Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME B
THEME '
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D5.3 — Development of Intra-Cluster Fault-Detectiorand Recovery
Mechanisms and Dynamic Adaption

Due date of deliverable: 3December 2012
Actual Submission: 20December 2012

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: UAU

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntiding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 1 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Date Author Organization | Change History
0.1 04.10.2011 Sebastian Weis UAU Initial document
0.2 07.11.2012 Arne Garbade, UAU Merged sections
Sebastian Weis
0.3 14.11.2012 Arne Garbade, UAU Revised sections
Sebastian Weis
0.4 16.11.2012 Arne Garbade, UAU and | Merged section from
Sebastian Weis, Avi | MSFT Partner MSFT
Mendelson
1.0 22.11.2012 Arne Garbade, UAU and | First complete version
Sebastian Weis, Avi | MSFT
Mendelson, Bernhard
Fechner, Theo
Ungerer
1.1 30.11.2012 Pedro Trancoso, | UCY and | Internal review process
Alberto Scionti UNISI
1.2 03.12.2012 Arne Garbade, UAU and | Integrated comments
Sebastian Weis MSFT from internal review

Release Approval

Name Role Date
Sebastian Weis, Arne Garbade | Originator 05.12.2012
Theo Ungerer WP Leader 05.12.2012
Roberto Giorgi Project Coordinator for formal deliv erable | 08.12.2012

Deliverable number: D5.3

Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption

File name: TERAFLUX-D53-v3

Page 2 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

GLOSSARY ...uiiiiuunretiiniiissinteesiisisisssssssessnssssssss 6
EXECUTIVE SUMIMARY ...ccuiiiiiuiiiiienniiiiensiiiiensiiiiessioimessioisessostesssstessossessssstessnsssssanse 8
1 INTRODUCGTIONuuuiiiereiiiiniisssnneessisssssssssssessnsans 9
1.1 DOCUMENT STRUCTURE .vteutteeutteeseesssesaseessseessseassssessssanssssesssssnsesessessssesssseesssessssssssesssssssnsssesssessnsessssessnses 10
1.2 RELATION TO OTHER DELIVERABLESeuvttettesuteesseesseessseesseeesseessseessssessssesssseessessseessseessesssesesssssnsessnsseesnses 10
1.3 ACTIVITIES REFERRED BY THIS DELIVERABLE «.vveuvveeeuveessreesseeessseesseeessesesesssessansesssessssessssessseessseessseessesenseesnsens 10

2 ADVANCED INTRA-CLUSTER FAULT DETECTION AND RECOVERY MECHANISMS.......cccoovverriiriiisssnnnennns 11
2.1 DOUBLE EXECUTION ..teeteeeiietteee e e ettt e e e e ettt et e e e e e e e e sauababeeeaeeeaaasbe et e eeeesaanbeeeeeaeaesnsbembebeeeeeaesannbeneeeeeeannn 12
2.1, RUNTEIME EXTENSIONS.ccccveveveieieieieieiiiiiiieiei ettt ettt ettt ettt ettt et et e e e e e e e e e eet et e e et et e teaaaeaeaeteaateaaaeaeaeas 14

2.2 RECOVERY IMECHANISMStttttee e e e ettt e e e e sttt e e e e e s asabee et e e e e e saanbbeeeeeeeeaanssbaeeaeaesaanbebeeeeeeeeeesaanbnnaeeeaaanan 17
2.2.1 Thread Restart of Pure Dataflow TAIrEAQSeeeeecveeeeeieeesiieeeeeeeeteeeestee e e s esteaessaeaessseeeeas 17
2.2.2 Thread Restart of Dataflow Threads with Transactional Memoryccccvvveeereeeeeciiiveneeeaaenann, 17
2.2.3 Thread Restart of Dataflow Threads with Owner Writable Memory............ccccocueeevcvveevcvenessrennnnn. 18
2.2.4 NOAE ReCOVEIY MECRONISIMN..........oeveeeeeeeieeeeeeeeeeeeeeeae e e ettt e e e e e ettt ee e e e e ettt stseaaaeesasssssnnaaeeasises 18

2.3 PRELIMINARY RESULTS c..ttttteetteeitesiteesiteesiteesiteestteesbee e esbeeesaesabaesaseesabaesaseesateesaseeseessaessbaesnseesabaesseenases 19
2.3.1 SimulQtion MEENOGOIOGY............uueeeeeeeeeeee ettt e e e e ettt e e e e e e s e e sttt e s e e e s esssssasaaaeeasses 19
2.3.2 DOUDIE EXCCULION ... e ettt et e ettt e et a e ettt e e e sta e e e s nsaaeasteaesasssaeesssnaeesssenanns 20
2.3.3 TNIEAA RESEAIT RECOVEIY ...cccconeeeeee ettt e e ettt e e e e e ettt aaaeaeaeesssssaeaaeesessssanaaaesasees 22

3 FAULT TOLERANCE FOR INTER- AND INTRA-CLUSTER INTERCONNECTS.......cccoeesrnummerirnssssssnneesssssssssnnes 23
3.1 FAULT INFORMATION FEEDBACK TO THE SYSTEM (TSU AND OS)..eeiiiutiiieeiiiieeieie ettt ettt e 23
3.1.1 Basic Concept: Localization of faulty NOC-COMPONENLScccceeeeeeeereeerieeeiiiieessiiseeeseiseasssisenens 24
3.1.2 SimMPLfIEd EXAMPIE.........oeeeeeeeeeeeeeeeeeeeeee ettt e e ettt e e e ettt e e e e e e e e s satb e e e essessssasaaaeaaaaees 25
20 G B 1% o] 11 o g [To [C e | o N O OO U PP PPPUPPPPPPPPPPPPPN 27
3.1.4 SiNGIE Bit ULIlIZATIONevveeeeeeeeeeee ettt e e ettt e e e e e ettt aaaaeeeaasssaeaaeesssssssasaaeesssases 31

I NS o Yols 7.0 [[o T N 6o XY X3RS 32

3.2 TOPOLOGY CONSIDERATION AND FAULT TOLERANCE IMPLICATIONueuieiiieeeeesiiiteeeeeeseiiereeeeeseseinenneeeeeessesanees 32
3.2.1 ClUSEEIEd AICRITECTUIESeeeeeeeeeeeeeeeeeeee e ee e ettt e e et e e ettt e e et a e s e s e e easseaaeasssaeesssnaessssenanns 33
3.2.2 PropPoOSEA TOPOIOGYuueeeeeaeeeeieeeee ettt e e e e e ettt e e e e ettt e e e e e s sts e e aaeaeeeeasssssasaaeessssssanaaaeaasiees 35
0 B 00T ¢ [l (1 Lo ¢ B SRR 35

4 DYNAMIC ADAPTION....cccuiiittiiiitniiitieeiiiitesiiiessieitessosmesssstsssestesssssssssssssssssssssssssssssssssssnssssssnssssssnssssaes 37
4.1 IMPLEMENTATION STATUS AND ISSUES «.vvteuvteeuteteseesteesseessseesseeesseeesssesesseessseesssessnseesssesssesssssesssesssessssaesnses 38
REFERENCGESccutiiiiiiiiiieeiiiiieeiiiieneiiiiessiiiiessoimessossessssssesssssssssssssessssssesssssssssssssssssssssssssssssssssssnssssssnssssssnssssans 40

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 3 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

LIST OF FIGURES

FIGURE 1 SCHEMATIC VIEW OF THE TASK DISTRIBUTION BETWEEN THE D-TSU, THE D-FDU, AND THE SERVICE NODE.................. 11
FIGURE 2 DEPENDENCY GRAPH FOR REGULAR DATAFLOW EXECUTION (LEFT GRAPH) AND DOUBLE EXECUTION (RIGHT GRAPH)......... 13
FIGURE 3 SPATIAL REDUNDANCY (LEFT) AND TEMPORAL REDUNDANCY (RIGHT) OF DOUBLE EXECUTIONeevuveeriiieereenireesiveeeies 14
FIGURE 4 EXTENDED CONTINUATIONS FOR DOUBLE EXECUTION (OWNER WRITABLE MEMORY — OR OWM — AND TRANSACTIONAL
MEMORY POINTERS ARE OMITTED FOR SIMPLICITY). ..vveeuteeuteeeueesteesseesuseesuseesseeesseseesseeesseesssessnseesssessssessseesssessseens 15
FIGURE 5 NODE UTILIZATION (LEFT) AND PERFORMANCE DEGRADATION FOR DOUBLE EXECUTION OF FIBONACCI(36)ccvvveuvennee. 20
FIGURE 6 NODE UTILIZATION (LEFT) AND PERFORMANCE DEGRADATION FOR DOUBLE EXECUTION OF FIBONACCI(40) ...ccvvvruvenee. 21
FIGURE 7 NODE UTILIZATION (LEFT) AND PERFORMANCE DEGRADATION FOR DOUBLE EXECUTION OF MATMUL (256X256 MATRICES)
... 21
FIGURE 8 PERFORMANCE DEGRADATION DUE TO THREAD RECOVERY WITH MTTFs OF 0.15 (LEFT) AND 0.01S (RIGHT)cuvveen.e. 22
FIGURE 9 A LINK BETWEEN TWO ROUTERS IS BROKEN (LEFT), WHICH RESULTS IN A SUSPICIOUS HEARTBEAT TIMING BEHAVIOR (RIGHT)
... 25
FIGURE 10 ON THE LEFT: VIEW ON THE PHYSICAL SYSTEM. ON THE RIGHT: THE D-FDU'S NETWORK STATUS MATRIX AFTER THE
ARRIVAL OF THE DELAYED HEARTBEAT MESSAGE FROM €2niiieiiiiiet ettt e e e ettt e e e e ettt e e e s e s eiseae e e e e e s snnneeeeens 26
FIGURE 11 INTERNAL VIEW OF THE D-FDU’S NETWORK STATUS MATRIX S AFTER FIVE HEARTBEAT MESSAGES HAD ARRIVED AT THE D-
[LU PSP PP UPPRRP 27
FIGURE 12 THE D-FDU"S NETWORK STATUS MATRIX S AFTER A COMPLETE ROUND OF HEARTBEAT MESSAGES. ..cevvveeveerareesveenanes 27
FIGURE 14: REVEALING MONITORING GAPS USING THE ALTERNATE STAIRCASE ROUTING..ccuvveerureererereesreesseessseessseessesensnnsennes 28
FIGURE 13: REVEALING MONITORING GAPS USING THE ORIGINAL STAIRCASE ROUTING ...ceeuvveenererriesreesireesreesseeessnessseessnneesnnes 28
FIGURE 15: OVERLAPPING D-FDU CLUSTERSttttteettaiuuttteeeeeaaiutetteeeesaausteeeetteeessaaaunseteeeesaaaunseeeeeessasannsaeesesssaannnnseeees 29
FIGURE 16: LINK UTILIZATION SEPARATED IN REQUEST MESSAGES (GRAY ARROWS) AND RESPONSE MESSAGES (BLACK ARROWS)..... 31
FIGURE 17: TERAFLUX ARCHITECTURAL TEMPLATE — CHIP AND NODE LEVELevvtiieiiiiiiiieeeeeeeeeiiiece e e e e e ieeeeteeee e e s ieneeeees 33
FIGURE 18: POTENTIAL LOCAL INTERCONNECTION NETWORKS FOR THE TERAFLUX ARCHITECTURE. C BLOCKS REPRESENT CORES, M
ARE THE MEMORIES, NI AND |/O ARE NETWORK INTERFACE AND INPUT-OUTPUT DEVICES, RESPECTIVELY. ..veecveeuveerrenreennenns 34
FIGURE 19: (A) CLUSTER MEMORY HIERARCHY (B) SYSTEM-WIDE MEMORY HIERARCHIESeerveeeeeerreeneeenireesireenseeensnesnnns 39
LIST OF TABLES

TABLE 1: HARDWARE PARAMETERS FOR THE BASELINE MACHINE
TABLE 2: ESTIMATED COSTS OF OUR FAULT LOCALIZATION TECHNIQUE ..cceeieiieeieieeeeeeeeeeeeeeee e e e e e s e se s s s e e e e e e e e e e e e aeaeaeaeaeaeaaaeeas 32

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 4 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdfleet the list of contributors to the writing ofdh
document.

Sebastian Weis, Arne Garbade, Bernhard Fechner, TleeUngerer
University of Augsburg

Avi Mendelson
Microsoft Research and Development

© 2009-12 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iryJtidr the TERAFLUX Consortium, on the www.teraflud.@veb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressiaaptied warranty of any kind and assume no resibdis for errors
or omissions. No liability is assumed for inciddr@aconsequential damages in connection with siray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Liceree information in this document is a work in preggs, jointly
developed by the members of TERAFLUX Consortium ("FERUX") and is provided for informational use only.

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks andde secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technology elated materials.
Any use of the protected technology and relateceri@tbeyond the terms of the License without thierpwritten consent
of TERAFLUX is prohibited. This document containsiterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuimat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iated or apparent from the nature of such mate(fals example,
references to publicly available forms or documgnts

Disclosure or use of this document or any matedaltained herein, other than as expressly permisgarohibited without
the prior written consent of TERAFLUX or such otlparrty that may grant permission to use its progrietaterial. The
trademarks, logos, and service marks displayedhis document are the registered and unregister@dermarks of
TERAFLUX, its members and its licensors. The coglyriand trademarks owned by TERAFLUX, whether tegéd or
unregistered, may not be used in connection with @educt or service that is not owned, approvediistributed by
TERAFLUX, and may not be used in any manner thékédy to cause customer confusion or that dispasalERAFLUX.
Nothing contained in this document should be caoestras granting by implication, estoppel, or othieewany license or
right to use any copyright without the express teritconsent of TERAFLUX, its licensors or a thirary owner of any
such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXPBCIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT AQHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER(INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOT BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT,RICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF $IH DAMAGES.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 5 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

D-FDU Distributed Fault Detection Unit

DF-Thread A dataflow thread

D-TSU Distributed Thread Scheduler Unit

FM Frame Memory

L-FDU Local Fault Detection Unit

L-TSU Local Thread Scheduler Unit

MAPE Acronym for Monitoring, Analysing,
Planning, and Executing

MCA Machine Check Architecture

Leading Thread

Represents the main thread in the double
execution approach

NoC Network-on-Chip

Node Group of cores and additional
TERAFLUX hardware units

OwWM Owner Writable Memory

TCL Thread-to-Core List

Trailing Thread

Represents the duplicated threadhe
double execution approach

QoS Quality of Service

HTM Hardware Transactional Memory

ECC

TREAD T* instruction for reading from Frame
Memory

TWRITE T* instruction for writing to a Frame
Memory

TSCHEDULE T* instruction for scheduling a new

DF-Thread

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 6 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TDESTROY T* instruction for destroying the context
of the calling DF-Thread

DF-Thread Data Flow Thread (in TERAFLUX style)

Cluster Group of nodes

NoS “nano or pico”-kernel

Code Memory Memory region containing the thread’s
code

Frame Memory Memory region allocated to each DF-

Thread for dataflow-style communication

Thread Local Store Private memory region of eacbatth

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 7 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This deliverable reports on the research carrigdrothe context of DoW Task 5.3 (project months
25 -36) ‘Development of Intra-Cluster Fault-Detection and Reovery Mechanisms and Dynamic
Adaption”

* We enhanced the TERAFLUX architecture to suppomitid® Execution of Dataflow Threads
and implemented it in the TERAFLUX simulator.

* We implemented the thread restart mechanism to stpmcovery on thread level.
Furthermore, we extended thread restart recovergataflow threads using Transactional
Memory and OWM.

* We developed efficient mechanisms based on heanbessages to locate faults within the
interconnection network.

» We defined the hierarchical architecture of the WMERUX operating system and its
implications on the dynamic adaption of its faoletance mechanisms.

Hence, all goals of WPS5 for the third year wereiexd.

Deliverable number: D5.3

Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 8 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

The tera-scale level transistor integration capaocft future TERAFLUX devices will make them
orders of magnitude more vulnerable to faults. Withincluding mechanisms that dynamically detect
and mask faults, such future devices will suffenfruneconomic high failure rates. In Work Package
5, we focus on reliability aspects on four leveishim the TERAFLUX architecture, to assemble a
reliable system out of unreliable components. Théseels are the cores, the nodes, the
interconnection network, and the operating system.

In detail, the DoW for Task 5.3 defines three sskga

1. “Development of intra-cluster fault detection mentsms: We will design mechanisms to
monitor the cores by FDUs in cooperation with tloeesinternal fault detection. Also, we will
refine the interfaces between cores and FDU wighptevious results from Task 5.1 and Task
5.2. The fault information obtained by the FDUd Wwé sent as feedback to the system.”

2. “Development of fault recovery mechanisms: In ttask, we will analyse the monitored
information for rating the reliability of supervidecores. We will also develop recovery
strategies and trigger recovery actions in thisktas

3. “Add dynamic adaption of mechanisms: i.e., exteh@ tmodel to include different
mechanisms and dynamically change between themlldav @mooth adaption of the
mechanisms to achieve different targets”.

On the intra-cluster (core and node/cluster) lewel focus in this deliverable on thdevelopment of
intra-cluster fault-detection and recovery mecharssand dynamic adaptitin/Ne refined the Double
Execution of dataflow threads in the TERAFLUX atebture and the implications for the
architecture. We further specified a thread restrdvery mechanism, leveraging the side-effee fre
semantic of the dataflow execution model. We alsoppse solutions to support thread restart
recovery for dataflow threads using Transactionahidry and Owner Writable Memory. Finally, we
propose a node recovery mechanism to support latgekpoint intervals.

On the interconnection level, we present efficimethods to localize faults within the network (ierut
and link). The localization technique utilizes tkreowledge of the existing Heartbeat messages and
extracts inherent information from them.

On the operating system level, we show how to pi®whe collected fault data of the D-FDUs to the
operating system and propose mechanisms to dynéyraciapt the system.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 9 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.1 Document structure

Development of intra-cluster fault detection medb@ans is covered in Section 2, where we present a
detailed description of Double Execution exploitithg dataflow execution model and the required
runtime extensions to enable the TERAFLUX architexto support redundant execution of dataflow

threads. This section further describes the thresstart recovery mechanism incorporating

transactional memory and owner writable memory.

Section 3 covers fault localization in the intengeation network by exploiting timing and routing
information of heartbeat messages. Additionally, pvesent a topology consideration, which was
necessary to cope with the hierarchically clust&ieRAFLUX architecture

Section 4 discusses the hierarchical structured AFERIX operating system and the dynamic
adaption of the system under faults.

1.2 Relation to other deliverables

» Fault detection and monitoring mechanisms are destin D5.1 and D5.2.
 The TERAFLUX architecture and execution model isalibed in D6.1, D6.2 and D7.1.

» Fault injection techniques and COTSon implementatgsues of proposed techniques are
discussed in D7.3 and D7.4.

1.3 Activities referred by this deliverable

This deliverable refers to the research carriedimitask 5.3 — Development of Intra-Cluster Fault-
Detection and Recovery Mechanisms and Dynamic Aolapt

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 10 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Advanced Intra-cluster Fault Detection and Recovery
Mechanisms

In Deliverable D5.1, we presented a general spatiin of the D-FDU and described different

message types to monitor cores by the D-FDU. Thigegpl D-FDU specification was extended in
Deliverable D5.2 to also support mutual D-FDU moriitg of FDUs in different nodes. In the current

Deliverable D5.3, we focus on our advanced inttestedr fault detection mechanism, which exploits
the dataflow execution model to detect faults witthie cores pipelines by using Double Execution of
dataflow threads. Furthermore, we leverage thefldataxecution model, in particular its side-effect

free and single-assignment semantics, for a lao@¢ theckpoint mechanism using thread restarts.

Figure 1 depicts the schematic view of the taskidigtion in a TERAFLUX node and illustrates the
interaction between the different components. i ftillowing, we will describe the main intra-node
components from our fault tolerance point of vieamely theD-TSU D-FDU and theoperating
systemWe will particularly focus on the tasks, whicleamportant for intra-node fault detection and
recovery mechanisms.

As we described in Deliverable D5.1, the D-FDU &naall support componéntvhich gathers health
information of the cores within its node by usingatltbeat messages, analyses and aggregates the
information and reacts on it. Internally, the D-FQiperates in a Monitor-Analyze-Plan-Execute
(MAPE) cycle [1], derived from the field of auton@nmcomputing. For our Double Execution
approach, we extended the D-FDU to also support-BRGignature comparison. Accordingly, the
D-FDU does not only provide aggregated informaiout the cores health and wear-out state, but
also uses event messages to inform the D-TSU dhoits, detected by signature comparison in

Double Execution Mode.
LService Node/0S 1<—

provides|informftion

p
TERAFLUX Node

hS J

Figure 1 Schematic View of the Task Distribution between the D-TSU, the D-FDU, and the Service Node

! The D-FDU functionality could be implemented eittes a hardware unit or a software unit that can be
dynamically assigned to the cores.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 11 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The main task of the D-TSU is to provide hardwargp®rt for dataflow thread synchronization and
scheduling. In order to double threads at runtitneas necessary to modify the internal organizatio
of the D-TSU (see Section 2.1.1).

The D-FDUs provide information to the various glbBarvice Nodes, which host the TERAFLUX
operating system. Since the TERAFLUX architectuwrpp®rts a global linear address space, we use
shared memory to distribute information between Sleevice Nodes' operating system and the D-
FDUs per node. Similar to the communication wit lxTSU, each node’s D-FDU will provide the
aggregated node’s health information to the SerMicdes. In order to do so, a Service Node reserves
a special memory region per node. The D-FDUs vdligrically update the node’s health status by
writing to this memory section. Accordingly, therdee Nodes periodically check those regions to
update their global view of the system and dynaltyicaact on changed conditions (see Section 4).

The remainder of this section will provide a degdildescription of the required implementation
enhancements for Double Execution of dataflow ttiseavhich was initially described in Deliverable
D5.2. We present first results, which show theirmatoverhead of Double Execution and the thread
restart recovery in the fault and the fault-freseca

2.1 Double Execution

The Dataflow Execution Model in TERAFLUX providesias-effect free execution of pure dataflow
threads and single-assignment semantics for thraams. We leverage both inherent features of the
execution model to provide a scalable and lightgivefault detection scheme for dataflow threads

2.

As we described in Deliverable D5.2, our Double d&en approach duplicates dataflow threads
(DF1-Thread, see D6.1 and D7.1) at runtime. Thikenahe detection of faults transparent to the
programmer and the compiler. In fact, the architecican execute the same TERAFLUX program
using Double Execution or regular dataflow exeautidccording to the definition given by
Rotenberg for redundant execution on an SMT pracesg call the thread that is duplicatedding
threadand its duplicatérailing thread[3].

In the TERAFLUX architecture, Double Execution weiks follows:

1. Athread is duplicated when its synchronizationntdaecomes zero, i.e. a thread has received
all its inputs and is ready to execute. To indidat thread’s duplication, the L-TSU sends
notification messages to the D-TSU and the D-FDbe D-TSU, which keeps all threads’
continuations of its node in a Thread-to-Core L(BECL), creates a copy of the leading
thread’s continuation, distributes it to anotheret® L-TSU and stores the new continuation
in the TCL. The thread distribution is limited toetcores affiliated to the D-TSU. However, a
leading thread and a trailing thread never shaeestime core. This rule is enforced by
sending the specific continuation to different cowgthin the node. The respective L-TSU
proceeds with the execution of the leading thresadsaial.

2 The Double Execution approach described here $eda@n the T* instruction set extension [14] ane th
DTA-C [15] flavored execution model of TERAFLUX; tever, it can be easily ported to other threaded
dataflow execution models like DDM.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 12 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.

3.

4.

During execution, each L-TSU buffers all TWRITEstbé leading thread (for more details
see Section 2.1.1) in a core-local write buffem@taneously, the L-FDU creates a CRC-32
signature of all TWRITEs, incorporating the targaead id, the target address, and the data.
The L-FDU of the trailing thread’s core also create CRC-32 signature of all TWRITES;
however, the TWRITEs of the trailing thread arecdisled after the signature has been
created. Other write operations to the thread |stadage (heap or stack) do not need to be
buffered, since these writes will be automaticadigeated by a thread restart.

When a thread has finished execution, indicated BYDESTROY instruction, the core’s L-
FDU sends the CRC-32 signature to the D-FDU.

The D-FDU waits for the signatures of both the legdand the trailing threads, compares
them and informs the D-TSU about the result.

In the case of a non-faulty execution of both tisedhe L-TSUredirects the buffered writes
of the leading thread to the D-TSU, which comntiisnh to the main memory and reduces the
synchronization counts of successor threads. kindie responsible D-TSU subsequently
deletes the continuations of the leading and th#irtg thread in its TCL. If a fault was
detected, the D-TSU instructs the L-TSU to flusé tlore-local write buffer and discards all
continuations created by the faulty thread.

Redundant execution of dataflow threads promises fifllowing advantages over lock-step
architectures [4]:

1.
2.

Result comparison is restricted to data, whicloissamed by subsequent threads.

Result propagation is only required when a threasl finished execution, which inherently
supports deferred memory updates.

Redundant thread execution is synchronized at dhtegel. This enables the D-TSU to
exploit the scalability of the dataflow model footh the leading and the trailing thread. In
particular, the D-TSU scheduler can take advanthgeder-utilized cores.

Figure 2 Dependency graph for regular dataflow execution (left graph) and double execution (right graph)

3 This is a variant of the T*-TSU, which is described in WP6, extended for fauletaht execution.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 13 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Figure 2 shows the dependency graph of a T* prodteft) and the dynamically created dependency
graph of the same program during a Double Executimn(right). It can be seen that the original
program first executes,TSince this part of the program is sequential, W@liExecution may exploit
under-utilized cores for spatial redundant executb Ty, if the system has at least more than one
core. After the results of ;Tand Ty are compared, the synchronization counts of thiesequent
threads are decremented, and the subsequent tiffied@ds.., T, T,) can be started. In this case, the
TERAFLUX thread scheduler will try to execute asnpaedundant thread pairs ,(&nd T)) as
possible in a spatial redundant way (see Figuref8, If it is not possible to schedule all wadin
threads to idle cores, since the thread-level |sisah of the original program was already able to
utilize all cores, the scheduler will execute tiheeads in a temporal redundbmind a spatial
redundant way (see Figure 3, right).

c.} : :
% SO 5 5 Co . iy, O 5
o I : : :
Cy f--mmmm S (O D
Co T M Toa] Co FITO T T}
Time Time

Figure 3 Spatial Redundancy (left) and Temporal Redundancy (right) of Double Execution

2.1.1 Runtime Extensions

Double Execution of dataflow threads required eckarents of the TERAFLUX runtime system. In
this section, we will describe the necessary extesgo the D-TSU and the cores.

2.1.1.1D-TSU enhancements

Node-wide thread management and scheduling areotlent by the D-TSU. The D-TSU maintains
continuations, which are per-thread control stmegukeeping pointers to the Code Memory, Frame
Memory, and the Thread Local Storage (see D6.31 @nd D7.3). Because of the TERAFLUX
execution model, the thread execution is side-effee. Therefore, from a D-TSU point of view, we
only need to duplicate the thread continuation e D-TSU to create a trailing thread. The
architecture guarantees that the code memory anftalme memory will never change during thread
execution. The Thread Local Storage, however, iguinto each thread, and newly allocated with
each continuation. The Double Execution mechanaag advantage of the execution model, since
this way only TWRITEs release thread results to gh#bal system state and hence need to be
incorporated in the CRC-32 signature calculation.

Figure 4 shows the original and the doubled coatiou, with the additionally allocated thread local
storage for the trailing thread. We added theofwihg fields to the original continuation
specification:

e RED_CONT (Redundant Continuation Pointer): Stores thread ID of the redundant
continuation.

* This assumes that the cores have enough resdorbeffer all TWRITEs.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 14 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

* SPEC (Speculative) bit: Indicates, whether thisdlris speculative.

* PARENT_ID: Stores the thread ID of the parent tbreRequired to discard the created
speculative continuations inside the D-TSU, if plaeent thread needs to be restarted.

» TRAIL bit: Indicates, whether this thread is aliraj thread.

* ID: Unique identifier of a thread.

Please note, that the synchronization count ofédendant thread is always zero, since the redindan
continuation is only created, when the synchroipatount of the original thread became zero.

As mentioned before, the trailing thread is handigdhe D-TSU scheduler like a usual thread, with

the exception, that redundant threads will nevesdieduled to the same core, to enable the detectio
of both permanent and transient faults. Furtherminading threads are never moved to other nodes
to ensure a fast result comparison by the nodd=PD-

D-TsU

ontinuation
SPEC | |PARENT_ID|

D P P Global Memory

Code

YY

Frame
Mem ory

Thread Local
Storage (Leading Thread)

Thread Local
Storage (Trailing Thread)

YY

D FP IB| [SC| |TLSP: | TRAIL fRED_CONTj SPEC |PARENT ID |
Trailing Thread's Continuation

ID: Thread ID

FP: Frame Pointer

IP: Instruction Pointer

SC: Synchronization Count

TLSP: Thread Local Storage Pointer

TRAIL: Is Trailing Thread

RED_CONT: ID of Redundant Continuation

SPEC: Is Thread Speculative

PARENT_ID: Parent ID (same for leading and trailing thread)

Figure 4 Extended Continuations for Double Execution (Owner Writable Memory — or OWM - and
Transactional Memory pointers are omitted for simplicity)

Although, dataflow threads (DF1-Threads) do notdnmewait for input data after the synchronization
count became zero, they can comprise TSCHEDULEuasbns to schedule subsequent dataflow
threads. If the D-TSU receives a TSCHEDULE reqéresh an L-TSU, a new continuation is created
and a new frame memory, required to store the dhsegata, is allocated. The D-TSU finally returns
the ID of the newly scheduled thread. However, rifteirned ID is runtime dependent and may be
later passed to subsequent threads by TWRITE oi&ins. To ensure deterministic write sets of both
threads, the returned IDs must be the same fotréileng and the leading thread. Since the thread
execution is not synchronized on instruction leiteiay happen that the leading thread runs behind
the trailing thread or vice versa. In order to @mvstalls induced by TSCHEDULE synchronization

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 15 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

between the redundant threads, we let both issu@HEBDULEsS. To prevent redundant thread
scheduling, the D-FDU maintains a counter per cwoatiion, which keeps the number of issued
TSCHEDULE instructions. When a thread issues a TBOULE request, the D-TSU compares the
TSCHEDULE count in its continuation with the contation of the redundant thread. However, if the
TSCHEDULE count is greater than the TSCHEDULE coofhthe redundant thread, the D-TSU
knows that this thread is running ahead of its neldit copy. In this case, the D-TSU processes the
TSCHEDULE request as usual and stores the schedutedd ID in a table. If the TSCHEDULE
count is lower than the TSCHEDULE count in the madnt continuation, the D-TSU has already
processed this TSCHEDULE request from the reduntteead, which is running ahead. In this case,
the D-TSU proceeds with a table look-up to retri¢hve previously stored thread ID, which was
created by the TSCHEDULE of the redundant thread.

Furthermore, all continuations created by TSCHEDULliStructions are initially marked as
speculative. This is necessary for the thread mestachanism, because the D-TSU must ensure that
all continuations created by a faulty thread camlisearded. In order to do so, the parent thread ID
are stored with each continuation. In the casetbfead restart, the D-TSU traverses all contirunati
and deletes all continuations created by this thr€arthermore, the D-TSU releases the allocated
frame memories of these threads. Please notethdd-TSU will not schedule a thread to a core,
when its continuation is marked as speculativéhdfD-FDU confirms the fault free execution of the
thread, the D-TSU will mark all successor threagla@-speculative.

2.1.1.2Core-level enhancements

Although, the TERAFLUX execution model providesesiffect free execution, it must be preserved
by the underlying architecture. From a fault totee point of view, we must pessimistically assume
that TWRITEs issued by a core may contain errothéntarget thread ID, the target memory address,
and the data. In order to avoid that errors caniiptide global state of the system, i.e. manipuigti
the synchronization count of a wrong thread or ewveting data at the wrong address, we propose to
use a core-local ECC protected write buffer, simitathe write buffers used in [5] for hardware
transactional memory with pessimistic version managnt.

The write buffer is managed by the L-TSU. Whengistem runs in fault tolerance mode, the L-TSU
buffers all TWRITEs issued by a core in its coredlowrite buffer. The write buffer keeps all
TWRITESs until the L-TSU receives a message from@Dk€SU to commit the buffered TWRITEs.
The L-TSU then forwards all TWRITES to the D-TSUhish processes them in the usual way, i.e.
stores the TWRITE data in the target threads’ frameenories.

As mentioned, the L-TSU permits only to the leadthgead to issue persistent memory accesses
(TWRITES). In particular, the write buffer and thpeculatively created continuations in the D-TSU
ensure the side-effect free execution of the datafthreads and prevent subsequent threads to
consume wrong results. Furthermore, the L-FDU h#ddo each core creates a CRC-32 signature,
incorporating the target thread IDs, the addreasdsdata of all TWRITES, similar to the fingerprint
technique proposed by Smolens et al. [6].

The L-FDU also creates a CRC-32 signature of thbrig thread’s TWRITES. Finally, the signatures
of both threads are sent to the D-FDU, which compénem.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 16 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.2 Recovery Mechanisms

In Deliverable D5.2, we have described a firstakreestart recovery mechanism, based on the single-
assignment and side-effect free semantics of tHRAREUX execution model. In this section, we
will extend this thread-restart mechanism to datfthreads using transactional and owner writable
memory. Furthermore, we will present a recovery aetsm with longer checkpoint intervals in
order to recover from core and node failures.

For the TERAFLUX architecture, we assume that afchip memory arrays (frame memory cache,
local cache hierarchy, last level cache, and mamary) and all communication interconnects are
protected by ECCs, which is already the case intnoostemporary multi-core architectures.
Accordingly, we consider the cores as potentiallinerable to transient, intermittent and permanent
faults.

2.2.1 Thread Restart of Pure Dataflow Threads

The advantage of the TERAFLUX execution model fast ffault recovery scheme is the side-effect
free thread execution. Here, we exploit the datataecution model as well, which provides inherent
execution checkpoints between pure dataflow thrd@dsl-Thread). Hence, DF1-Thread can be
restarted as long as their TWRITEs are not visibl¢he global system state and the effect of all
previously issued TSCHEDULE instructions can besrtad. Since the side-effect free execution is
supported by the TERAFLUX architecture through t¢bee-local write buffers and the speculatively
created continuations, the D-TSU can restart datethreads to recover from faults.

The cost for the thread restart mechanism duringf face execution depends on the size of the
written data. The overhead is mainly induced by dbé&rred TWRITEs introduced with the core-
local write buffers. Therefore, a thread access$es global memory only when a TDESTROY
instruction was called and the local-write buffercommitted. This means, during thread execution,
there are no TWRITE accesses to the global memafy.assume that writes to the core-local
TWRITE buffer have low latency, similar to firstviel cache accesses. However, after TDESTROY
has been reached and the D-FDU confirms the feadt éxecution, the entire local-write buffer must
be committed to subsequent thread frames and thad$s' synchronization counts are automatically
decreased.

The overhead when a fault has been detected idymdgtermined by the wasted execution time of
the recovered thread. Since we only compare thresults when TDESTROY has been called, the
wasted execution time in turn mainly depends onléhgth of the thread. This means, although the
recovery mechanism is transparent to the progranandrthe compiler, its recovery capability is

constrained by the length of the dataflow threads.

2.2.2 Thread Restart of Dataflow Threads with Transactional Memory

A pure dataflow execution model can provide highlaigility and efficient recovery for certain
programs, but also exhibits weaknesses in dealittya@mplex data structures like trees and graphs.
To remedy these weaknesses, the TERAFLUX executiodel provides Hardware Transactional
Memory (HTM) to support shared memory communicatietween dataflow threads. Unfortunately,
such shared memory communication can violate ttie-sifect free semantics of dataflow threads,
since data committed by a transaction can be coeduyg other transactions, even if the dataflow

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 17 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

threads have not finished their execution. Thisala is reasonable from a performance point of
view, but breaks the thread restart recovery mashardiscussed in the section before.

To preserve the inherent checkpoints of dataflowetis, even for dataflow threads with transactional
memory, transactions are only allowed to commitemwlthe enclosing dataflow thread has finished
execution. To check whether the thread has suffex@d a fault, the D-FDU generates CRC-32
signatures of the TWRITES in the write buffer arfdtee write sets of the transactions, which are
embedded in this thread. Only if the write buffaddhe write sets of the transactions are provdseto
fault free, the transactional memory controller caits the transactional write sets and subsequently
the D-TSU commits the core local write buffer.

This restriction may result in larger critical regs and hence higher conflict rates and in the twors
case serialized thread execution, but still guaestault containment on thread-level granulaie.
will investigate the runtime overhead introducedHug restriction in project year 4.

2.2.3 Thread Restart of Dataflow Threads with Owner Writable Memory

From a recovery point of view, we consider the Omméaitable Memory (OWM) implemented on
top of the Hardware Transactional Memory. Therefthe HTM system is leveraged to support
rollback of in place updates of the OWM. When aaflatv thread has finished execution, the
transactional write set of the OWM transaction leaked, similar to the recovery for dataflow
threads with transactional memory and the threadbeaeither committed or recovered using the TM
version management.

2.2.4 Node Recovery Mechanism

Although, the thread restart recovery mechanismiges a way for low-overhead fault recovery, its
checkpoint time is restricted to the length of eetid. When a thread’s write buffer is committed to
the main memory, we can no longer recover fromwt flnat happened before. To also establish
thread-length independent checkpoint intervals,dereeloped a node global checkpoint mechanism
on top of the thread restart recovery. This nodeckpoint scheme also uses the core-local write
buffers and the side-effect free execution.

The node global checkpoint mechanism works asvialio

1. The D-TSU can establish a checkpoint of its nod&te after each thread’s commit. To
create the checkpoint, the D-TSU determines th# atal end addresses of the current frame
memory region in the node memory (We assume thatCH#TrSU can access the global
address space, where the frame memory regions apped). Furthermore, the D-TSU
creates a backup of its current context and sibieshe stable external main memory.

2. After the checkpoint has been established all sps® TWRITES going to the checkpoint’s
memory region will be optimistically logged. Thiseans, the D-TSU maintains a log of all
changes to the thread frames within the checkmomgmory region. Please note that newly
allocated thread frames must not be recovered emdraated outside of the checkpoint’s
frame memories.

3. When a fault is detected, the D-TSU recovers toldise checkpoint by restoring the frame
memory log and its backup context.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 18 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4. Maintaining a new global checkpoint is done by updathe start and the end addresses of
the current frame memory region and storing theecirD-TSU context in the stable main
memory. Finally, the log of the previous checkpasntliscarded.

Compared to global checkpoint mechanisms [5], y6lh this mechanism, we do not explicitly have
to track the communication between the cores. Aaltitly, we only need to keep a backup of the
current frame memory region, instead of maintairarigg of the whole main memory.

2.3 Preliminary Results

We evaluated our Double Execution and thread regaeehniques using the TERAFLUX dataflow
simulator [16], which is based on HP’s COTSon maitie simulator (see D7.1, D7.2, D7.3 and
D7.4). Therefore, we extended the baseline D-TSlidlédmentation of the simulator to provide
runtime support for Double Execution and threadarésecovery within the D-TSU. The goal of this
evaluation was to investigate the overhead intreduby Double Execution in comparison with
normal dataflow execution. Finally, we explored theerhead of the thread restart recovery without
Double Execution, assuming a core-internal fauteck®on mechanism, under different core failure
rates.

2.3.1 Simulation Methodology

All experiments were limited to one TERAFLUX nod&he baseline machine assembles a
contemporary multi-core processor with 4, 8, 163®rcores, respectively. Each core consists of an
out-of-order pipeline with 5 stages and a maxime&dh and commit width of 2 instructions per cycle.
The private cache hierarchy of each core is comgrisf separate 32kB L1 instruction- and data
caches and a 256kB unified L2 cache. All cores laoess to a 16MB L3 cache, exclusively used to
store frame memories. The assumed memory bus Jater®5 cycles, while the memory latency is
100 cycles. Table 1 depicts the parameters of dlsellme machine in more detail.

Table 1: Hardware parameters for the baseline machine

Parameters “Values

Core: 4,8,16,3

Core Parameters Out-of-Order, Pipeline length: 5,
Fetch width: 2, Commit width: &

L1 I-and D-cache (private per core) Size: 32kB, Line size: 64, Sets: 2, Hit
Latency: 1 cycle, Write Throu

Unified L2 cache (private per core) Size: 256kB, Line size: 64, Sets: 8,
Hit Latency: 6 cycles, Write Bac

L3-cache (shared) Size: 16MB, Line size: 64, Sets: 16,

Hit Latency: 10 cycles, Write Ba
Memory Bus Latency(L3-cache to memory) 25 cycles

Memory Latency 100 cycles
TWRITE Latency (write buffer) 3 cycles
TWRITE Latency(commit to memory) 30 cycles
TSCHEDULE Latency 40 cycles
TDESTROY Latency 40 cycles
D-FDU signature comparison Latency 30 cycles

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 19 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We further assume that writing to the core-privatée buffer and generating a CRC-32 signature
takes 3 cycles per TWRITE. Committing one TWRITEtiaction in the write buffer to global
memory is supposed to take 30 cycles. This is asdum be faster than a regular memory access,
since committing the write buffer may take advaataf the DRAM'’s burst mode. Finally, for the
TSCHEDULE instruction, we assume a latency of 4€ley,

The simulated node was stressed with two T* bencksn@vailable in the COTSon repository [16]):
a parallel version of Fibonacci (fib), which resively calculates the Fibonacci numbers, and a
block-wise matrix multiply algorithm (matmul), whiovas manually ported from the StarSS matmul
kernel.

fib is a modified version of recursive Fibonacchieh spawns three new threads in each recursive
step. Nonetheless, fib recursively spawns new tiedéar (n-1) and (n-2) until n is equal or lessntha
28. If n is equal or less than 28, Fibonacci af nalculated locally.

matmul is a standard block-wise matrix multiplicati in which the maximum thread-level
parallelism is restricted by the number of blocks matrix, while the length of each dataflow thread
is determined by the block size.

Both benchmarks fully support the T* instructiort sgtension [14] and therefore guarantee a side-
effect free execution. This enables the TERAFLUMXudRtor to restart and recover from all faults
detected by Double Execution.

2.3.2 Double Execution

We simulated fib(36) and fib(40) with the goal teasure the impact of core utilization on the
runtime overhead introduced by Double Executionretdib(36) serves as a benchmark, which
cannot completely utilize the node’s cores. To shtbe increasing execution time with Double
Execution, we determined the performance degragatidhich is the Double Execution runtime
normalized to the regular dataflow execution ongtee node.

Node Utilization Double Execution Performance Degradation

1.2 1.0

B Dataflow Execution

10 - O Double Execution
' 0.8
0.8 -

0.6
0.6

0.4
0.4
02 0.2
0.0 - 0.0 -

4] 16 32

4 & 16 32

Neode Utilization
Performance Degradation

Number of Cores MNumber of Cores
Fibonacci(36) Fibonacci(36)

Figure 5 Node utilization (left) and performance degradation for Double Execution of Fibonacci(36)

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 20 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The plot on the left side of Figure 5 shows theeaatilization of regular dataflow execution and of
Double Execution. It can be seen that fib(36) iedb nearly utilize 4 cores. However, with an
increasing node size, fib(36) is no longer ablattlize all cores. The plot on the right side dfure

5 depicts the performance degradation for the iffenode configurations. We can see that Double
Execution can exploit underutilized cores to spegd Double Execution runtime. While the
performance degradation introduced by Double Execubf fib(36) for 4 cores is 94.4%, the
overhead for 32 cores is only 38.8%.

Node Utilization Double Execution Performance Degradation
12 5 B Dataflow Execution
O Double Exscution
1.0 c
]
- w
8 os B
i 7
= a
S o
0.6 - o
3 §
2 E
0.4 2
i
02
0.0 -~
4 8 16 32 4 8 16 32
Mumber of Cores Mumber of Cores
Fibonacci{40) Fibonacci{40)

Figure 6 Node utilization (left) and performance degradation for Double Execution of Fibonacci(40)

The plot of fib(40) (see Figure 6) in turn showsattheven if Double Execution cannot use
underutilized cores (all configurations are utiizby 0.99), the performance degradation never
exceeds 100%.

Node Utilization Double Execution Performance Degradation
1.0 =
1.2 7 B Dataflow Execution
O Double Execution
1.0 .
2
c w
2 084 ¥ 0.6
g A
= =)
2 06 g
o g 54
2 E -
0.4 - %
o
0.2 -
0.2
0.0 - 0.0 -
4 8 16 32 4] 16 32
Numberof Cores Numberof Cores
Matmul (256x256 Matrix) Matmul(256x258)

Figure 7 Node utilization (left) and performance degradation for Double Execution of Matmul (256x256
matrices)

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 21 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Matrix multiply of two 256x256 matrices (shown ingkre 7) revealed that Double Execution may
also benefit from the locality in the node’s cachH&gen though the benchmark is able to fully wiliz
all node configurations from 4 to 32 cores in datafexecution, the performance degradation of
Double Execution decreases with an increasing nuwibeores per node.

2.3.3 Thread Restart Recovery

We simulated all benchmarks also with a Mean Tim€&dilure (MTTF) of 0.1s and 0.01s per core.

Since we assume a constant failure rate per cofd,Rd of 0.1s and 0.01 result in average failure

rates of 10 failures and 100 failures per secordcpes. Please note that we do not use Double
Execution here in order to measure the pure ovdriv@eoduced with thread restart recovery. We

normalized the execution times to a failure fre® on the same node.

For an MTTF of 0.1s (see Figure 8, left) it candeen that Fibonacci suffers from a performance
degradation of 10 to 20 percent. Furthermore, #réopmance degradation stays quite constant with
increasing node sizes. The overall overhead fdr Bdtonacci benchmarks was 17.9%.

The performance degradation of matmul, howeverredeses until a node size of 16. However, the
performance degradation for 4 cores is considenaigilyer than for Fibonacci. The average overhead
of all node configurations for the matmul benchmasds 27.9%.

By reducing the MTTF to 0.01s (see Figure 8, righv® can see a performance degradation between
150% and 220% for Fibonacci. The average overheadribonacci was 187.4%. The average
overhead for matmul was 185.5%.

Thread Recovery with MTTF of 0.1 Thread Recovery with MTTF of 0.01

—&— Fibonacci(36)
-~ Fibonacci(40)
e Matmul(256x256)

—&— Fibonacci(36)
-~ Fibonacci(40)
< Matmul(256x256)

0.8

- [=
E - e
= o
g o, T 20 -
5 084 - > e /
a a [AR
2 n 15 4 poeeee 8-
2] (} c
E 04 - :
E £
£ g 10
£ -'_..'B &
02 o B—eaz----- --te@--- 2
. 0.5 o
e,
_—_g—_-———-ﬂ
oo 0.0 -
I I | | T T T 1
4 8 16 32 4 8 ° *
Cores Cores
MTTF: 0.1 MTTF-0.01

Figure 8 Performance Degradation due to Thread Recovery with MTTFs of 0.1s (left) and 0.01s (right)

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 22 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 Fault tolerance for inter- and intra-cluster interconnects

The focus of Sect. 2 was on fault-tolerance withitERAFLUX node independent of interconnection
considerations. Sect. 3 investigates fault tolezamepects of inter- and intra-node interconneats. |
Section 3.1, we proceed with the investigation DBf Besh-based interconnects. In Sect. 3.2 we
discuss several intra-node interconnection tope®gind show that a 2D mesh-based intra-node
network is preferable from a fault tolerance paihtiew.

Fault tolerance in the TERAFLUX architecture is rimhited to its computing cores, memory
controllers and I/O devices. Fault tolerance abgpaads over all interconnects of the TERAFLUX
architecture and the respective controllers. Thenéo fault tolerant tasks in WP5 regarding the
Network on Chip (NoC) (D5.2 Section 3 and [9]) saddthe implications for the network, when
heartbeat messages are used to monitor the D-Fidfiliated cores in a 2D mesh-based Network On
Chip. We have shown how those messages increaseetirk message delays for application
messages and how a mixture of routing policiespraentially reduce this effect.

However, there are some more methods availablaise the quality of heartbeat messages. One of
those tweaks is to extract more insights out of rtfessages, by comprising information given by
some D-FDU dictated restrictions. Those extractédrmation are used to additionally monitor the
health state of the network without adding any datthe heartbeat messages itself. The health state
can be used to enrich scheduling information antuigermore needed in order to form logical
clusters around a D-FDU. In the Section 3.1 of ¢hiapter, we will describe in detail how we manage
this NoC monitoring.

Furthermore, we investigated several interconneat&twork topologies in order to provide a reliable
overall system. Section 3.2 discusses differentrahibical clustered interconnection network
topologies. The hierarchical clustered architectig@f is specified in the TERAFLUX Architectural
Template and was not yet considered from a relimiddgconnect point of view. Section 3.2 concludes
with a proposal of a hierarchical clustered ardhitee comprised of 2D mesh-based interconnects for
both the inter-cluster communication and the icttester communication.

3.1 Fault Information Feedback to the System (TSU and OS)

Thread management and fault tolerance for a onestival core machine like our target system is a
non-trivial duty. Task placement algorithms suchttees Connectivity Sense Algorithm (described
earlier inD5.2, Section 3.3.3)2needs the pre-computed Task-Graph information iafamation
about the system properties, which form the complyr Such properties range from the current
workload of the respective cores over the energigbtiup to the health state of the monitored cores
and the communication system. The latter has ai@dp®eaning for the optimal chip usage, since
communication between the cores and the manageumnést(such as the D-FDU and D-TSU) is a
regular event. Also the access to the off-chip nm@émory, represents a not to underestimate part of
the communication burden. Therefore, this propertgn important measure in the management of
tasks.

Two circumstances can influence the behavior of cbenmunication network in terms of data
throughput:

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 23 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. The workload to be handled by the network (inclgdsolving congestions).

2. The connectivity of the network.
The workload can be estimated by profiling the Bapion’s memory access behavior and by
identifying cores communicating with other corehisTcan be done offline at compile time by code
analysis and also online by monitoring the actasktbehavior. From the fault tolerance point of
view, the network connectivity is the more challerygaspect of this property.

The heartbeat message-based monitoring providema gpportunity for monitoring the NoC [10].
The health status of the NoC can be extracted filmenheartbeat messages, since these messages
inherently contain information about how they tneesl through the net. However, there are series of
slight adaptations needed to achieve 100% NoC wramit coverage and different component faults.

We split this section into three parts. First welain the monitoring technique based on a simpglifie
example. The second part of the section conside¥satiaptations in order to gain 100% NoC
monitoring coverage for our target system. Thedthpart will discuss several adaptations to
efficiently locate faults in the NoC with a minimefifort in hardware costs.

3.1.1 Basic Concept: Localization of faulty NoC-Components

While we described the health state monitorinchefdores in previous deliverables suclbasl and
D5.2, we now present two efficient methods for monitgrthe communication system (Network on
Chip - NoC). We will show how we are able to monttee NoC by leveraging the heartbeat messages
that we already use to monitor the D-FDU's affddtcores. For this, we combine the knowledge of
the timing information about the message sending pattern (8¥22 Section 3.2.2: Heartbeat
Timing Patteri with themessage path informatiorderived from the routing strategy.

The timing pattern was originally designed to avoid collisions betwdgeartbeat messages. In
conjunction with the Quality of Service (QoS) itpports a precise estimation about the arrival time
of all heartbeat messages. Supposing that a messeagdelivered with a delay, which is an indicator
for an increased hop count, we can conclude tleatthssage was transmitted using a bypass possibly
because of a faulty network element. Figure 9 shawexample of how a broken link (representative
for all NoC components) affects the timing behawvibra heartbeat message. In this case, the broken
link forces the message from tkig to be bypassed and results in a delayed delivetlyeaD-FDU.

The delay is then rated as a suspicibaartbeat message timing behaviord incidents of a faulty
NoC component (assuming, the core sent the heartiessage in head of time).

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 24 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

0 = Message drained from network
Arrival at FDU

Packet injection

Rt‘l;d R3:4 RS.‘S RZ:B R1:3 RI:Z R2;2 0
+ + + + + + +

Ro;n R0;1 R1-,1 RI:Z R’2:2 0

+ + + + +
R T e
to t1 to tg ta t;) tﬁ tg ts
; A
Correct Timing Suspicous Timing

Behavior Behavoir

Figure 9 A link between two routers is broken (left), which results in
a suspicious heartbeat timing behavior (right)

The routing information is used to determine where the faulty network comept is located. Since
the D-FDU investigates an unusual timing behavioore or more heartbeat messages, the path of
these messages (provided by the information froenrthuting strategy) is marked as suspicious.
Therefore, the D-FDU is holding a network statugrimawhich encodes the fault information of the
NoC. The suspicious paths in the matrix are séhbsementing each entry in that matrix by “1” for
each suspicious component. Each heartbeat mesgagegain time at the D-FDU ensures that the
values corresponding to the message’s path arerdeoted within the matrix. In that manner, a value
of “0” within the matrix stands for a fault-free rmponent and does not need to be further
decremented.

If enough path information was gathered, the D-RRlill be able to identify the fault location within
the network status matrix. The D-FDU then update®wn knowledge base (regarding the changed
timing and routing information of the specific cprand forward this to the Distributed Thread
Scheduler Unit (D-TSU). The update of the own kremige base is an important step in order to
detect further faulty components incorporatingltfees of already known faults.

Many faults within the NoC, however, will not affect the delafya heartbeat message transmission.
This is due to the adaptive routing algorithm, whjrovides always an alternative link in case of
faults or congestions. This alternative link do@d necessarily increase or create a transmission
delay. Indeed, only the utilization of a few faultgks will create a delay. Following the previous
example, only those links in row 2 (horizontal) aadumn 2 (vertical) will have this effect.

This pitfall can be encountered by creating arfiaidl delay with a bypass of the faulty and thalfa
free alternative link. That means the re-routedsagss will be transmitted over a link that increase
the distance to the D-FDU in the first place. Thating algorithm simultaneously avoids cycling
messages and will route the heartbeat message @yé#ie minimal path to the D-FDU.

3.1.2 Simplified Example

For simplification reasons within this example vansider a simplified NoC model that, in addition
to routers, consists of simple bidirectional lirdetween the routers. A link is pairwise shared amon

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 25 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

two adjacent routers and allows communication iff-thaplex mode. The current direction of
transmission is continuously negotiated by theamubn a request basis. As we will show later, this
simplification has no direct effect to the fault#dization. The localization will work with paird o
unidirectional links as well. However, the simpaldtion hides some gaps within the monitoring
procedure, which will be addressed within this sakisn.

Figure 10 depicts the twoews of interest. On the left hand side we show howsystem looks like
in reality and on the right hand side we show tREMJ's knowledgebase about the health state of

the NoC. Please note, that the sub-maf## encodes the reliability values for a link at aegiv
router, whereN stands for NorthE for East, and so on. In the following we accegsadicular

suspicious valuef a link by F&», whereD is a set of directiondVN. E.S.W3} and defines the
direction of the link for the given router atandy, respectively. In that manner the D-FDU will

update the network status matrix pairwise, sincexample the linFa.0 andFa are identical.

We step into the example scenario right after tHe(dJ) collected the first delayed heartbeat message
from C,. As a response to that, the D-FDU starts markihtha components that were (normally)

involved in transmitting this message. Hence, tdigvork status matri$ of the D-FDU has the state
as shown in Figure 10.

0 1 2 3 L3

0 =fault free
>0 = suspicious
= No link available

66 96 86 0 o
CIBIBCIB B Y
s=| 086 906 NG Y@ I Fry=(WH
CACYIB HL 9B 9)
CABIB YG B Q)

Figure 10 On the left: View on the physical system. On the right: The D-FDU's network status matrix after the
arrival of the delayed heartbeat message from C2

Short time later, the D-FDU also collected heartimeessages from the neighboring core€ofThis

is depicted in Figure 11. As one can observe, tHEDD incremented all components that are
involved for the transmitting of delayed heartbeassages and the network status matrix shows a

first candidate for a faulty component, which ie timk F3z andF2s , respectively;

® For the sake of clarity we changed the hearthigding pattern inError! Reference source not found.and
Error! Reference source not found.compared to our former described timing patterrDBb2 in order to
demonstrate the localization procedure.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 26 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Lo i_ £ 0)(o 06 8)fo) O
e 4
" e TR TETEIT
. AN (ISR

Figure 11 Internal view of the D-FDU’s network status matrix S after five heartbeat messages had arrived at
the D-FDU

After a complete round of heartbeat messages samtdll D-FDU affiliated cores the network status
matrix is filled out with all suspicious paths aad shown in Figure 12. As one can observe, the
former faulty candidate is most likely the onehie teal world.

96969696 9
m EELEIETE
m 0 98 98 96 96
EIRTETELY
. SRR

Figure 12 The D-FDU's network status matrix S after a complete round of heartbeat messages.

3.1.3 Monitoring Gap

However, having a closer look on Figure 12 revealsssue, which was not addressed yet and refers
to what we call a monitoring gap. The link betwdgnandCg shows that this link has never been
used by any heartbeat message. That means, thisdsnever been “monitored” and a link failure
would not be recognized by the D-FDU. This exanfplso shown in Figure 13) represents a series of
links within the cluster, which are not utilized bgartbeat messages. Additionally, there are links
lying in between of two clusters. Those links halso never been monitored and need some
additional attention.

The following two subsections discuss how we martagill both gaps by slightly expanding the
heartbeat message based monitoring mechanismse d-#DU. At first, we will handle the gaps
within a cluster and continue with handling the gjapbetween of clusters.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 27 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.1.3.1Inside the cluster

To fill the monitoring gap within the cluster, weopose to simply alternate the routing for heartbea
messages triggered by a one bit flag in the haadTtis flag is set only by the sending core and
follows a simple rule: The flag is set when thevpyas heartbeat message was sent without the flag
(and vice versa).

At a given router, the flag is read and feed torthging stage. If the flag was found, the routiogic
alternates the direction and the alternate rousirggt. That means for staircase routing (the dimgder
routing policy for heartbeat messages) the routauge the first heartbeat message of a specifie cor
following the staircase policy. The second heattheassage of that core is then treated with the
alternate version of staircase. Figure 13 and Eigdrshows both the staircase policy and its altern
version. One can easily see that the alternatdoveshows in principle the same behavior as its
“normal” counterpart but uses different links agé ttluster borders. Of course, the flag needs to be
kept until the D-FDU reads the messages, in omdmnbw which routing algorithm was applied to
transmit the heartbeat message. Alternatively, EREDU can assume the alternating routing
algorithms for each heartbeat message. That méendirst message dof, would be sent using
staircase routing and the second one would benhigesl following the alternate staircase version.
Doing so, the flag does not need to be forwardetiedD-FDU. With this mechanism we are able to
close the monitoring gap within the cluster.

0 1 2 3

Figure 14: Revealing monitoring gaps Figure 13: Revealing monitoring gaps
using the original Staircase routing using the alternate Staircase routing

The expected costs of realizing the alternatingimgucan be stripped down to the single bit flag
within the heartbeat message and the extendechgolagic. The latter one is the more expansive
cost, since the additional decision rule needsetanfiplanted along with the XY-Routing and the
original Staircase routing.

Since the header flits of heartbeat messages ditfar the application’s header flits, the coststhar
header flag arises only for heartbeat messageis dnéerefore negligible.

3.1.3.2Between clusters

The other monitoring gap detects the uncoveredslinkbetween of clusters. At those points of the
network no heartbeat messages utilize ever ang.limkFigure 15 we highlight these links as gray
boxes at the border of the two clusterandf. Since the used routing policies do not allow patiat
violate the minimum path rule, additional heartbmassages are needed in order to fill this gap.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 28 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The main idea here is to overlap the cluster baerdad thereby filling the monitoring gap. Therefore
clusters should be assembled with overlapping lverdie Figure 15 we show clusters how they were
originally assembled. One can clearly observe gpamsation of clustes and. Aside others (gray
boxes), we marked the not monitored links in betwbeth clusters as, b, andc. The D-FDU
placement algorithm (described in D5.2 Section3323.Connectivity Sense Algorithm) now needs to
place both D-FDUs andf so that the core%., @, and. will be affiliated to both D-FDUs and
hence send their messages to both D-FDUs.

Figure 15: Overlapping D-FDU Clusters

The additional heartbeat messages are the onlyi@ui measureable costs we have to expect in
order to fill this monitoring gap. The amount ofst®for a given cluster can be easily calculated by

no, + mo,, — f n.q, + m-q, - f, wheren andm are defined as the node dimensions assuming a
rectangular shape of a node. Assuming th& the width of a node anuh the height (from a 2
dimensional point of view), thamrepresents the northern and southern bordergiota node andh
represents the eastern and western borders, regbecthe valueo is a multiplier, which is used to
“count” the number of cores, which are located aedain border (distinguished by the dimension

or m). Sincen andm represents respectively two borders of a noglando,, are defined as an integer
value with
0s0=2, where

» the value 0 means no core lies in an overlappeaifarghe given dimension,

» the value 1 means (or m, respectively) cores lie within an overlappingaafer the given
dimensiom (or m), and

» the value 2 means, all cores of a given dimenseimlan overlapping area.

The symbof represents the amount of failed cores, which eotl $ieartbeat messages anymore.

Taking Figure 15 as an example, the additional aggss after expanding the node from RDubuld
be calculated by3*0) + (3*1) + O for the node with the FD{J(respectively FD).

At this point, we have a 100% coverage of all nekn@mponents for the given network model. As
we mentioned before, this example bases on a iethNoC model for the sake of simplicity. If one
extends the NoC model to a more actual one, orlesed that shared bidirectional links are not the
common case in today’s NoC implementation. The nidsC implementations found in open

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 29 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

literature consist of separate input interfaces amgut interfaces, which raises another and tee la
monitoring gap.

3.1.3.3Unidirectional Links

Re-considering the given example above, we poinotgdthat this example contains a simplified
network model for explanation purposes. The actaalter design of the most open literature
implementation incorporates a pair of unidirectidimks, connecting two adjacent routers or a route
and its local core. One link of the pair is thensaitting port and the other the receiving port.

Now, in order to bring the network model to a ma&ual design, we need to address a final
monitoring gap. As illustrated in Figure 16, albhtbeat messages sent from any affiliated corbdo t
D-FDU results in the utilization of links “pointifigo the D-FDU only. Those links directed to the
opposite direction are not affected from these agess, and are thus not monitored. Here again raises
the need for an extension of our message basedariagi

An effective and efficient solution is to switchofn pushing heartbeat messages to the D-FDU, to
polling them from the D-FDU side. In this case, Ix-DU sends heartbeat request messages to its
affiliated cores, which in turn immediately answvike requests with heartbeat response messages.
Additionally, all heartbeat messages (requests elsag responses) are handled by the routers with
the alternating routing policy. The observation@@ge of the network’s components are now again
at 100%.

However, along with the increase number of heattbezssages, a small pit-fall exists with polling
heartbeat messages. A delayed response messagmi B now causing two paths within the D-

FDU's network state matriX as suspicious. This is because the D-FDU canmettti differentiate
whether the request message was delayed and enqesgithe overall delay, or the response message
of the core was delayed. According to the form&egiexample, in Figure 16 we again step into the
scenario right after the delayed response mesda@el@s arrived at the D-FDU.

This time, the D-FDU incorporates the poll mechamia order to alter the network state matfix
Please note that in this example unidirectionatdimre used. Therefore, the D-FDU updates the

entries of network status matrix on a per link basn this case the sub-matrf¥r returns the
suspicious-valugor the output linkD of the router ax andy, respectively.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 30 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

0 =fault free — = utilized by request message
>0 = suspicious — = utilized by response message
= No link available

o
=X
o
=]

OO HOS OO OO OO

=20

Fxy '(WE

=310

wn

L}
TS TS T TS T e
OO OO OO OO OO
OO OO OO OO
OO OO OO OO OO
—_— e —— — —
OO O+ OO OO
OO OO O+ OO OO
O =HO OO OO
OO O =HO OO OO
—_—_——— — ——— —
=HO OO0 OO OO ’

Figure 16: Link utilization separated in request messages (gray arrows)
and response messages (black arrows)

Since both request messages and response messagesmpletely different network components,
there is no chance to reduce this first uncertashtgywn in Figure 16. Nevertheless, the localization
mechanism will resolve this uncertainty and fina tfaulty component after collecting enough
messages from cluster area. It may just needla fitore time to sharpen the picture of the health
state of the cluster.

A welcome side effect of using polling instead ofping for heartbeat messages is the absence of
costly configuration messages sent from the D-FDUall affiliated cores. This configuration
messages originally contains explicit instructiabsut the message sending timing pattern of the cor
(seeD5.2 Section 3.2.2: heartbeat Timing Patderfihese messages need to be sent every time the
system is started (e.g. at “power on”) and in aodievery time the D-FDU needs to change its
position or re-arrange the cluster to react ont$aul polling is used instead, a single headdtity
message is necessary per core and round. Wherad i® defined as the amount of time needed to
collect heartbeat messages of all affiliated cores.

3.1.4 Single Bit Utilization

As an alternative to the artificial increasing naegs delay for localizing faults within the NoC, the

is another promising approach. The basic ideaifggumne additional bit as a flag to mark a re-rdute
heartbeat message. Contrary to the previous prdpaseroach, with this technique there is no need
for an indirect way. As discussed above, the forimgproach creates an artificial indirection to
produce a message delay, which indicates a faoltyponent of the message’s path. This artificial
indirection results in at least in two additionalps of the message, even when a shorter path is
available. However, since faulty links in row 2 (fzontal) and column 2 (vertical) induce
unavoidable delays, even this method is not free fdelays.

The functional procedure of this technique is gsiteple. When the built-in self-tests within a reut
detect a faulty link of the router, the router’stehing arbiter is instructed to cancel out thdietiéd

link from its switching table. Incoming messagesattare supposed to utilize this link now get one of
the alternative links provided by default from tloiting logic. The final arbitration is done by the
switch arbiter, which also set the re-routed fagfivithin the heartbeat message header. When the D-
FDU receives such a re-routed message, it behathe same way as we already described it above.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 31 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The beauty of the approach is its light weight ratBeside the mandatory fault detection ability of
the router itself (which is needed anyway for mgeshased fault localization), the only hardware
overhead is the following:

» One bit in the heartbeat message header, whicheshphe bit of additional link bandwidth.
» Within the router, there is just the need for adithhal header manipulator at the switch
arbiter. The manipulator alters the re-routing fih@ message needs to be re-routed.
However, the bandwidth consumption resulting frdme &dditional bit flag within the header is
negligible, since this wire can also be utilizeghfrany other message. That means any other message
type can utilize this wire for payload transmission

3.1.5 Localization Costs

In this subsection we will show the estimated casissed by our proposed fault localization

technique. The basis of this calculation are theumptions for the original proposed heartbeat
message based monitoring, extended with the pathar@sm and overlapping clusters. Both, request
messages and response messages are head-flit-esspges.

In Table 2: Estimated costs of our fault localieattechnique we distinguish the costs between the
usage of the artificial indirection method and teeouting bit method.

Table 2: Estimated costs of our fault localization technique

Localization method

Cost Pure timing and Re-routing
routing information bit
2xFL X

Additional: Special HW support for cas
differentiation

1%

Artificial indirection

Alternating Routing 1 Bit in heartbeat message header flit X X

Overlapping Cluster (0y + Moy —) x FL x x

Borders

Polling messages FL x CN + OCB X X
1 Bit in heartbeat message header flit X
Additional: HW Support to manipulate

Re-routing Bit)
the Head flit

FL: Flit Length in Bits
CN: Number of monitored cores
OCB: Overlapping cluster border (formula descriptio section 3.1.3.2)

3.2 Topology Consideration and Fault Tolerance Implication

The investigation of Section 3.1 assumes nodesirwah2D mesh-based NoC. In this section we
compare the topology with architectural templatd§ BRAFLUX (see Figure 17 of D6.3). Therefore,
we broaden the fault tolerance view for other Nofiotogies differently from that we already used in
the previous deliverables D5.1 and D5.2. While mwestigations regarding the communication
fabric so far was based on a two dimensional mgBhMesh), the project decided to use a clustered
architecture because of scaling reasons. A clubtarehitecture leads to a hierarchical structured

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 32 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

interconnection network. This network consists tofleast two hierarchy stages. The first stageés th

global interconnection network and connects allaspdvhich are the second hierarchy stage. While
the first stage can still be a 2D Mesh topologylgpp our technique described in Section 3.1, we
will consider possible network topologies for tesnd stage.

The following subsection will therefore discuss @¥itopologies are suitable as second stage
interconnect from a fault tolerance point of vieft. the end of this subsection we will propose a
favorite topology meeting both the performance dafisaand the fault tolerance constraints.

| . | Architectural template
Key:
n =v# of nodes Nk = k-th Node (k=1..n}
m = # of cores per node NI = Network Interface

u= # of DRAM controllers insistingonthe oC = Network on Chip
Unified Physical Address Space
z=#o0f /O Hubs

Key:

Cj=j-thcore (j=1..m)

MC = Memory Controller

LLSH DTSU = Distributed Thread-Scheduler Unit
. DFDU = Distributed Fault-Detection Unit

LLSH = Last Level Cache Hierarchy

Second Stage Interconnect m_

Figure 17: TERAFLUX Architectural template — Chip and Node Level

3.2.1 Clustered Architectures

Four of the most commonly used topologies for cimterconnection are bus-based, tree-based,
crossbar-based, and 2D Mesh [12]. With exceptionthef bus-based topology, we assume all
topologies as switched networks, which means aéssocommunicate over the local interconnect via
switches (see Figure 18). Bus based connected aocess the bus usually directly without the use of
switches or routers.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 33 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TE R Opk

) 1ol
) (o] o] o Samal
(a) Bus-based (b) Crossbar-based
Switch @—‘
clllelllc]
Switch Switch Switch Switch
N | N 1 |
[e] [e] [el[e] o] Po] fo] o) SAET
/0| |I/O C
(c) Tree-based (d) 2D Mesh-based

Figure 18: Potential local interconnection networks for the TERAFLUX architecture. C blocks represent cores,
M are the memories, NI and 1/0 are network interface and Input-output devices, respectively.

Bus-basedopologies are the most common way to interconaesmall number of cores. While a
bus-based topology can support good performanceafemall number of cores, it lacks enough
capacity to efficiently serve more than 16 coragufe 18(a) shows a typical structure of bus-based
interconnects. As one can easily see, if the celan@ is broken, it disconnects at least two cores
memory controllers, or /O controllers, respectyvelhis phenomenon is also referred as to single
point of failure and is one of the major reasonisy & topology is not suitable from a fault toleranc
point of view.

A crossbar-basetbpology (Figure 18(b)) has similar fault tolerangeoperties as the bus-based
topology. Here the crossbar itself is the singlenpof failure and has the potential to disconrtbet
complete cluster from the rest of the communicatietwork. From the performance point of view,
the crossbar poses due its point to point connestietter performance compared to the bus-based
topology. However, the number of connected comptnenthe crossbar is strongly related to its
operational frequency. That means the higher timeben of connected cores, the lower the operation
frequency and the higher the area costs. ConnedihgCores yields max ~85% Chip-Area
Utilization, which is the minimum utilization of ¢hnonofficial industry design rule [11]. Connegtin
more than 10 Cores worsen this utilization factor.

In contrast to the bus-based topology and the bavsdopology thetree-based topology
(Figure 18 (c))provides one of the best performance results r@gafighest available clock rates
and very low latencies due to a small number ofaye hops [12]. The maximum number of cores is
variable and depends on the integrated bandwidtimkd connecting the intermediate switches with
the central switch. However, this topology has p@olundancy capacities. Although, communication
paths are now separated from each other, the temtiwh at the top represents a single point of
failure. Additionally, the typical tree-based topgy uses hard wired communication paths, which
makes it hard to take advantages of potential r@gioinlinks.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 34 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

As we already described in our deliverables D5d @6.22D meshesre the best choice from the
fault tolerance point of view. Its naturally redamd structure provides excellent opportunities in
order to react on broken links and even brokenersut-rom the performance point of view, a 2D
mesh-based topology provides good bandwidth capebi[11]. Given a proper routing algorithm
even congested areas can be bypassed and makef ube medundant links surrounding the
congestion. However, due to a higher average haptdbe performance in terms of latency is not as
good as those compared to the tree-based topology.

All these topologies have a common weak agency. Nlaerepresents a particular failure point. In
the worst case, one broken link at the NIC discotsnthe whole cluster from the rest of the chip. A
disconnected cluster/node may result in a com@gsem failure, since affiliated resources, such as
memory controller or /O controller may hold datahich is not accessible anymore. The
conseguence from such a situation can be a deadidbkead or system.

In order to prevent the system from potential ceasihhedundant NICs should be used at each cluster.
Either these redundant NICs can be used as spameocents, which step in for a broken NIC, or all
NICs can be run simultaneously. The latter onethasadvantage that the Inter-node communication
may be split to different NICs and thus broadendberall bandwidth for Inter-node communication.
However, such a traffic split comes with the exgeoadditional hardware costs.

3.2.2 Proposed Topology

A cluster derived from the TERAFLUX architecturenche seen as a homogeneous tile. Their
distribution over the chip area supports equal larigths for both horizontal and vertical Switch-to
Switch interconnects. This link symmetry allows temployment of a simple global 2D Mesh
network to interconnect the node’s local intercanseBoth, the local interconnect and the inter
cluster network are then from the same type witlrlgeequal properties from the fault tolerance poin
of view. Due to its redundant hardware it is fldgilenough to match with the applied fault tolerance
mechanisms and is affordable regarding the usagdéaofware. 2D Meshes provide feasible
performance and the current fault tolerance teclescare already applied to 2D Meshes, so no other
investigation regarding different topologies is egsary. Therefore, we propose a 2D Mesh based
local interconnect as shown in Figure 18(d), plue possibility of passing NoC packet around
without the need of additional bridges.

3.2.3 Conclusion

From a fault tolerance point of view, a flat No@adtogy as investigated in Section 3.1 is supegor t
hardware-fixed clusters/nodes as proposed by tHRAHREUX architectural template, because there is
no single point of failure except for the FDU/TS0Odes itself. Clusters/Nodes with bus, crossbar, or
tree interconnects suffer from structural singlénpmf failures. Fixed clusters also have fixed
interconnects (NICs) to the global network, whitsogorovide single point of failure that could make
the whole cluster/node inaccessible. However, sueinconnects could be doubled.

A flat topology with dynamically assigned cores RBU/TSU would recover the cluster internal
single point of failures (namely local interconnectNIC). It allows reassigning cores to clusters i
order to rebalance uneven cluster sizes, whichraheei to faulty links, routers, and nodes.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 35 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

If FDU/TSU functionalities would be implemented software, such FDU/TSU nodes could also be
assigned to any cores, eliminating also the harehimplementation of FDU/TSU. However, this
represents a tradeoff between flexibility and perfance. In our current design, when the components
fails (independently of hardware or software), sggtem might collapse. However, this circumstance
can't be avoided: a software based approach altowseep the change to re-establish the system
stability by moving FDU/TSU to another (non-faulggre.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption

File name: TERAFLUX-D53-v3 Page 36 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 Dynamic Adaption

Managing the reliability and the resources of lassgale systems such as assumed by the TERAFLUX
project can be a non-trivial task. Thus, we deciedase the complexity of the problem by using the
following assumptions according to the proposed AERJX architecture (c.f. D6.3).

1. The general system is divided into nodes. Each rfmale a node management unit; A
Distributed Thread Scheduler Unit (D-TSU) and atifibsited Fault Detection Unit (D-FDU).

2. We assume “streaming” like applications, where tiengads are dynamically created. Thus,
in order to enforce load balancing, we can avoiding threads from one node to another,
but can do it by deciding where to create the nem bhreads.

All operating system related operations such asures allocation, performance, and power
optimization, fault detection and correction (riesit mechanisms) are implemented in a hierarchical
manner:

At the top level, the TERAFLUX operating system sd¢lee system as a collection of nodes. The
nodes are connected by a virtual or physical iot@mect (NoC). In this case, the considered NoC
model is an extension to that described above. ,Heee further assume that each router is
configurable such that changes regarding the rgupolicy can be applied via configuration
messages. The routing calculation is done byTineable Disjoint Spanning Trg@DST) algorithm
(developed by partner MSFT), which produces a spantree, covering the remaining healthy
interconnects.

We are looking for end to end protection schemesrier to tolerate temporary faults in links. A
common approach is the usage of fully edge disjpaths, which are defined as primary and the
second as backup. Given the congestion of eachslimke optimal disjoint path solutions can be
found. Accordingly, we are searching for the optirsalution with the maximum number of
intermediate nodes. For example, in a regular 2BhAat@ased interconnection network with no
congestion, the route between two opposite corndesishould be a staircase for the primary path
and its alternate staircase version for the bagbagh. We call this algorithmic schenidaxHop
Disjoint PathAlgorithm

The TERAFLUX operating system interacts with the Dfall L-TSUs and D-TSUSs) in order to
perform thread management (i.e., scheduling, ...hddethe thread management policies resulting
from the communication between the TERAFLUX opergsystem and the DTS are as follows:

* General policies for load balancing of the executiecide where to create new threads. This
schedule algorithm aims to load balance the exatutetween nodes and will take into
consideration the nodes’ fault rates, frequenaeas, power consumption between nodes and
power and performance optimizations.

* General policies for thermal and power managemérhe entire system. As part of that
process, the TERAFLUX operating system will allecatpower and thermal budget to each
node. In return the node reports to the operatystesn how well it uses the budged allocated
to it. The operating system will change the allmratto the nodes dynamically over the
runtime.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 37 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

» Handle I/O for the entire system.

At the auxiliary nodes (c.f. D6.3 and D7.1), thesteyn is maintained by a “nano or pico” kernel
(NoS) (c.f. D7.1) that aims to handle all the reses of the cluster in an optimal way. The NoS will
interact with D-TSU for a proper initialization diread execution. Each thread will be in a dataflow
style, meaning, it maintains memory accesses iocal Imemory, so that no side effect can occur
before the thread is completed. The execution hd®lhor nothing” notation, meaning we can Kkill
the execution at any point before committing itsufes back to the global memory and the system can
re-execute a thread if needed.

Along with the thread scheduling, the NoS additipnmaintains the I/O operations by asking the

Teraflux OS to execute it on behalf of the locak#d. Error and exception handling in conjunction

with gathered statistics on the performance andep@iveach core so enables global optimizations of
voltage and frequency for the cluster (c.f. D7.3).

At the core level, we can assume that all managemigorithms are done either in hardware or in
microcode of the core. The system can assume ke ghrgaded core. In this case, the role of the cor
is to

* execute the threads assigned to it,

» detect errors and report them,

* report on power and performance parameters (inoduldeartbeat signals), and
» adjust the voltage and frequency of the core.

The system can assume multi-threaded cores. Inctde, we assume a simple switch of event
mechanism between the threads that where assigngw tcore. In this case, on the top of all the
activities a single threaded core needs to

e schedule the thread and
« check if a wait condition is fulfilled.

4.1 Implementation status and issues

The TERAFLUX OS is implemented as part of LinuX.(B7.1). We assume that the Linux OS has a
special driver that aims to communicate betweenMBRAFLUX clusters and the Linux OS, as the
following Figure 19 shows. A shared memory regiencieated between the Linux and the NoS
together with a system of message queues. Thatsalo efficient communication between the NoS
and the Linux OS. Furthermore, we assume that ekster is controlled by an independent NoS.
Currently, we examine the use of the Kitten nana&k[13] for that purpose.

The overall memory hierarchy is divided into looamory for each cluster and observable memory,
which is the aggregation of all global memory pmms of all nodes, also called Unified Address
Space (c.f. D7.1). The local memory of each cluster be used by its local NoS for maintaining its
local data structures. All the shared memory carabcessed by each core, by using a universal
addressing scheme (UAS) but no HW coherency isagieed. Please note that a core accesses its
own global memory by the UAS or by using the diractess more. The system will have a Global
Memory Management to handle the UAS.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 38 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. At the node level, we are extending the Kitten neemel by adding a message passing layer
to manage operations between the nodes and bethe&imux and the nodes.

2. We are working on adding a layer of fault tolerd@® This is layer is based on one of the two
algorithms (1) send all I/O in two disjoint virtuphths or (2) send in a primary path and
define a secondary disjoin path to the case afriil

o o T e CoresView Memory View

o0 Deem

Inl 1] Wl

ol | 1
1 1 1 B,
oees. - " -

Each CPU can access it’s private

All shared memories can be accessed (as one

virtually contiguous address space) by the DMA
o aErers for coping data in and out

Figure 19: (a) cluster memory hierarchy (b) System-wide memory hierarchies

After building the current generation of dynamimtrol, we are planning to distribute most of the
functionalities of the TERAFLUX OS.

Under this implementation, most of the top-levelnaigement that currently is implemented as a
Linux device driver will be distributed over the ttéin nano kernel. The main benefit of such
implementation is to avoid a single point of faflland potential performance bottleneck.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 39 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[1] S. Weis, A. Garbade, S. Schlingmann und T. Ungefi@wards Fault Detection Units as
Autonomous Fault Detection Approach for Future M&uores,” in1st Workshop on Software-
Controlled, Adaptive Fault-Tolerance in Microprosess (SCAFT 2011p011.

[2] S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mesder| R. Giorgi und T. Ungerer, ,A Fa
Detection and Recovery Architecture for a Teradewbataflow System,” ifrirst Workshop o
Data-Flow Execution Models for Extreme Scale Comgu{DFM 2011) Gdveston Islanc
Texas, USA, 2011.

[3] E. Rotenberg, ,ARSMT: A Microarchitectural Approach to Fault Tolecan ir
Microprocessors,nternational Symposium on Fault-Tolerant Computmg 84-91, 1999.

[4] D. Bernick, B. Bruckert, P. Vigna, D. GarciR, Jardine, J. Klecka und J. Smullen, ,Non¢
advanced architecture,” Bd. Proceedings of thematenal Conference on Dependable Sys
and Networks (DSN), pp. 12-21, 2005.

[5] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J.[kavis, B. Hertzbeg, M. K. Prabhu, F
Wijaya, C. Kozyrakis und K. Olukotun, ,Transactibrddemory Coherence and Consisten
Proceedings of the International Symposium on CdenpArchitecture pp. 102-113, 2004.

[6] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J.Hoe und A. G. Nowatzyk, ,Fingerprintir
bounding soft-error detection latency and bandwidth Proceedings of the 11th Internatiol
Conference on Architectural support for Programmihgnguages and Operating Systt
(ASPLOS)2004.

[7]1 M. Prvulovic, Z. Zhang und J. Torrellas, ,Reviveosteffective architectural support f
rollback recovery in shared-memory multiprocessom, Proceedings of the 29th Anni
International Symposium on Computer ArchitectuBC@) Washington, DC, USA, 2002.

[8] D. J. Sorin, M. M. M. K. Matrin, M. D. Hill und DA. Wood, ,Safetynet: improving tt
availability of shared memory multiprocessors watbbal checkpoint/recovery,” iRroceedint
of the 29th Annual International Symposium on Cadepdirchitecture (ISCA)Washington, DC
USA, 2002.

[9] A. Garbade, S. Weis, S. Schlingmann, B. FechnerTanidngerer, "Impact of Messadasel
Fault Detectors on a Network on Chip,"2ith International Euromicro Conference on Parg
Distributed and Network-based Processing (PLBYIfast, 2013 (accepted paper).

[10] B. Fechner, A. Garbade, S. Weis and T. UngererultFacalizaton in NoCs by Time
Heartbeats," inWorkshop on Dependability and Fault Tolerance (ARERFE Workshop)
2012.

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 40 of 41

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[11] A. Pullini, F. Angiolni, S. Murali, D. Atienza, G. De Micheli und L. Bimi, ,Bringing NoCs tc
65nm,“IEEE MICRO,Nr. 5, pp. 75-85, 2007.

[12] J. Flich und D. Bertozzi, Designing Network @ip Architectures in the Nanoscale Era, E
Raton, FL: Chapman and Hall/CRC, 2011.

[13] Kitten nano-kernelhttps://software.sandia.gov/trac/kitten

[14] Roberto Giorgi, "TERAFLUX: Exploiting Dataflow Pdkelism in Teradevices",ACM
Computing FrontiersCagliari, Italy, May 2012, pp. 303-304.

[15] Roberto Giorgi, Zdravko Popovic, Nikola Puzovic, TB-C: A Decoupled multiFhreade:
Architecture for CMP SystemsProc. IEEE SBAC-PADGramado, Brasil, Oct. 2007, pp. 263-
270

[16] COTSon repository: cotson.sourceforge.net/

Deliverable number: D5.3
Deliverable name: Intra-Cluster Fault-Detection &atovery Mechanisms and Dynamic Adaption
File name: TERAFLUX-D53-v3 Page 41 of 41

