread 

Scheduler). 

For explaining the current methodology, we assume the existence of a component still under research 

in the Architecture workpackage, which is the DF-Frame cache. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 19 of 50 

The implementation of the timing model is organized as shown in the Fig. 4. The execution flow is 

managed as follows: 

• During the execution, T* instructions and memory accesses are dropped from SimNow into 

COTSon. 

• The Filter component filters all T* memory accesses to DF-Frames by passing them to the 

TSU in order to model the DF-Frame cache, DF-Frame memory, and all queue structures. All 

other instructions (i.e., the ones that are part of the regular x86_64 ISA) are passed directly to 

the COTSon Timer, which already implement the timing model for non T* instructions. 

• Inside the TSU, the DF-Frame memory and the DF-Frame cache are modeled. For example, 

we can assume that the access latency to DF-Frame cache is equal to Core Level Cache 

Hierarchy (CL$H in the Architectural Template presented in D6.2, Figure 1), and the latency 

access to physical DF-Frame memory is equal to normal memory access. 

• The latency feedback for these accesses in the TSU is passed to the timer in COTson. 

 

Fig. 4 Timing model for the T* execution 

In order to provide the COTSon user with an easy way to model the architecture, for example with the 

purpose of exploring different configurations which are characterized by different timings, we define 

the size of DF-Frame cache, DF-Frame memory, queues in a configuration file (e.g. the tsu.lua file) 

which is processed by COTSon. 

In the current simulator integration, we have implemented the filtering of T* instructions and memory 

accesses into TSU. The next steps will be modeling DF-Frame memory and DF-Frame cache. 

 

2.5 Multi-Node T* Tests (UNISI) 

The simulation environment described in section 2.3 created the basis for single node simulations (we 

decided not to exceed the size of 32 cores per node – current commercial processors like the AMD 

6200 encompass 16 cores per processor). In order to simulate systems with a higher number of cores, 

the number of nodes of the target machine must be increased. In particular, if we want to simulate a 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 20 of 50 

system with say 1024 cores (target for this project as presented in previous deliverables and in 

particular in D7.2), we may need at least 32 nodes. 

Extending COTSon in order to allow many node simulations with T* support has been performed by 

UNISI, with the support of HP. Currently, the TSU model is able to perform thread scheduling among 

many nodes. It has to be tuned up by connecting the timing models of the several existing components 

(like caches, memory, to the TSU models). We plan to complete the multi-node case in the next year. 

In the following, we provide some insights on the framework, and show preliminary results of 

Fibonacci and Matrix Multiplier running on target machine up to 1024 cores. 

 

Fig. 5 The structure of the framework for multi-node simulation as it is running on our simulation host. 

2.5.1 Framework design 

A scheme of the framework for multi-node simulation is shown in Fig. 5. The access to the DF-Frame 

information among nodes is provided through shared memory allocated on the host machine. Such 

shared data structures hold 1) a Circular Queue for holding the continuations of created DF-Threads, 

which are not ready for execution, and 2) the Ready Queue for those threads whose synchronization 

count has reached zero. A Scheduler is responsible for managing properly these queues. In the current 

implementation, the Scheduler distributes the ready DF-Threads among nodes following a simple 

round-robin policy. Nodes can access the DF-Frame Memory through a message queue to a high-level 

entity we called Manager. Such manager is responsible for allocating-deallocating DF-Frame Memory 

dynamically. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 21 of 50 

A timing model for the multi-node framework will be designed and developed in the next period, as 

an extension to the single-node timing model, and is currently under development. 

2.5.2 Demonstration of multi-node capability of the new distributed scheduler 

Fig. 6 shows the speedup – with respect to the single core case – of the execution time for both 

Fibonacci (computation of 40) and Matrix Multiply (with matrix size of 512). We simulated a number 

of cores from 1 to 1024, in steps of powers of 2: in the configurations up to 32 cores the systems are 

single node, from 64 to 1024 cores each simulation run on systems with many nodes, each node 

hosting 32 cores. 

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

S
p

e
e

d
u

p

Number of cores

FIBONACCI

FIB (40)

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

S
p

e
e

d
u

p

Number of cores

MATRIX MULTIPLY

MMUL(512)

 

Fig. 6 Multi-node simulation: Fibonacci, with input set to 40, and Matrix Multiply, with matrix  

size 512x512, partitioned in a number of blocks equal to the number of cores 

As we can see, we have reached the ability to simulate the dataflow execution model not only in the 

single core but also across nodes, without changing the programming model or execution model when 

passing from the single node case to the multi-node case. Of course, we need to tune up the system in 

order to evaluate the sensitivity to the availability of resources like bandwidth and memory controllers 

(as explored initially in the deliverables D2.1, D2.2 regarding the Application work package). 

In the case of the matrix multiply benchmark, we start to see some loss of scalability after 512 cores: 

this is due to the lack of parallelism as we choose too small a data set for this experiment. As a side 

note, we can see that the simulator is also able to catch such behaviors. 

2.6 Power estimation using McPAT (UNISI) 

Power estimation along with temperature and reliability is an important metric that enables the 

envisioned architecture to schedule DF-Threads with the aims of improving the overall resiliency of 

the system. This has been extensively discussed in the previous deliverable D7.3. Here we briefly 

describe how this mechanism has been extended from an off-line to an on-line methodology. This is 

necessary to drive the scheduling actions during the program execution. 

Looking at the simulation level, power estimation is obtained with the use of an external tool called 

McPAT [MCPAT09]. McPAT has been developed by HP with the ability of estimating power 

consumption, timing and area of a given microarchitecture. Specifically, McPAT implements an 

internal model to compute the power consumption based on the activity within the modeled 

microarchitecture. The activity refers to the instructions executed by the modeled systems, and in 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 22 of 50 

particular to the internal structures that are activated during the execution of each instruction. 

Combining these statistics with a description of the specific modeled microarchitecture, the tool can 

estimate static and dynamic power consumption components (e.g., power consumption for the cache 

memories, power consumption for the cores, etc.), timing and area utilization. 

In order to enable the simulated system to schedule DF-threads according to policies that count for the 

current power consumption, as well as the temperature and the reliability level, the system must be 

equipped with a power, fault and temperature measurement system. From the perspective of the 

simulator, this goal can be obtained by integrating the McPAT tool within the COTSon simulator. 

2.6.1 Off-line vs. on-line Power estimation 

As a first step towards a complete integration, McPAT has been enabled to run at the end of the each 

heartbeat, computing power estimation on a periodic base. Periodic power estimation is obtained 

storing execution statistics coming from the COTSon simulator at every heartbeat. The heartbeat 

represents the internal interval used by the simulator to store the statistics (the interval size is not 

fixed). In the off-line approach, McPAT is run at the end of the COTSon simulation: it processes all 

recorded heartbeats in sequence at the end of the execution of the program. On the contrary, in the on-

line approach, McPAT is run during the simulation, right after a heartbeat has been produced, while 

the program is still running.  

Fig. 7 shows the current tool chain used to estimate power consumption with an off-line/on-line 

processing and some first sample of output. 

  HEARTBEATS 1—5 6—10 11—15 16—20 

           

Core clock 3000 MHz 3000 MHz 3000 MHz 3000 MHz 

Cycles 518001021 cc 741501468 cc 988501962 cc 742001469 cc 

Time 172.667 msec 247.167 msec 329.501 msec 247.334 msec 

Subthreshold Leakage power 2.39913 W 2.39913 W 2.39913 W 2.39913 W 

Gate Leakage power 0.0054596 W 0.0054596 W 0.0054596 W 0.0054596 W 

Total Leakage power 2.4045896 W 2.4045896 W 2.4045896 W 2.4045896 W 

Runtime Dynamic power 0.269286 W 0.269339 W 0.269316 W 0.269265 W 

CPU <cpu0>: 

Total power 2.6738756 W 2.6739286 W 2.6739056 W 2.6738546 W 

           

Core clock 3000 MHz 3000 MHz 3000 MHz 3000 MHz 

Cycles 518001021 cc 741501468 cc 988501962 cc 742001469 cc 

Time 172.667 msec 247.167 msec 329.501 msec 247.334 msec 

Subthreshold Leakage power 2.39913 W 2.39913 W 2.39913 W 2.39913 W 

Gate Leakage power 0.0054596 W 0.0054596 W 0.0054596 W 0.0054596 W 

Total Leakage power 2.4045896 W 2.4045896 W 2.4045896 W 2.4045896 W 

Runtime Dynamic power 0.268092 W 0.268093 W 0.268093 W 0.268092 W 

CPU <cpu1>: 

Total power 2.6726816 W 2.6726826 W 2.6726826 W 2.6726816 W 

           

Core clock 3000 MHz 3000 MHz 3000 MHz 3000 MHz 

Cycles 518001021 cc 741501468 cc 988501962 cc 742001469 cc 

Time 172.667 msec 247.167 msec 329.501 msec 247.334 msec 

Subthreshold Leakage power 2.39913 W 2.39913 W 2.39913 W 2.39913 W 

Gate Leakage power 0.0054596 W 0.0054596 W 0.0054596 W 0.0054596 W 

Total Leakage power 2.4045896 W 2.4045896 W 2.4045896 W 2.4045896 W 

Runtime Dynamic power 0.268092 W 0.268093 W 0.268093 W 0.268092 W 

CPU <cpu2>: 

Total power 2.6726816 W 2.6726826 W 2.6726826 W 2.6726816 W 

           

Core clock 3000 MHz 3000 MHz 3000 MHz 3000 MHz 

Cycles 518001021 cc 741501468 cc 988501962 cc 742001469 cc 

Time 172.667 msec 247.167 msec 329.501 msec 247.334 msec 

Subthreshold Leakage power 2.39913 W 2.39913 W 2.39913 W 2.39913 W 

Gate Leakage power 0.0054596 W 0.0054596 W 0.0054596 W 0.0054596 W 

Total Leakage power 2.4045896 W 2.4045896 W 2.4045896 W 2.4045896 W 

Runtime Dynamic power 0.268092 W 0.268093 W 0.268093 W 0.268092 W 

CPU <cpu3>: 

Total power 2.6726816 W 2.6726826 W 2.6726826 W 2.6726816 W 

           

Dynamic 1.073562 W 1.073618 W, 1.073595 W, 1.073541 W, 

Leakage 9.6183584 W 9.6183584 W, 9.6183584 W, 9.6183584 W, All CPU total power: 

total 10.6919204 W 10.6919764 W 10.6919534 W 10.6918994 W 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 23 of 50 

 

0

0.5

1

1.5

2

2.5

3

172.667 247.167 329.501 247.334

P
o

w
e

r 
(W

)

Duration (ms)

CPU 0 Power in 4 Periods

Total Leakage power

 

Fig. 7 Power estimation sample outputs. 

The off-line power estimation process starts with a complete simulation running on the COTSon 

simulation infrastructure. During the simulation, all the relevant statistics are collected through the 

internal timer components of the simulator within a SQL local database. The database also contains 

the main configuration parameters of the simulated machine. Simulation statistics are organized on a 

per-heartbeat basis. At the end of each heartbeat the content of the database is parsed in order to 

provide, for each heartbeat, an XML-based configuration file for the McPAT tool. The XML 

configuration file contains both the main statistics for the current heartbeat, and the machine 

architecture description. Hence, for each heartbeat, the McPAT tool extracts a power consumption 

estimation. As shown in, in the case of the on-line power estimation, the set of power estimation 

values is stored back in the database. This allows the TSU to properly schedule the DF-Threads in 

order to respect the power/temperature and reliability (see also Section  2.10 in this deliverable and 

Deliverable D5.3) constraints, and their correlation with power consumption. Similarly to the off-line 

approach, the XML configuration file is generated by the McPAT configuration generator script at 

every heartbeat. Finally, in this case the same set of power consumption values can be used to respect 

the power profile of the simulated machine. 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 24 of 50 

2.7 Execution of User Level DDM on COTSon (UCY) 

Within the context of WP7 we have been working on the execution of DDM applications using our 

user-level DDM TSU runtime. With our first implementation reported earlier we were able to execute 

on single node COTSon instances. Within this year we have extended the TSU to support execution 

on distributed systems. Our first attempt to execute on a multi-node COTSon setup did not turn out 

successful due to problems with the data communication support across multiple COTSon nodes. 

We developed a small benchmark program for the communications layer and we were able to identify 

that COTSon did not progress when the user sends messages larger than 2KB. To overcome this issue 

we developed an intermediate communication layer in the TSU network unit that accepts messages of 

any size and splits them into smaller packets to achieve successful communication. As it is shown in 

Fig. 8 we have managed to successfully execute a DDM application using 4 nodes on COTSon with 

the user level TSU. 

This configuration was compiled on the tfx2 machine (i.e. one of the simulation hosts provided by 

UNISI with 48 cores and 256 GB of shared memory), provided by UNISI. 

 

Fig. 8 Running DDM on COTSon, with four nodes 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 25 of 50 

 

Fig. 9 Blocked Matrix Multiply running on a four cpu machine 

2.8 Integrating DDM TSU into COTSon (UCY) 

As a continuation of the work described in the previous Section, we have integrated the DDM TSU 

into COTSon by using as template the tsu2 code provided in the TERAFLUX public repository 

(https://cotson.svn.sourceforge.net/svnroot/cotson/branches/tflux-test/tsu2/) and the TSU++ version of 

the DDM system. The tsu2 operates as an intermediate API to provide communication between the 

user application and the TSU unit. 

To validate this implementation of the TSU, we have executed the blocked matrix multiply 

benchmark for 4 workers on a single machine (see Fig. 9). 

We have used a single queue to store threads that are ready for execution and a FIFO policy for 

scheduling. The TSU does not operate in busy-wait mode but instead it is event-driven execution, 

which seems to make simulation faster. This configuration was compiled on the tfx2 machine (see 

above). 

 

2.9 GCC Backend and OpenStream Experiments on COTSon (INRIA) 

The TERAFLUX backend compiler has been maturing over the course of the third year of the project. 

It compiles OpenStream programs (data-flow streaming extensions of OpenMP) to T* intrinsic 

functions, themselves compiled to the T* ISA. The code generation pass has been developed as a 

middle-end pass in GCC 4.7.0, operating on three-address GIMPLE-SSA code. The traditional 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 26 of 50 

compilation flow is being modified according to a specialized adaptation of the built-in-based, late 

expansion approach described in D4.2 (first year deliverable). See also [Li12, Li12b]. Built-ins are 

used both to convey the semantics of input and output clauses in streaming pragmas to the compiler 

middle-end, and to capture the semantics of efficiency languages such as HMPP, StarSs/OMPSs and 

TFLUX. More details can be found in [Pop13] and Deliverable D4.1). 

As part of the training and internal dissemination activities, a step by step OpenStream tutorial has 

been designed and distributed with the OpenStream repository. It consists of a set of 15 thoroughly 

commented examples illustrating all the features of the language. 

The applications ported to OpenStream in WP2 have been distributed together with the OpenStream 

source code. They have also been packaged as stand-alone benchmarks with multiple data sets and 

auto-tuning scripts to facilitate the adaptation of the grain of parallelism to the target. The current list 

of distributed OpenStream programs is: cholesky, fmradio, seidel, fft-1d, jacobi, strassen, fibo, 

knapsack, matmul, bzip2 (SPEC CPU 2000) and ferret (PARSEC). For some of these programs, 

multiple versions are provided, to compare data-flow-style, Cilk/join-style, and barrier-style 

implementations. 

All OpenStream applications are supported by the software run-time implementation of T*. In 

addition, most applications run on COTSon when compiled using the hardware-ISA branch of the 

TERAFLUX compiler (i.e., the SourceForge public repository [SF]). The only problematic ones are 

the Cilk/join and barrier-style variants of the benchmarks that make use of the lastprivate or taskwait 

constructs of OpenStream. These currently cannot be implemented using T* (the compiler makes use 

of scheduling and stack manipulation mechanisms not supported by the tsu2 branch of COTSon). This 

is not a major issue as the data-flow-style programs compile and run properly, but for completeness 

and to facilitate the implementation of larger applications, we are working on an extension of the T* 

ISA to support these constructs directly. 

At this time, the TERAFLUX memory model is in progress in COTSon. A preliminary (formal) 

specification exists for Owner-Writable Memory (OWM, see D7.1) regions [Gin12] and UNIMAN 

implemented TM in COTSon, but the former is not yet implemented and the latter has not been 

merged with the tsu2 and tsu3 branches of the simulator. As a result, only pure data-flow benchmarks 

are currently able to scale to 1024 cores, or to run on multiple nodes in general. Unfortunately, the 

current compilation flow for OpenStream makes use of intermediate/proxy data structures for run-

time dependence testing. This is necessary to implement the sliding window semantics of the 

language's streams, and to support the rich region-based dependences of StarSs/OMPSs. Because of 

this, OpenStream programs currently run on a single node only, and will stay that way until the 

memory model is implemented in the simulator. To cope with this limitation, and also to enable 

additional performance comparisons, a low-level intrinsic/builtin interface to T* has been 

implemented in the TERAFLUX back-end compiler. This interface retain a C syntax and semantics, 

abstracting the low-level optimization details of the compilation flow, but it requires the programmer 

to think directly in terms of data-flow threads, carrying the frame meta-data explicitly. Still, it allows 

pure data-flow programs to be written and to scale on the full architecture. 

Technical information, source code, tutorial examples, and benchmarks are available online and 

updated regularly: http://www.di.ens.fr/OpenStream.html.en. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 27 of 50 

2.10 Double Execution and Thread Restart Recovery in a Single Node 

(COTSon Modules) (UAU, HP) 

In this section, we will give an overview of the implementation details of the FDU subsystem, Double 

Execution, and Thread Restart Recovery in the TERAFLUX simulator. For more details about the 

Double Execution and Thread Restart Recovery mechanisms, please refer to Deliverable D5.3, which 

describes the technical implications of Double Execution and the thread restart recovery for the 

TERAFLUX architecture. The enhanced source code is publicly available in the tflux-test branch of 

the public COTSon SourceForge repository. 

All simulator extensions in this section are based on the functional tsu2 implementation provided by 

the partners HP and UNISI. Please note that at this point of the simulator integration there is neither a 

functional differentiation between D-FDU and L-FDU nor between the D-TSU and L-TSU. Hence, 

we refer just to FDU and TSU, respectively. 

2.10.1 FDU subsystem in COTSon 

The FDU subsystem uses the periodic AMD SimNow timer callback (FDU::call_periodic). 

The FDU itself is, similar to the TSU, implemented as a singleton object. 

At each periodic call, the monitoring subsystem generates heartbeats and pushes them into the  

FDU's monitoring queue. After all cores have pushed their heartbeats, the FDU singleton processes 

them in its M(onitor) A(analyse) P(lan) E(execute) cycle, stores the information in its knowledge 

base, and updates its core records. For more details on the MAPE cycle and the FDU internals please 

refer to the Deliverables D5.1, D5.2, and D6.2. 

The current D-FDU implementation maintains interfaces to two TERAFLUX device types: 

1. The cores within a node 

2. The TSU (used version: tsu2) 

The FDU/core interface implements a FIFO queue (message_queue), shared between the cores 

and the FDU. The FDU/TSU interface is a function (get_core_record()) exposed by the FDU 

singleton. This function is called by the node’s TSU and returns the latest core record for a given core 

ID, enclosing information about the current core performance, its reliability value, and wear-out of a 

core. Whenever the TSU tries to schedule a new thread, it queries the FDU for a new core record and, 

if required, adjusts its scheduling policy. 

2.10.2 Double execution and Recovery Support 

Double Execution and Thread Restart Recovery both require an execution free from side-effects. To 

ensure this in the TERAFLUX simulator, we extended the dthread data structure in the TSU by a 

per-thread write-buffer wbuf. This write-buffer is created along with a dthread object when the 

TSU has received a TSCHEDULE operation. After the thread becomes ready to execute, all 

subsequent TWRITEs of this thread will be redirected to the wbuf data structure. The TWRITEs of 

the leading thread are held in the write-buffer until both the leading thread and the trailing thread 

executed their TDESTROY instructions. Additionally, the CRC-32 signature, incorporating the target 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 28 of 50 

thread ID, the target address and the data of each single TWRITE, is calculated and stored in the FDU 

for both the trailing and the leading thread. 

When the TSU receives a TDESTROY instruction, it checks whether the redundant thread has 

finished its execution by verifying the thread’s current state. If the redundant thread is still running, 

the TSU marks the finished thread as ready-to-check. Otherwise, the TSU calls the FDU singleton to 

indicate that both threads have finished their execution. The FDU in turn compares the stored CRC-32 

signatures and returns a Boolean result indicating a fault-free execution (true) or a faulty execution 

(false). 

Additionally, partner HP extended the baseline TSU implementation to support speculative thread 

creation. Speculative thread creation means that dthread objects created by a potentially faulty 

thread are tagged as speculative and can be discarded when the FDU detects a fault in the parent 

thread. To enable the elimination of speculative threads in case of a fault, each speculative thread 

stores the parent ID of its creator in its dthread object. 

As described in Deliverable D5.3, the write-buffer and the speculative thread creation are required to 

ensure the execution without side-effects and therefore enable Double Execution and Thread Restart 

Recovery. Our Double Execution implementation and Thread Restart Recovery mechanism fully 

support the T* instruction set, as described in Deliverable D6.2. 

Double Execution and speculative thread support can be activated in the COTSon configuration file 

by setting the following options: 

 

 

2.11 High Level Fault Injection Technique (COTSon Modules) (UAU) 

To investigate the thread execution performance of Double Execution and Thread Restart Recovery 

mechanism in presence of failures, we extended the baseline TSU implementation by a failure 

injection mechanism. Currently, the failure injection mechanism assumes a constant failure rate λ per 

core. However, we will incorporate more complex failure distributions in the last year of the project. 

From the constant failure rate λ [Koren07], we derive the reliability R of a core at time ∆t with  

R(∆t) = e
−λ∆t

 

where ∆t is the duration since the last failure occurred in this core. A core’s reliability value is 

updated when the core executes a thread and issues a TDESTROY or TWRITE instruction. The TSU 

subsequently generates a random number rand , with 0 ≤ rand ≤ 1 and verifies whether the core 

has suffered from a defect: 

bool faulty = random > reliability; 

options = {  

  tsu_speculative_threads=true #Activate speculative thread creation 

double_execution=true    #Activate Double Execution  
} 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 29 of 50 

We distinguish between two failure injection modes: 

• Bit flip failures and 

• thread failures 

For the bit flip injection the TSU determines the reliability on each TWRITE and checks whether the 

core became faulty. If the core has suffered from a fault, one random bit within the TWRITE 

parameters is flipped.  

For the thread failure injection, the TSU checks the reliability during each TDESTROY operation. If 

the core has suffered from a defect during thread execution, the TSU tags the thread as defective and 

starts recovery actions. 

The failure injection functionalities are managed in the COTSon configuration file by activating the 

core_failure_injection=true parameter, while the failure rate per second can be 

adjusted by the core_failure_rate parameter. Finally, the failure injection mode is selected by 

the failure_injection_mode parameter. Fig. 10 shows exemplary the performance 

degradation induced by thread failure injection and thread restart recovery for Fibonacci(40). More 

results using the failure injection mechanism can be found in Deliverable D5.3. 

 

Fig. 10 Performance degradation of Fibonacci(40) using thread failure injection with failure rates per core of 

10/s and 100/s 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 30 of 50 

2.12 Transactional Memory Support in COTSon (UNIMAN) 

This section describes the implementation of Transactional Memory (TM) on SimNow and COTSon. 

Although COTSon provides the timing model for our simulations, we cannot control the flow of the 

program (as required in TM implementation) from within COTSon. Correctly dealing with 

transactional execution and transaction aborts requires a TM module for SimNow which exists outside 

COTSon. 

There are two interfaces provided by AMD in order to interact with SimNow: Analyzer interface and 

Monitor interface. The Monitor interface is much faster than the Analyzer interface but allows less 

interaction with execution. If we intercept memory accesses, as required during Transactions, then 

Analyzer interface runs 40-50X slower than the monitor interface. This performance advantage was 

why the Monitor interface was chosen for COTSon. 

For our TM implementation, two important features are needed. Intercepting memory accesses to 

detect conflicts, and saving and then restoring register state of the processors to correctly deal with 

aborts. Further, to arrive at realistic performance estimates, existing performance models in COTSon 

need to be extended with Transactional behavior. For this reason we will be using both the interfaces 

together, when using transactions. 

2.12.1 Functional Transaction Support 

Functional support in a SimNow analyzer module keeps track of read and write sets, detects conflicts 

and performs the necessary cleanup in case of aborts. At this level, our system can model both eager 

and lazy versioning, and eager and lazy conflict detection. The behavior of the TM is described in 

more detail in Deliverable D6.3. During the implementation and testing of this module, several bugs 

were identified in SimNow. These were addressed by AMD and fixed in an NDA version2 of 

SimNow. This means that the TM module works correctly with the NDA version, but not the current 

public release. 

The functional TM support has been made available to TERAFLUX partners and the wider 

community through a branch in the COTSon SourceForge repository. Further, a subset of the STAMP 

(kmeans, vacation) benchmarks is included for testing and demonstration. 

2.12.2 Adding timing support with COTSon 

Timing models for Transactional Memory have been added in a separate branch of COTSon. This 

branch includes models for two TM systems. Therefore, the relevant contributions are: 

• The first is a simple bus based broadcast implementation. 

• The second is a more scalable distributed system. This involved adding timing support for a 

distributed directory based cache coherence protocol.  

• A network model has been implemented in place of the standard bus simulation present in 

COTSon, leading to a more realistic model for large scalable systems. 

                                                      
2
 To get this version, the interested partner has to sign a Non Disclosement Agreement with AMD. This has not 

yet been possible for all Partners. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 31 of 50 

Scalable Transactional Memory mechanisms have been built on top of these protocols. This timing 

support is separate from the functional simulation in the SimNow analyzer module described above, 

but needs to be used in conjunction with it. 

On the level of timing simulation, the TM systems supported are lazy-lazy implementations. Further 

details are described in Deliverable 6.3. 

As with the functional module, TM timing support is available in a branch on Sourceforge. This 

includes the TM models themselves, distributed directory based cache coherence, network simulation, 

and the scripts, documentation and tests to go with these. Similar to SimNow, this work exposed 

several bugs in COTSon, for which we have contributed fixes in conjunction with our partners at HP. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 32 of 50 

3 Development and Simulation environment and supports 

The adoption of architectural simulators has become essential for assuring the correctness of any 

design. Architectural simulators historically suffered from low simulation speed and accuracy, 

imposing serious limitations on the ability of predicting correct behaviors of the designed architecture 

[Portero12, Giorgi96, Giorgi97], especially in the many-core era. With the aim of providing a tool 

characterized by a high simulation speed and accuracy for a heterogeneous kilo-core architecture 

integrating an accurate network-on-chip simulator, the TERAFLUX project adopts a framework based 

on the COTSon [COTSon09] infrastructure. Compared with current state-of-the-art simulation 

platforms, this approach offers a complete environment for a many-core full-system simulation, and 

for its power consumption estimation. In order to guarantee fast simulations, COTSon implements a 

functional-directed approach, where functional emulation is alternated to a complete timing-based 

simulation. The result is the ability of supporting the full stack of applications, middleware and OSes. 

The modular approach on which COTSon is based allows us to adopt the proprietary AMD SimNow 

[SimNow09] as emulator. Finally, the integration of the proposed framework with the McPAT tool 

[MCPAT09] provides the ability of estimating power consumption. 

 

Fig. 11 Exterior vision of the DL-Proliant DL585, main TERAFLUX simulation server 

3.1 The “tfx3”- TERAFLUX Simulation Host 

The host machine that we selected as Consortium wide simulation host (and its cost was initially 

planned in our Annex-1) is shown in Fig. 11. This is the computer where we run the simulated virtual 

processor, and the guest machine as the simulated machine. We verified that such platform is able to 

support the simulation of a very high number of cores (7000+ cores in recent tests). In order to 

achieve this goal, we need a powerful simulation system. Currently, we use as host machine a DL-

Proliant DL585 G7 based on AMD Opteron™ 6200 Series [TFX3], which provides 64 cores coupled 

to 1 TB-DRAM of shared main memory. 

There is a trade-off between complexity of the guest machine and the time required by the simulation. 

Higher complexity in the guest machine (number of simulated cores, memory etc.) produces longer 

simulations. A good trade-off is to use one host-core for each functional instance (i.e., a functional 

instance is equivalent to a node in the simulated chip architecture) representing a node. Each node can 

have up to 32 cores but we found out that 16 x86-64 cores per node can better scale up in terms of 

execution time. Hence, the simulation of a thousand core system can be achieved by distributing the 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 33 of 50 

simulation to more than one host. However, since we want to focus on the simulation of a 1K-core 

system, considering a single host machine is sufficient. In order to correctly simulate a kilo-core 

architecture, we booted up 64 virtual nodes, each one containing 16 x86-64 cores based on AMD 

Opteron-L1_JH-F0 (800Mhz) architecture, and 256M DRAM per core. Fig. 12 depicts the system 

host and guest systems. 

P
h

y
si

ca
l 

H
o

st
 S

e
rv

e
r

1TB - RAM 64 – OPTERON CORES

C00 C01 C02 C07

C08 C09 C10 C15

C55 C56 C57 C63

....

....

....

..
..

..
..

..
..

..
..

MODIFIED SWITCH

M
E

M
O

R
Y

M
E

M
O

R
Y

M
E

M
O

R
Y

M
E

M
O

R
Y

C00 C01 C07

C31C24 C25

C00 C01 C07

C31C24 C25

C00 C01 C07

C31C24 C25

C00 C01 C07

C31C24 C25

....

....

....

....

....

....

....

....

..
..

..
..

..
.. ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

Virtualized X86-64 Core Virtualized Memory Controller Virtualized Network Interface

 

Fig. 12 Host versus Virtual System 

Each node runs a Linux operating system. On top of this system, we are able to run several 

benchmarks based on both OpenMP and MPI programming models. One of the main modifications 

we did is the implementation of the DF-Thread support [Portero11, Giorgi12, D72, Kavi01, Giorgi07] 

through the ISA extension. DF-Threads enable a different execution model based on the availability 

of data and allow many architectural optimizations not possible in current standard off-the-shelf cores. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4128 (129) 6176 (193) 7040 (220)

M
e

m
o

ry
 U

sa
g

e
 U

ti
li

za
ti

o
n

Number of x86_64 virtual cores (nodes)

Breakdown of Host Memory Utilization

free memory

used memory

 

Fig. 13 Number of Virtual Cores vs Memory utilization in HP ProLiant DL585 G7 Server  

(1 TB Memory, 64 x86_64 cores) 

We can still double the number of virtual nodes from 64 to 128 (one master node and 128 slaves) 

resulting in a 40% usage of the DRAM memory in the host machine. Fig. 13 shows the trend if we 

increase the number of virtual nodes. As expected, the main memory consumption and the CPU 

utilization on the host increase. We achieved to simulate 220 nodes of 32 cores, 7040 cores in total 

using the 92% of the main memory and the 93% of the host CPU utilization. This demonstrates the 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 34 of 50 

ability of the proposed simulation framework to scale the simulations to 1 kilo-core range and beyond 

(up to 7 kilo-cores were tested). 

3.2 PIKE – Automatizing Large Simulations (UNISI) 

Many steps that are necessary to setup a COTSon simulation requires the knowledge of many details 

that slowdown the learning curve of using our simulation platform. Therefore, UNISI decided that a 

good way to improve the knowledge transfer would have been to provide an additional tool to easy 

this process: this tool is called PIKE. 

COTSon is a full system simulation infrastructure developed by HP Labs to model complete 

computing systems ranging from multicore nodes up to clusters with complete network simulation. A 

single simulation requires the configuration of various parameters by editing a configuration file 

(written in the Lua language); further configuration of some scripts is recommended to allow more 

control of simulated events, for example to set any specific option (e.g. MPI) or specify features such 

as the definition of a region of interest, or even output of the simulation in a file stored in the host 

machine. In addition, this work should be done for each parameter of the benchmark used. PIKE can 

be run in two different modes: silent (the simulation steps are shown) and verbose (a debug mode in 

which every single operation performed by PIKE is traced). Fig. 14 shows an example of the 

information provided by pike when it is executed in silent mode, and Fig. 15 depicts the execution of 

pike in verbose mode. 

 

Fig. 14 Executing PIKE in silent mode 

The purpose of PIKE is to automate the simulation configuration and execution generating all Lua 

files and scripts suitable for benchmark execution. In addition, it allows the user to use all available 

host cores, and enables simulation in batch mode by means of a thread pool mechanism created 

according to the characteristics of the host machine. 

3.2.1 Overall organization 

PIKE uses a single configuration file to set the parameters of the simulation. Such file is used to set: 

1. the list of simulations to run; 

2. software configuration like communication type, input file name and region of interest; 

3. hardware properties like cache configuration, timing model, node number and core number. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 35 of 50 

 

Fig. 15 Executing PIKE in verbose mode 

Through this single configuration file, PIKE produces simulation output and statistics inside a 

specified folder, which we refer to as the WorkingDirectory. The PIKE configuration requires the user 

to specify the path to the directories listed in Table 2: 

bin/ Contains all the benchmarks binaries (usually compiled on host machine) 
for simulation, and scripts that run on the guest 

config/ Contains the config file for simulation, currently this directory must contain 
the ROM file eventually specified in the configuration 

cotson/ Path to the COTSon installation (if it is not installed, PIKE can download 
and install it automatically) 

image/ Directory that contains the optional ISO images for SimNow, and any files 
*-reset.bsd useful for creating custom BSD 

src/ source directory, in which SimNow binary package is stored. If this 
directory is empty, PIKE tries to download the SimNow binary package 
files directly from the AMD website 

simnow/ SimNow installation directory if it exists 

log/ log directory file, where statistics, error and output are stored at the end of 
the simulation 

Table 2 Path to the directory needed by PIKE 

If the path of a specific directory is not specified in the configuration file, it is searched in the 

WorkingDirectory. It is possible to create a skeleton of the WorkingDirectory using the script 

create_skel.sh inside the tools directory. The PIKE directory has the structure shown in Table 3. 

lib/pike contains the libraries and classes for the pike operations 

bin/ contains the main PIKE scripts 

Table 3 Structure of the PIKE directory 

3.2.2 Functions Exposed to the User  

PIKE currently allows the user to automate the execution of batch simulations. It allows specifying 

custom parameters in order to explore different hardware configurations for the target system, 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 36 of 50 

together with control parameters eventually needed by the benchmarks. Such parameters can be 

specified in the PIKE configuration file. The list of main sections of the configuration file is reported 

in Table 4. 

Table 4 Structure of the PIKE configuration file 

[system] Allows us to specify a custom path for PIKE, listed in Table 1. 
Appropriate links to any SimNow ISO images will be automatically 
created in the COTSon data directory 

[log] Allows us to specify the output directory of the log produced by the 
simulation, together with the names for the output files if needed. If such 
names are not customized, PIKE creates log files using an alphanumeric 
code as simulation’s identifier. 

[file] Characteristics of the simulation as the BIOS-ROM file  (if present) and 
custom Hard-Disk image file (if any) 

[hardware] Guest hardware configuration to be used in the benchmark, i.e. the number 
of nodes, number of cores, and the size of the ram 

[software] Software packages to be installed on the guest before running the 
simulation. The COTSon mediator is used to provide ethernet based 
connection among the simulated nodes. PIKE supports both deb and rpm 
based packages 

[support] Simulation support files, like input set or benchmark configuration 
parameters 

[simulator] Binaries to run and parameters. For each entry a different simulation will 
be launched. Each run will be identified by a different alphanumeric code 

[options] To enable or disable mpi support 

[cache] Cache parameters and configuration 

[mediator] Mediator configuration inside the simulation 

3.2.3 Current limits 

PIKE currently does not allow complete control over the timing options of the simulations. It does not 

allow the execution of too complex benchmarks, like those that need an ad-hoc installation process 

rather than loading a single executable binary and run it. Another limitation of the current version of 

PIKE is the impossibility to redirect and control the benchmark output file (if any), for example to 

copy it from guest to host. PIKE uses the most recent version of COTSon to work. If the COTSon 

installation directory is not present, neither in the configuration file nor in the WorkingDirectory, 

PIKE will download and install it on a specific folder (WorkingDirectory). This technique allows 

having a number of independent working environments. PIKE is strongly coupled to COTSon: it is a 

wrapper of the simulator. Consequently, if the simulator has bugs, PIKE automatically inherits them.  

3.2.4 Examples 

In the PIKE installation folder there is also an example of the configuration file called 

“pike_example.conf”. Running this example uses the script "binary_test.sh" that prints to standard 

output a given parameter (always specified in configuration file). Fig. 16 shows the SimNow console 

running this test example for a single simulation. It is possible to use this example to test a single 

node. If the user wants to run more sophisticated multi-node simulations, like using MPI or other 

multi-node simulation options, he/she may use custom SimNow HD images (like debian.img). 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 37 of 50 

 

Fig. 16 SimNow instance with test example – single simulation 

Fig. 17 shows two SimNow windows that are opened when PIKE is executed with the same binary 

file (binary_test.sh) using two different applications, customized per-node: simulation_binary1 and 

simulation_binary2. Two different simulations are running, each with the respective log and output 

files stored in the PIKE log directory, and identified by an alphanumeric code. These simulations use 

physical cores on the host machine through a thread pool mechanism. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 38 of 50 

 

Fig. 17 Two SimNow windows in case of multiple simulation PIKE run 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 39 of 50 

3.3 The Eclipse Module for TFLUX (UCY) 

In the context of WP3, we explored the augmentation of the data-flow model with the support for 

transactions. In this workpackage (WP7), we report our progress on providing tools to additional 

transferring the knowledge of TFLUX; in particular, we present here an Eclipse module for TFLUX. 

 
Programmability is a major challenge for future systems as users need to adopt new models as to fully 

exploit the potentials of such systems. The users that wish to program using the Data-Driven 

Multithreading (DDM) model are faced with two difficulties. First, given the nature of the model 

being based on the dataflow execution of threads, the users need to make an analysis of the problem 

and split it into threads and find the data dependency relations among those threads. This is usually 

the hard step of the programming. But in addition, the second difficulty is that in order to express 

these threads and dependencies, the users need to use a new set of directives in their programs. In 

order to address this last issue we have developed a plug-in for Eclipse that helps the programmers 

with the task of adding the DDM directives to their code and also integrates in an easier way the 

different tools needed to generate the DDM executable.  The DDM Eclipse plug-in is composed of 

three modules: the Content Assistant, which shows a drop-down list of available pragma directives 

while the user is coding; the Side Panel, which displays a panel next to the code that shows available 

directives and their arguments; and the Pre-processor integration, which offers the ability to call the 

DDM pre-processor and generate the DDM code from within Eclipse. The following figures show 

different screenshots from the procedure of developing a DDM code using the new Eclipse plug-in. 

 

Fig. 18: The content assistant plug-in listing the available DDM keywords 

3.3.1 The Content Assistant Plug-in 

Fig. 18 illustrates the basic functionality of the content assistant plug-in. While a user is writing a 

pragma directive by typing #pragma ddm, after leaving a blank space and pressing the CRTL + 

SPACE key combination, a proposal window will appear with all the available options for that 

specific pragma. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 40 of 50 

 

Fig. 19: The content assistant plug-in filtering the DDM keywords starting with “DVM_” for the scheduling 

policy field of the thread pragma 

In Fig. 19 the user is already editing a DDM pragma, so only valid proposals appear. Proposals are 

made according to what user has written so far. Many of the parameters in a pragma directive have 

predefined values, like the scheduling policies shown in the above image.  

 

Fig. 20: The side panel plug-in imported to the Eclipse platform 

3.3.2 The Side Panel Plug-in 

Fig. 20Errore. L'origine riferimento non è stata trovata. depicts the side panel plug-in imported to 

the Eclipse platform. This plug-in consist of two lists, the Sample View list and the Property list. The 

Sample View contains the pragmas that are available to the user to use. A user can insert a specific 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 41 of 50 

pragma by just clicking on an item of the Sample View list. The Property list, as the name suggests, 

contains the properties of each pragma along with the available parameter values. 

 

Fig. 21: The side panel plug-in showing a drop-down list for the options of the scheduling mode 

An example is shown in Fig. 21 where the thread pragma is selected at the Sample View list and the 

Property list shows its properties such as thread number, scheduling mode and value, ready count 

value etc. 

 

Fig. 22: The side panel plug-in automatically closing the DDM pragmas 

The side panel plug-in autocompletes the ending/closing macros for a DDM pragma after pressing 

Enter at the end of a pragma directive line (Fig. 22).  



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 42 of 50 

 

Fig. 23: The side panel plug-in showing the properties of a selected pragma 

A user is able to change the properties of a specific pragma by moving the cursor on the line of that 

pragma. This will cause the Property list of the side panel plug-in to show the properties of the 

selected pragma, as show in Fig. 23. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 43 of 50 

3.4 Support to the Partners for Implementing COTSon Extensions (HP) 

The COTSon simulator is released by HP to the scientific community. In the context of the 

TERAFLUX activities, the COTSon simulator has been extended in order to provide the partners with 

all the features needed for their research. In particular, the simulation platform is shared among all the 

members of the TERAFLUX consortium, so that each partner can add features (or extend existing 

ones). In this process, it is important to have a strong support from the simulator releaser, in order to 

speed up the development phase. To this end, and even before the project started, HP provided a 

strong support to the other TERAFLUX partners in the implementation process. Partners contacted 

HP members directly, or even via the COTSon forum, and received a quick answer to their requests 

(suggestions, doubts, etc...). This has been a very relevant contribution to all partners and it should 

appreciable throughout this document. 

 

3.5 Tutorial Sessions on OmpSS Open to the Partners (BSC) 

The StarSs programming model is the proposal from BSC in TERAFLUX to provide a scalable 

programming environment to exploit the dataflow model on large multicores, systems on a chip and 

even across accelerators. StarSs can be seen as an extension of the OpenMP model. Unlike OpenMP, 

however, task dependencies are determined at runtime thanks to the directionality of data arguments. 

The StarSs runtime supports asynchronous execution of tasks on symmetric and on heterogeneous 

systems guided by the data dependencies and choosing the critical path to promote good resource 

utilization. The StarSs (also named OmpSs) tutorials have also covered the constellation of 

development and performance tools available for the programming model: the methodology to 

determine tasks, the debugging toolset, and the Paraver performance analysis tools. Experiences on 

the parallelization of real applications using StarSs have also been presented. Among them, the set of 

TERAFLUX selected applications in WP2 have been ported to StarSs and made available to the 

partners. Such training and tutorials have been given at TERAFLUX meetings and related summer 

schools, Workshops and conferences, like CASTNESS Workshops, the PUMPS Summer School 2011 

and 2012, the HiPEAC 2012 conference and the Supercomputing 2012 conference. 

The second activity from BSC to train other partners in the use of the target simulation environment 

has been on the occasion of the mechanism devoted to sharing memory among COTSon nodes. It is 

based on the characterized release consistency as an underlying foundation for the TERAFLUX 

memory model. The three proposed operations have been: Acquire Region / Upgrade Permissions / 

Release Region, that have enabled the exploration of inter-node shared memory techniques, by 

replicating application memory in all nodes and mapping all guest memory onto a single host buffer. 

We have implemented a release consistency backend for COTSon, where the application can request 

acquires/upgrades/releases on memory regions. Our lazy memory replication aggregates multiple 

updates and a functional backend copies memory among nodes. Discussions among partners have 

enhanced the implemented backend and benchmark tests have shown its usability. 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 44 of 50 

References 
 
[Cameron95] Cameron Woo, S.; Ohara, M.; Torrie, E.; Pal Singh, J. and Gupta, A., The SPLASH-2 programs: 

characterization and methodological considerations. In Proc. of the 22nd annual international symposium on Computer 

architecture (ISCA '95). ACM, New York, NY, USA, 24-36 

 

[COTSon09] Argollo E., Falcón, A.; Faraboschi, P.; Monchiero, M.; Ortega, D., Cotson infrastructure for full system 

simulation. ACM SIGOPS Operating System Reviews. January 2009, 43:52–61, 2009.  

 

[D72] Giorgi R. et al, “D7.2– Definition of ISA extensions, custom devices and External COTSon API extensions”  

 

[Giorgi96] Giorgi, R.; Prete, C.A.; Prina, G.; Ricciardi, L., A Hybrid Approach to Trace Generation for Performance 

Evaluation of Shared-Bus Multiprocessors, IEEE Proc. 22nd EuroMicro Int.l Conf. (EM-96), ISBN:0-8186-7487-3, Prague, 

Ceck Republic, Sept. 1996, pp. 207-214 

 

[Giorgi97] R. Giorgi, C.A. Prete, G. Prina, L. Ricciardi, "Trace Factory: Generating Workloads for Trace-Driven Simulation 

of Shared-Bus Multiprocessors", IEEE Concurrency, ISSN:1092-3063, Los Alamitos, CA, USA, vol. 5, no. 4, Oct. 1997, pp. 

54-68, doi 10.1109/4434.641627 

 

[Giorgi07] Giorgi, R.; Popovic, Z.; Puzovic, N., DTA-C: A Decoupled multi-Threaded Architecture for CMP Systems, 

Proc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007, pp. 263-270 

 

[Giorgi12] Giorgi, R.; Scionti, A.; Portero, A.; Faraboschi, P., Architectural Simulation in the Kilo-core Era, Architectural 

Support for Programming Languages and Operating Systems (ASPLOS 2012), poster pres., London, UK, ACM, 2012 

 

[Kavi01] Kavi, K. M.; Giorgi, R.; Arul, J., Scheduled Dataflow: Execution Paradigm, Architecture, and Performance 

Evaluation, IEEE Trans. Computers, Los Alamitos, CA, USA, vol. 50, no. 8, Aug. 2001, pp. 834-846 

 

[Koren07] Koren, I.; Krishna, M. C., Fault-Tolerant Systems, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 

2007. 

 

[MCPAT09] Sheng Li, Jung Ho Ahn ; Strong, R.D. ; Brockman, J.B. ; Tullsen, D.M. ; Jouppi, N.P., McPAT: An integrated 

power, area, and timing modeling framework for multicore and manycore architectures. In Proc. of the 42nd Annual 

IEEE/ACM International Symposium on Microarchitecture, 2009. MICRO-42. 12-16 Dec. 2009, 469 - 480 

 

[Portero11] Portero, A.; Zhibin Yu; Giorgi, R., T-star (t*): An x86-64 isa extension to support thread execution on many 

cores. ACACES Advance Computer Architecture and Compilation for High-Performance and Embedded Systems, 1:277–

280, 2011. 

 

[Portero12] Portero, A.; Scionti, A.; Zhibin Yu, Faraboschi, P.; Concatto, C.; Carro, L.; Garbade, A.; Weis, S.; Ungerer, T.; 

Giorgi, R., Simulating the Future kilo-x86-64 core Processor and their Infrastructure, 45th Annual Simulation Symposium 

(ANSS), March 2012, Orlando, Florida 

 

[Ronen97] Ronen, R., Method of modifying an instruction set architecture of a computer processor to maintain backward 

compatibility, patent US5701442, Dec. 1997 

 

[SF] http://cotson.svn.sourceforge.net/viewvc/cotson/ 

 

[SimNow09] AMD SimNow Simulator 4.6.1 User’s Manual, November 2009. Available at: 

http://developer.amd.com/tools/cpu-development/simnow-simulator/ 

 

[TFX3] http://h10010.www1.hp.com/wwpc/us/en/sm/WF06a/15351-15351-3328412-241644-3328422-4194641.html?dnr=1 

 

[x86] “Intel® 64 and IA-32 Architectures Software Developer’s Manual”, Vol. 2: “Instruction Set Manual”, March 2010 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 45 of 50 

Appendix A  

The Matrix Multiplication, developed at UNISI needs the number s of rows and columns of the square 

matrices A and B, and np for the number of partitions within the result matrix to which the 

multiplication algorithm is recursively applied, as input parameters. 

After a first construction phase for the A and B matrices, which are composed by s2 random integer 

elements, the algorithm allocates the C matrix of the same size, then partitions the C in np sub-blocks. 

At this point, the multiplication algorithm is applied to each sub-block Cij. 

Fig. 24 shows the structure of the dataflow version of the algorithm implemented using the T* 

extension to the x86_64 ISA, referring to its implementation introduced in Section 2.1. Each DF-

Thread of the algorithm is represented with a circle; precedence between two threads is highlighted 

with arrows, so that the source of the arrow is in the scheduling thread, and points to the scheduled 

thread. 

main main_ep_1 mul_thread

join_

threads

move_to_

next_el

calc_curr_

el

mul_thread

_next_el

mul_thread

_end

(current block == np) ?

F

F

T

(current term
== last) ?

(current elem
== last) ?

F

T

 

Fig. 24 Dataflow graph for the blocked Matrix Multiplication algorithm. 

The main thread is responsible for reading the input values from the command line, and 

unconditionally scheduling two threads: the join_threads with a synchronization count of np+2, and 

the main_ep_1 thread with synchronization count 10. The join_threads represents the very last thread 

of the algorithm: it has to wait for 2 data to be written in its frame memory (that is, the pointer to the 

matrix C and its size), plus np “fake” values, one for each partition of the result matrix, written at the 

offset zero of the frame once every sub-block has been calculated. This mechanism allows the 

join_threads to synchronize its execution: it will run only when all the sub-blocks are ready, because 

its synchronization count will be reduced to zero by the last TWRITE operation for the “fake” value at 

offset zero. The main_ep_1 thread receives in its frame memory, from the main thread, all the 

information needed for execution (e.g. memory pointers for matrix A, B and C, size of the matrices 

and of each sub-block, etc...): it is responsible for unconditionally scheduling the mul_thread (which 

is the real multiplication algorithm for the sub-block) and then to re-schedule itself under the 

condition that the multiplication algorithm has been started for all the np partitions (i.e. this is not the 

np
th execution of the main_ep_1 thread). 

The mul_thread is responsible for calculating the bound indexes for the sub-block, and then it 

unconditionally schedules the mul_thread_next_el thread, which will compute the indexes for reading 

from the input matrices A and B, and pass them to the calc_curr_el thread for calculation. 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 46 of 50 

The calc_curr_el thread reads the current element values from matrices A and B, then calculates the 

value of the current element of C; if all the terms of the sum have been calculated, then the 

move_to_next_el thread is scheduled, otherwise it schedules itself again for reading the next elements 

from the input matrices. 

The move_to_next_el thread is responsible for checking the completeness of the current sub-block 

calculus: if the sub-block is ready, then the mul_thread_end is scheduled, otherwise the 

mul_thread_next_el thread is scheduled again for calculating the next element of the current sub-

block. The mul_thread_end thread is responsible for writing the “fake” value to the frame memory of 

the join_threads. 

Please note that: 

• the main_ep_1 must be separated from the main thread, since the latter schedules one instance 

of the join_threads, but main_ep_1 is scheduled np times since it must schedule np 

mul_thread, one for each sub-block; 

• the mul_thread and mul_thread_next_el can’t be merged: the former calculates the bound 

indexes for the current sub-block, while the latter is scheduled for each element of the sub-

block (i.e. s2
/np times); 

• the calc_curr_el can’t be merged with the mul_thread_next_el: the first performs the 

multiplication-and-sum operation needed for computing the current element, and this it is 

scheduled for each term of the sum (i.e. pair of elements read from A and B), while the 

second only once for each element; 

• the move_to_next_el must be separated from the calc_curr_thread, because it must check for 

the current sub-block completeness once the current element of the sub-block has been 

successfully calculated; 

• the mul_thread_end can’t be merged with the move_to_next_el because it is scheduled once 

for each sub_block (it is responsible for the “fake” write in the join_threads frame), while the 

other is scheduled once for each element of the sub-block. 

In the following, we also list the mmul.c code, for completeness: 

#define TSU_PRELOAD_FRAME 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#include <math.h> 

#include "tsu.h" 

 

#define DF_TSCHEDULE(_cond,_ip,_sc) df_tschedule_cond(_ip,_sc,_cond) 

#define DF_TWRITE(_val,_tid,_off) df_write(_tid,_off,_val) 

#define DF_TWRITEN(_val,_tid,_off) df_writeN(_TLOC(_tid,_off),_val) 

#define DF_TREAD(_off) df_frame(_off) 

#define DF_TLOAD(n) df_ldframe(n) 

#define DF_TDESTROY() df_destroy() 

 

// stat reporting help 

uint64_t tt; 

uint64_t ts0[100],ts1[100]; 

// ====================================================================================== 

// df threads pre-declaration 

void main_ep_1 (void); 

void main_end (void); 

void mul_thread (void); 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 47 of 50 

void mul_thread_next_el(void); 

void calc_curr_el(void); 

void move_to_next_el(void); 

void mul_thread_end(void); 

void join_threads(void); 

 

void usage() { 

  printf("\nMatrix Multiplier\n*****************\n\n     ./mmul s np\nwhere:\n"); 

  printf("        s - size of the (squared) matrix\n       np - number of available cores\n");  

  fflush(stdout); 

} 

 

int main(int argc, char **argv) 

{ 

  uint64_t r4, r5, i; 

 

  if (argc < 3) { 

    usage(); 

    return 1; 

  } 

 

  r4 = atoi(argv[1]); // matrix size 

  r5 = atoi(argv[2]); // number of processors 

 

  srand(time(NULL)); 

 

  uint64_t r8 = r4*r4; 

  uint64_t *r2 = malloc(r8*sizeof(uint64_t));  // matrix A 

  uint64_t *r3 = malloc(r8*sizeof(uint64_t));  // matrix B 

  for (i = 0; i < r8; i++) { 

    r2[i]  = rand(); 

    r3[i]  = rand(); 

  } 

 

  tt = df_tstamp(ts0); // START TIMING 

 

  uint64_t *r12 = malloc(r8*sizeof(uint64_t)); // matrix C = AxB 

  for (i = 0; i < r8; i++) r12[i] = 0; 

 

  uint64_t r14 = 0, 

           r16 = 0, 

           r10 = r8/r5,    // size * size / num_processors 

           r55 = log2(r4);  // log(size) 

 

  uint64_t r13 = r5 + 2; 

  uint64_t r58 = DF_TSCHEDULE (1, join_threads, 10); 

 

  DF_TWRITE (r12, r58, 4); // write in the FM of "join_threads" the pointer to matrix "C" 

  DF_TWRITE (r4,  r58, 5); // write size of the result matrix "C" 

 

  uint64_t r59 = DF_TSCHEDULE (1, main_ep_1, 10); 

 

  DF_TWRITE (r2,  r59, 1);  // A 

  DF_TWRITE (r3,  r59, 2);  // B 

  DF_TWRITE (r12, r59, 3);  // C 

  DF_TWRITE (r4,  r59, 4);  // size 

  DF_TWRITE (r5,  r59, 5);  // np 

  DF_TWRITE (r14, r59, 6);  //  

  DF_TWRITE (r10, r59, 7);  // size * size / num_processors <-- represents this part size 

  DF_TWRITE (r55, r59, 8);  // log(size) 

  DF_TWRITE (r58, r59, 9);  // pointer to the FM of thread "join_threads" 

  DF_TWRITE (r16, r59,10);  //  

   

  return 0; 

} 

 

void main_ep_1 (void)          // frame is the frame pointer of the thread "fib" 

{ 

  DF_TLOAD(10); 

 

  uint64_t r2  = DF_TREAD(1),  // A 

           r3  = DF_TREAD(2),  // B 

           r12 = DF_TREAD(3),  // C 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 48 of 50 

           r4  = DF_TREAD(4),  // size 

           r5  = DF_TREAD(5),  // np 

           r14 = DF_TREAD(6),  //  

           r10 = DF_TREAD(7),  // size* size / np 

           r55 = DF_TREAD(8),  // log(size) 

           r58 = DF_TREAD(9),  // pointer to the FM of thread "join_threads" 

           r16 = DF_TREAD(10); // current proc 

 

  uint64_t r60 = DF_TSCHEDULE (1, mul_thread, 8); 

 

  DF_TWRITE (r2,  r60, 1);  // A 

  DF_TWRITE (r3,  r60, 2);  // B 

  DF_TWRITE (r12, r60, 3);  // C 

  DF_TWRITE (r4,  r60, 4);  // size 

  DF_TWRITE (r14, r60, 5);  //  

  DF_TWRITE (r10, r60, 6);  // size * size / num_processors <--- represents this part size 

  DF_TWRITE (r55, r60, 7);  // log(size) 

  DF_TWRITE (r58, r60, 8);  // pointer to the FM of thread "join_threads" 

 

  r14 += r10; 

  r16 += 1; 

 

  uint8_t cnd = (r16 == r5); 

  uint64_t r59 =  DF_TSCHEDULE(!cnd, main_ep_1, 10); 

 

  DF_TWRITE (r2,  r59, 1);  // A 

  DF_TWRITE (r3,  r59, 2);  // B 

  DF_TWRITE (r12, r59, 3);  // C 

  DF_TWRITE (r4,  r59, 4);  // size 

  DF_TWRITE (r5,  r59, 5);  // np 

  DF_TWRITE (r14, r59, 6);  //  

  DF_TWRITE (r10, r59, 7);  // size * size / num_processors <--- represents this part size 

  DF_TWRITE (r55, r59, 8);  // log(size) 

  DF_TWRITE (r58, r59, 9);  // pointer to the FM of thread "join_threads" 

  DF_TWRITE (r16, r59,10);  // next proc 

 

  DF_TDESTROY(); 

} 

 

void mul_thread (void) 

{ 

  DF_TLOAD(8); 

 

  uint64_t r2  = DF_TREAD(1),  // A 

           r3  = DF_TREAD(2),  // B 

           r4  = DF_TREAD(3),  // C 

           r5  = DF_TREAD(4),  // size 

           r6  = DF_TREAD(5),  //  

           r7  = DF_TREAD(6),  // size* size / np 

           r55 = DF_TREAD(7),  // log(size) 

           r58 = DF_TREAD(8);  // pointer to the FM of thread "join_threads" 

 

  r7 += r6; // r7 holds the end index 

  uint64_t r10 = r6; // r10 takes the start index 

 

  uint64_t r44 = DF_TSCHEDULE (1, mul_thread_next_el, 8); 

 

  DF_TWRITE (r2,  r44, 1);  // A 

  DF_TWRITE (r3,  r44, 2);  // B 

  DF_TWRITE (r4,  r44, 3);  // C 

  DF_TWRITE (r10, r44, 4);  // start index 

  DF_TWRITE (r55, r44, 5);  // log(size) 

  DF_TWRITE (r5 , r44, 6);  // size 

  DF_TWRITE (r58, r44, 7);  // pointer to the FM of thread "join_threads" 

  DF_TWRITE (r7,  r44, 8);  // the end index for this part 

 

  DF_TDESTROY(); 

} 

 

void mul_thread_next_el (void) 

{ 

  DF_TLOAD(8); 

 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 49 of 50 

  uint64_t r2  = DF_TREAD(1),  // A 

           r3  = DF_TREAD(2),  // B 

           r4  = DF_TREAD(3),  // C 

           r10 = DF_TREAD(4),  // start index 

           r55 = DF_TREAD(5),  // log(size) 

           r5  = DF_TREAD(6),  // size 

           r58 = DF_TREAD(7),  // pointer to the FM of thread "join_threads" 

           r7  = DF_TREAD(8);  // the end index for this part 

 

  uint64_t r32 = r10 >> r55; 

  r32 *= r5; 

  uint64_t r30 = r10 - r32, 

           r26 = 0, // needed for calculating current element (sum) 

           r34 = 0; // needed for calculating current element (counter) 

 

  uint64_t r44 = DF_TSCHEDULE (1, calc_curr_el, 12); 

 

  DF_TWRITE (r2,  r44, 1);  // A 

  DF_TWRITE (r3,  r44, 2);  // B 

  DF_TWRITE (r4,  r44, 3);  // C 

  DF_TWRITE (r32, r44, 4);  // index for A 

  DF_TWRITE (r30, r44, 5);  // index for B 

  DF_TWRITE (r5 , r44, 6);  // size 

  DF_TWRITE (r26, r44, 7);  //  

  DF_TWRITE (r34, r44, 8);  //  

  DF_TWRITE (r10, r44, 9);  // start index 

  DF_TWRITE (r58, r44, 10); // pointer to the FM of thread "join_threads" 

  DF_TWRITE (r7 , r44, 11); // the end index for this part 

  DF_TWRITE (r55, r44, 12); // log(size) 

 

  DF_TDESTROY(); 

} 

 

void calc_curr_el (void) 

{ 

  DF_TLOAD(12); 

 

  uint64_t r2  = DF_TREAD(1),  // A 

           r3  = DF_TREAD(2),  // B 

           r4  = DF_TREAD(3),  // C 

           r32 = DF_TREAD(4),  // index for A 

           r30 = DF_TREAD(5),  // index for B 

           r5  = DF_TREAD(6),  // size 

           r26 = DF_TREAD(7),  //  

           r34 = DF_TREAD(8),  //  

           r10 = DF_TREAD(9),  // start index 

           r58 = DF_TREAD(10), // pointer to the FM of thread "join_threads" 

           r7  = DF_TREAD(11), // the end index for this part 

           r55 = DF_TREAD(12); // log(size) 

 

  uint64_t *A = (uint64_t *)r2, // r2 contains the address of the first element of matrix A 

           *B = (uint64_t *)r3; // r3 contains the address of the first element of matrix B 

 

  uint64_t r28 = A[r32], 

           r29 = B[r30]; 

  r26 += r28*r29; // current part of the sum 

  r30 += r5; 

  r32++; 

  r34++; 

 

  // if (current element is the last for this sub-block) schedule(move_to_next_el); 

  // else schedule(calc_curr_el); 

  uint8_t cnd = (r34 == r5); 

  uint64_t r44 = DF_TSCHEDULE (cnd, move_to_next_el, 12); 

  r44 |= DF_TSCHEDULE (!cnd, calc_curr_el, 12); 

 

  DF_TWRITE (r2,  r44, 1);  // A 

  DF_TWRITE (r3,  r44, 2);  // B 

  DF_TWRITE (r4,  r44, 3);  // C 

  DF_TWRITE (r32, r44, 4);  // index for A 

  DF_TWRITE (r30, r44, 5);  // index for B 

  DF_TWRITE (r5 , r44, 6);  // size 

  DF_TWRITE (r26, r44, 7);  // current part of the sum 



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D7.4 
Deliverable name: Report on knowledge transfer and training 
File name: TERAFLUX-D74-v10.doc Page 50 of 50 

  DF_TWRITE (r34, r44, 8);  //  

  DF_TWRITE (r10, r44, 9);  // start index 

  DF_TWRITE (r58, r44, 10); // pointer to the FM of thread "join_threads" 

  DF_TWRITE (r7 , r44, 11); // the end index for this part 

  DF_TWRITE (r55, r44, 12); // log(size) 

 

  DF_TDESTROY(); 

} 

 

void move_to_next_el (void) 

{ 

  DF_TLOAD(12); 

 

  uint64_t r2  = DF_TREAD(1),  // A 

           r3  = DF_TREAD(2),  // B 

           r4  = DF_TREAD(3),  // C 

           r32 = DF_TREAD(4),  // index for A 

           r30 = DF_TREAD(5),  // index for B 

           r5  = DF_TREAD(6),  // size 

           r26 = DF_TREAD(7),  // the sum for this result matrix element 

           r34 = DF_TREAD(8),  //  

           r10 = DF_TREAD(9),  // start index 

           r58 = DF_TREAD(10), // pointer to the FM of thread "join_threads" 

           r7  = DF_TREAD(11), // the end index for this part 

           r55 = DF_TREAD(12); // log(size) 

 

  uint64_t *pC = (uint64_t *)r4; // r4 holds the address pointer to the matrix C 

  pC[r10] = r26; 

  r10++; 

   

  // if (r10 == r7, means this is the last element) schedule(mul_thread_end) 

  // else schedule(mul_thread_next_el); 

  uint8_t cnd = (r10 == r7); 

  uint64_t r44 = DF_TSCHEDULE (cnd, mul_thread_end, 8); 

  r44 |= DF_TSCHEDULE (!cnd, mul_thread_next_el, 8); 

 

  DF_TWRITE (r2,  r44, 1);  // A 

  DF_TWRITE (r3,  r44, 2);  // B 

  DF_TWRITE (r4,  r44, 3);  // C 

  DF_TWRITE (r10, r44, 4);  // start index 

  DF_TWRITE (r55, r44, 5);  // log(size) 

  DF_TWRITE (r5 , r44, 6);  // size 

  DF_TWRITE (r58, r44, 7);  // pointer to the FM of thread "join_threads" 

  DF_TWRITE (r7,  r44, 8);  // the end index for this part 

 

  DF_TDESTROY(); 

} 

 

void mul_thread_end (void) 

{ 

  DF_TLOAD(1); 

 

  uint64_t r58 = DF_TREAD(7);  // pointer to the FM of thread "join_threads" 

  DF_TWRITE (1, r58, 1);       // "fake" write, needed to signal the thread "join_threads" 

 

  DF_TDESTROY(); 

} 

 

void join_threads (void) 

{ 

  DF_TLOAD(2); 

 

  uint64_t r4 = DF_TREAD(4),   // pointer to the result matrix C 

           r5 = DF_TREAD(5),   // size of the result matrix C 

  tt = df_tstamp(ts1) - tt;    // END TIMING 

   

  DF_TDESTROY(); 

  df_exit(); 

  free((uint64_t *)r4); 

} 


