Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compting

D5.2 — Development of Inter-Cluster Fault DetectioMechanisms and
Core-Internal SW and HW Protection

Due date of deliverable: 3December 2011
Actual Submission: 3iDecember 2011

Start date of the project: January 2010 Duration: 48 months
Lead contractor for the deliverable: UAU

Revision : See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU | Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntiding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 1 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Date Author Organization | Change History
0.1 22.08.2011 Sebastian Weis UAU Initial release
0.2 21.10.2011 Sebastian Weis, ArndJAU Merged sections

Garbade, Bernhard
Fechner, Julian Wolf,
Sebastian
Schlingmann

0.3 27.10.2011 Sebastian Weis, ArndJAU Revised sections
Garbade, Bernhard
Fechner

0.4 20.11.2011 Avi Mendelson MSFT Integrated OS par

1.0 25.11.2011 Sebastian Weis, ArndJAU First full version
Garbade, Bernhard
Fechner, Julian Wolf,

Sebastian
Schlingmann, and
Theo Ungerer
1.1 29.11.2011 Arne Garbade, UAU Minor Changes - Layout
Sebastian Weis
1.2 05.12.2011 Sebastian Weis, ArndJAU Integrated review
Garbade comments from Partner
UCY and MAN
1.4 19.12.2011 Sebastian Weis, ArneJAU Final version
Garbade, Theo
Ungerer
Release Approval
Name Role Date
Sebastian Weis Originator 12.12.2011
Theo Ungerer WP Leader 19.12.2011
Roberto Giorgi Project Coordinator for formal deliv erable | 30.12.2011

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 2 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

! #1003 %
% # & %
& #() *
(o+ *
,) &
% -) &
/-0 $" 1
2 31 $
2
4 #
| |
!
!
! # $

% !

Deliverable numbeiD5.2

Deliverable nameDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 3 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

& ' %

& %
& %

Ro Ro Ro Ro
©“

%&

Deliverable numbeiD5.2

Deliverable nameDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 4 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdfleet the list of contributors to the writing ofdeh
document.
Sebastian Weis, Arne Garbade, Sebastian Schlingmann
Julian Wolf, Bernhard Fechner, Theo Ungerer
University of Augsburg

Avi Mendelson, Doron Shamia
Microsoft Research and Development

© 2009-11 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iry]tidr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressieaptied warranty of any kind and assume no resibdites for errors
or omissions. No liability is assumed for inciddr@aconsequential damages in connection with w@irag out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Licer®ee information in this document is a work in preggs, jointly
developed by the members of TERAFLUX Consortium ("RERUX") and is provided for informational use only.

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks andde secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technology elated materials.
Any use of the protected technology and relateceri@tbeyond the terms of the License without therpwritten consent
of TERAFLUX is prohibited. This document containgterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuimat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iatkd or apparent from the nature of such mate(fals example,
references to publicly available forms or documgents

Disclosure or use of this document or any matecalttained herein, other than as expressly permisgarohibited without
the prior written consent of TERAFLUX or such otlparty that may grant permission to use its progrietaterial. The
trademarks, logos, and service marks displayedhis document are the registered and unregister@dermarks of
TERAFLUX, its members and its licensors. The caglyriand trademarks owned by TERAFLUX, whether tegesl or
unregistered, may not be used in connection with @noduct or service that is not owned, approvediistributed by
TERAFLUX, and may not be used in any manner thékédy to cause customer confusion or that disgasal ERAFLUX.
Nothing contained in this document should be caoestras granting by implication, estoppel, or othieewany license or
right to use any copyright without the express teritconsent of TERAFLUX, its licensors or a thirarty owner of any
such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXPBCIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT AQHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER(INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT,TRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF &IH DAMAGES.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 5 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

D-FDU Distributed Fault Detection Unit

DF-Thread A dataflow thread

D-TSU Distributed Thread Synchronization Unit

FM Frame Memory

L-FDU Local Fault Detection Unit

L-TSU Local Thread Synchronization Unit

MAPE Acronym for Monitoring, Analysing,
Planning, and Executing

MCA Machine Check Architecture

Leading Thread

Represents the main executed thread in
the double execution approach

NoC Network-on-Chip

Node Group of cores and additional
TERAFLUX hardware units

OoOwWM Owner Writable Memory

TCL Thread-to-Core List (cf. D6.1)

Trailing Thread

Represents the duplicated threadhe
double execution approach

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 6 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This deliverable reports on the research carrigdrothe context of DoW Task 5.2 (project months
13 -24)“Development of Inter-Cluster Fault Detection Mechanisms and Core-Internal SW and
HW Protection”:

We refined our fault-tolerant threaded dataflowh@ecture to detect faulty cores, routers,
and links, including different types of FDUs one@nd node level. We exploited the
Machine Check Architecture for core level faultet#ion and present two techniques to
detect soft errors (program flow checking and deudecution with voting) by the D-FDU
and use the side-effect free execution of DF- tisdar an easy fault recovery by thread re-
execution.

We investigated clustering of cores into “nodes"abuster” located on a 2D-mesh structured
Network on Chip with faulty elements.

We specified the inter-cluster fault detection nagbm between D-FDUs and present
grouping strategies for the mutual D-FDU monitoring

We extended the inter-cluster fault detection cphte detect faults in I/0O Devices and
memory controllers.

We enhanced the operating system work of yearédover from faults on higher level.

Hence, all goals of WP5 for the second year wehéesed.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 7 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

In Deliverable D5.1 we have described Fault Detectinits to detect faults in cores, clusters, dnad t
interconnection network. We have presented a @etaibncept of the internal FDU behavior as well
as different communication protocols and fault diébe message types.

This Deliverable extends the hierarchical FDU ca@nd the monitoring architecture introduced in
Deliverable D5.1. It further focuses on theer-cluster fault detection mechanisms based hen t
defined overall architecture (see DoW Task 5.2)

The DoW Task 5.2 defines three subtasks:

1. “Development of clustering of cores: We will devedptegies to form clusters which means
that a set of cores is assigned to a FDU. The FBteésponsible to monitor all cores within
its cluster.”

2. “Development of grouping strategies for FDUs: Adutitilly grouping strategies for FDUs
are needed. Such a group only consists of FDUsadirfeDUs within the same group monitor
each other. This allows for a detection of fault&DUs or whole clusters. After the detection
of faults restructuring of clusters and groups rbaynecessary.”

3. “Development of inter-cluster fault detection medsrais: Based on the structure of the
groups of FDUs mechanisms will be developed whilchivedor a mutual fault detection of
FDUs within the same group. It is necessary to gsmaldifferent sources of information (e.g.
core-internal fault detection, lifesign-messagesamalyse faults. These range from soft-
errors of an FDU to a permanent failure of a wholester.”

Clustering of cores is covered in Section 3, whweedepict the technical boundaries of the core/D-
FDU ratio with respect to a 2D-mesh structuredrgganect. We first present a static clustering
technique without link faults. Then we incorporéitdk and router faults during operation, which led
us to a dynamic re-clustering algorithm to prevasitlenecks in the interconnection network.

Since the grouping strategies for D-FDUs and therialuster monitoring are strongly coherent, we
have aggregated subtasks 2 and 3 in Section 4, iWerelescribe the technical details of the inter-
node monitoring between D-FDUs, which exploits téghes for the D-FDU-core monitoring. Later

on we discuss different inter-cluster groupingtsgees to detect D-FDU faults.

Additionally the reviewers of the project suggested

“Soft-error tolerance and attention to fault detieet within FDUs as well as fault tolerance between
them (using TSUs) in WP5 plus considerations didicg power management in FDUs and TSUs;
also the granularity of the fault tolerance substure (i.e. FDU/TSU to core ratio) should be
considered more carefully.”

We have paid special attention to the increasirigesoor rates in future VLSIs and propose Double
Execution of TERAFLUX threads and control flow chig in our enhanced fault-detection
architecture to detect soft errors in the corestaedD-FDUs (see Section 2 and Section 4). For the
power management we propose to share responsibitisgtween the D-FDU, which is responsible for
dynamic voltage and frequency scaling and ensuhiageliability within its cluster, and the D-TSU,

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 8 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

which has knowledge about thread execution. Wetaitjet dynamic voltage and frequency scaling
in project year 3.

Furthermore, “Partner MSFT will focus on other psuf the system which are not CPU, such as I/0,
peripheral devices etc and examine how to deteorefrom these sources and how we can recover
from them. Extend the work to include SW and HWepton (not HW only): It looks like that
recover from fault which are external to the coraynrequire a new SW/HW interfaces. Partner
MSFT will extend its work to examine these aspetthe problem and come out with a holistic
approach that aims to allow a full recovery frormas regardless their origin.”

Similar to D-FDU to D-FDU monitoring that is perfoed with the same method like D-FDU-core
monitoring; we extended the monitoring technique/@ devices by the following approach. We
assume that I/O controllers are situated at thedfjthe chip, attached to the inter-node NoChEac
I/O controller is monitored by an associated D-Flikg¢ a normal core. However, the 1/O controller
core monitors all the attached I/O devices and sésdchealth state on the heartbeat messages to the
D-FDU.

Moreover, MSFT performed additional work on the iBt@gration into TERAFLUX, in particular the
OS level of fault detection and thread level scliaguo D-TSUs.

1.1 Document structure

In Section 2 we refine the high level fault detewtiarchitecture introduced in D5.1. We further
introduce two new fault detection mechanisms andeasy recovery technique, based on the
TERAFLUX execution model. In Section 3 we dep#thniques to derive the best number of cores
per node. Section 4 covers inter-cluster fault cteim, fault detection in I/O devices and memory
controllers, and discusses grouping strategiesdbasemutual D-FDU monitoring to detect D-FDU
and cluster faults. Section 5 extends the Oper&irggem work of MSFT to detect and tolerate faults
on system level layer.

1.2 Relation to other deliverables

This Deliverable bears relation to
D5.2 extends the fault detection architecture ofID5
D5.2 is built upon the TERAFLUX architecture debed in D6.1.

The proposed fault detection and recovery techsigquieD5.2 are also shortly described in
D6.2.

Fault injection techniques are part of D7.3.

1.3 Activities referred by this deliverable
This deliverable refers to the research carriedroWP5 in project year 2.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 9 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Refined Fault Detection and Recovery Architecture

The TERAFLUX threaded dataflow architecture andceien model is described in the Deliverables
D6.1 and D6.2. It is designed to fully exploit theread-Level Parallelism (TLP) provided by future
parallel systems. Furthermore, it addresses stigffahy a hierarchical structured execution model.

This section enhances the TERAFLUX architecture tfault tolerant architecture [17], using our
extended Fault Detection Mechanisms and explottiegside-effect free semantic of the TERAFLUX
execution model.

2.1 Enhanced high level TERAFLUX architecture

In the following we describe the enhancements fdawdt tolerant architecture integrated into the
TERAFLUX architecture (shown in Figure 1), includithe newly introduced L-FDU and three
techniques to detect faults in such architectunaspely the Machine Check Architecture, Control
Flow Checking, and Double Execution of DF-Threddste that we will describe the TERAFLUX

architecture from our fault detection point of viefecusing on its fault detection and recovery
benefits.

Architectural template
$%8.
() *+, (+%. B)B48 +% >B) (?
1) *+,0+1%. 2%1 (+-%) %A4C+1B (4%1,90%
3) *+, 0+(41+55%1. 6(.6.46(7 +(48% +) %4C+1B +(862
(6,6%- "8&.6095 --1%.. 290%
)F+ o 3<

$%&'
@& =)=480+1% >=) /?
J /) %6/+1& +(41+55%1
) 6.416<34%- 81%9- 08%-35%1 (64
) 6.416<34%- 9354 %A4%046+((64
@) 9.4 %A%5 908% 6%19108&

/0121312 $%8&!
4566/07 @) +1% %A%5 908% 6%19108&
“18 9 + ") "1+0%..6(7 (64
E) +095 819%9- 08%-35%1 (64
) +095 9354 %4%046+((64

6731% ' 678 5%A%5 9108649%0431%

Deliverable numberD5.2

Deliverable nameDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 10 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

On core level, the basic elements of the TERAFLUWhaecture are single cores containing an x86-
64 pipeline (x86-64 ISA with dataflow extension§])lalong with a core-level cache hierarchy. Each
core includes special hardware extensions congisfitwo modules:

The Local Thread Scheduling Unit (L-TSU) is respblesfor scheduling threads on its
affiliated core and communicating with other L-TStighe node's D-TSU.

The Local Fault Detection Unit (L-FDU) is resporisifor the detection of faults and
reliability management within a core.

Beside the L-TSU and L-FDU, each core stores tha dha running thread in the Frame Memory
(FM) or the Owner Writable Memory (OWM). The FM thre OWM are filled with the thread's data
(denoted as thread frame) before execution. Pleatecthat pure dataflow threads (DF1A, DF1B) are
not allowed to read from other thread frames (in BMOWM). However, writes into disjoint
locations are permitted to support communicatiofwben threads in order to provide the inputs for
subsequent threads (c.f. Deliverable D7.1).

On node level, the Distributed Thread Schedulingt UB-TSU) coordinates the scheduling of the

threads to cores within a node and takes care tef-node communication with other D-TSUs.

Therefore, the D-TSU holds a table for bookkeepimgyscheduled continuations to the cores within
its node, the Thread-to-Core-List (TCL) (cf. Deligble D6.1 — Section 5.1.3). This table is crucial
for our thread-recovery mechanisms, since it suppbread restarts within a node. The Distributed
Fault Detection Unit (D-FDU) is responsible for fauetection, performance monitoring, and

reliability management on node-level (see Deliver&lb.1).

For the communication between nodes, the TERAFLU&hitecture defines an interconnection
network. We assume that the structure of this ndtve a 2D-mesh. All communication from one
node to another will be handled by the intercorinachetwork. Furthermore, we consider memory
controllers to access off-chip memory and 1/O-collers on node level. The controllers are
connected to the interconnection network as well.

A usual TERAFLUX program is partitioned in coargeiged dataflow threads (DF1A, DF1B, DF2,
or DF2 with Transactions). For the rest of thistisecwe only target DF1A and DF1B threads, which
fully obey the side-effect free execution rule.

The execution of a dataflow thread consists ofdlpkases. First, the preload phase loads data from
the FM or OWM and stores it into the core registéie second phase is the thread execution, where
the thread executes without any memory access.tfitee phase is the poststore phase, where the
results from the thread execution are written ®dbnsumer thread frames.

Beside the frame, each thread encloses an assigma&dol structure called continuation. The

continuation stores control information about theead, i.e. the pointer to the thread frame, the
program counter, and the synchronization count germof empty inputs). For a more detailed

description see Deliverables D6.1 and D6.2. A datathread will be scheduled for execution if and

only if all inputs have been written to its threaftame and therefore its synchronization count is
zero.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 11 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The already introduced Fault Detection Units (FDbis)core and node level are the central hardware
support units for our comprehensive fault detectipproach. The Distributed FDU (D-FDU) is an
observer-controller unit operating on node leved.sfich, a D-FDU autonomously queries and gathers
the health states of all cores within its node dterunreliable local interconnect and the NoC. The
D-FDU is supported by the L-FDUs with each nodel®ciIn addition, D-FDUs monitor each other in
order to detect faults of other D-FDUs in other emdl'he D-FDU analyses the gathered information
and provides the D-TSU with information about ttedes of the whole node and other D-FDUs.

The L-FDU is a small hardware unit implemented anhecore to support fault detection by the D-
FDU by extracting information from the Machine CkeArchitecture (MCA), the Performance
Counters, and the Control Flow Checker.

Basically, the L-FDU has two tasks:

Reading out the fault detection registers of thenitooed core, i.e. results of the Machine
Check Architecture, the Performance Counters, ®Cbntrol Flow Checker.

Periodic communication with the D-FDU by sendingiiieeat messages of the core.

Concerning intra-node fault detection, the D-FDUedes core and link failures and informs the D-
TSU about the faulty components, while the D-TSkksponsible for thread recovery and restart.

The internal behaviour of the D-FDU is adapted fram autonomic computing approach, which
organizes the operation principle into the four smmutive steps: Monitoring, Analysing, Planning,
and Executing (MAPE) (see Deliverable D5.1 and Wial. [16]). The MAPE cycle operates on a
set of managed elements, comprising intra-nodee¢cand D-TSU) and inter-node elements (other D-
FDUSs) in other nodes D-FDUs detect faults and gregly maintain the operability of the node they
monitor, for example by dynamically performing dtoand voltage scaling while monitoring the
cores' error rates, temperatures, and utilizatiorthis context proactive means the prediction of a
core's health state based on monitored informatimhtaking action before the core gets damaged.

The intra-node monitoring of cores, D-TSU, and DtFi3 separated in two categories: time and
event-driven.

Time-driven messages are heartbeat messages thatéra set of core health information. The D-
FDU expects a heartbeat message of a core inarcérhe interval. If no heartbeat messages arrive
at the D-FDU within the expected interval, the assted core will be suspected as faulty. A
permanent fault of a core can be expected wheriptaufaults are detected in a short period of time.
As a consequence, the D-FDU considers the corerapletely broken and informs the D-TSU. The
D-TSU itself is monitored by the D-FDU with the sanechniques as a regular core. Thus, D-TSU
faults can be detected as well. The D-FDU commuescavith the D-TSU via command messages,
i.e. notify, request, and response messages. Th8Wrequests the D-FDU to change the frequency
of a core or to reduce the frequency in the casevofvorkload, while the D-FDU reports the D-TSU
on thermal and error conditions. In case of arriniitent or permanent fault, the D-TSU temporarily
or permanently stops scheduling any threads tbrbleen core.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 12 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Event-driven messages are alert messages in caseeofaults. These messages are triggered by the
L-FDU and notify the affiliated D-FDU within the de.

Recent microprocessors are equipped with an aotbrsd subsystem called Machine Check
Architecture (MCA) that is able to detect and correertain faults. For instance for the AMD K10
processor family, the MCA can detect faults in da¢a and instruction cache, the bus unit, the load-
store unit, the northbridge, and the reorder bafféar more details see Deliverable 5.1).

We exploit this state-of-the-art fault detectiorchiique to explicitly safeguard memories and
communication channels in the TERAFLUX architectufdnis incorporates explicitly the main
memory, Frame Memories, Owner Writable Memorieg] @bint-to-point interconnections. Since
frequent occurrences of errors detected by the M&@&#Abe an indicator for intermittent or permanent
faults, or a permanent breakdown of the whole dhe L-FDUs transmit this information within its
periodic heartbeat messages to the D-FDU. Basdhlisnthe D-FDU can make predictions about the
current reliability state of the core.

2.2 Core-level Fault Detection Mechanisms

Beside the Machine Check Architecture, we incorfmitavo additional techniques to detect faults
within the core; the cheaper Control Flow Checkat tne more costly Double Execution.

2.2.1 Control Flow Checker

According to the TERAFLUX thread definitions in delrable D6.1, all thread types except for DFla
can contain internal control flow caused by jummrich or loop instructions. Fault injection studies
[9, 14] show that a high amount of errors occuriimg computer system are control flow errors, i.e.
errors which cause timing or logical divergencanrfrine proper control flow. Control flow errors are
mainly caused by single event upsets (SEUs) amgles@vent transients (SETSs) either in the memory
or in processor-internal components modifying ¢hg. instruction opcode or the program counter
value during execution. We introduce a lightweigihgchanism to detect control flow errors during
runtime. Compared to Double Execution (as descrilmedSection 2.2.2), which detects faulty
behaviour after the execution of threads, the obritow checking technique can speed up fault
detection and permits lower detection latenciedrimisient and permanent errors affecting the obntr
flow, while having small overhead in execution time

The general concept of such a checking mechanigm verify that the runtime control flow of a
thread corresponds to its expected behaviour. Asfagas on errors caused by transient, non-
reproducible faults, an on-line error detection hatsm is the only feasible solution to detect such
control flow errors. Typical design parameters fbis kind of detection mechanism are fault
coverage, detection latency, overhead concernindp lmoemory and execution time, and the
monitoring hardware complexity [11].

Techniques for a detection of control flow erroencbe implemented in hardware or software.
Accordingly, these approaches either introduce dditianal hardware block, like a watchdog
processor performing reliability checks during rom& or they add supplementary code on software-
level to perform monitoring operations. Howeverttbalternatives have benefits and drawbacks as
well: While hardware-based approaches usually frevtigh complexity for the integration into a

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 13 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

system, the advantage is a good average perforntuecéo less overhead. Moreover, most of these
techniques do not require changes in the execuytptication. Software-based approaches on the
other side are easy to integrate, but cause signifioverhead concerning memory usage and
execution time. Also, it is needed to add redundaftrmation to the application source code. A
solution for this dilemma can behgbrid detection technique, combining benefits of bothdhare
and software-based approaches.

The error detection mechanism proposed here isll@sa new approach of checking both the timing
behavior and the logical control flow of threadsidg run-time. This combination promises a much
better fault coverage compared to a stand-alonpdeahor logical check mechanism. Our approach
is a hybrid hardware-software technique, whichdzlli consists of two steps:

an off-line phase, in which the safety-critical applicatiorsjdit, analysed, and hardened with
additional check points in the program code, and

a run-time phase, in which a connected hardware check uaittseto the inserted check
points during program execution.

Similar to other control flow checking approach&s4] our technique is based upon partitioning the
program code into basic blocks [1]. There is ndrition like a jump, branch, or call within a basi
block, which could change the control flow, excepssibly for the last instruction. Moreover, no
instruction in the basic block can be the destimatf a jump, branch or call, except potentiallg th
first one.

To provide a high level of clarity, we separate description of our technique into two parts: Hyst

we explain the instrumentation and checking meamnonly for timing errors occurring in the
control flow. Secondly, the additional part focugion the detection of logical control flow erross i
presented.

2.2.1.1Temporal Control Flow Monitoring

After splitting the code into fine-grained basiod#s, we add check points at the beginning of each
basic block containing its maximum execution tirME{) in clock cycles or milliseconds. From a
technical point of view, such a checkpoint constgt®ne or more instructions providing a specific
value symbolizing the upper bound of a block's aken time to the hardware check unit (e.g. by
writing to a defined register). Since these integptanstructions extend the execution time, a tgnin
analysis of an application has to take the addedlchoints into account. Therefore, it is necestary
temporarily add "empty" check points to enable ez timing analysis of the overall execution time
including these instructions. In the following stéhe result of the analysis will be integratedhia
check points. Figure 2 shows some details on tiEgumentation procedure: Empty checkpoints are
added to the basic blocB&, BB andBB,, and then each MET is calculated and inserted.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 14 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

BB;j
N AN AN J
' YT '
MET: MET; MET«

CHECKPOINT CHECKPOINT CHECKPOINT
- | MET; MET; BB; MET«

6731% ' 9.60 <5+0B. C648+34 6(.413/%(49468%EIB48 08%0B2+6(4. 9(- C648 0+/25%4%5& ,655%-
08%0B2+6(4.

The result of the off-line phase is the applicatode, in which each basic block is instrumenteith wi
its off-line analysed MET value. To use this infation for error detection, we integrate a specific
hardware check unit connected to the processos. difeck unit reads the MET values from the check
points during runtime and is able to detect anreroois timing behaviour as follows: As soon as the
program execution reaches a checkpoint, the processisfers the MET value to the hardware check
unit, which writes it to a definedCheckpoint Value Register (CPVRyhis CPVR value is
decremented by the check unit at each followingcgseor cycle. When the next checkpoint is
reached, this MET value is written to the CPVR.sTmechanism makes sure that the CPVR wiill
never obtain the value 0, if the program is colyeekecuted. Whenever the control flow leaves a
basic block within the previously calculated MEfe ffollowing checkpoint is reached and the CPVR
IS updated by a (usually) higher value. Therefare,can assume a timing error, if the CPVR reaches
the value 0. In this case, a basic block requiredentycles than the timing analysis had computed
off-line.

This technique of temporal control flow monitoriogn be easily enhanced to support also a detection
of timing errors in DF1a threads, which do not eimicontrol flow instructions. Thus, a DF1la thread
is similar to a basic block and we can insert thst €heckpoint right in front of the first instrien of

that thread. Moreover, we integrate a checkpoitficeibefore or immediately after the thread's last
instruction. By this, we can detect timing erronslagously to the other thread types.

2.2.1.2Logical Control Flow Monitoring

Beside the check of the correct timing behaviatis essential to detect an erroneous logical obntr
flow with low detection latency, i.e. within a feprocessor cycles. For this purpose, we can easily
extend the included mechanism for temporal corfto@é monitoring, consisting of off-line software
instrumentation and runtime checking. By this, e provide both temporal and logical control flow
checking, having little additional overhead.

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 15 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

In this section, we cover also cases not strid@dlsited to the Data-Flow execution model as ouiline
most of the other deliverables. In particular, vewar the general case that may be useful for the
legacy or system threads (L-Threads, S-Threadsfased in D7.1, D6.1), i.e., Non-DF Threads.

In general, checking a logically correct sequerssaimes that single elements can be identifiech If a
application's code is split into basic blocks, thaiiccession during execution is analysable. We
annotate each basic block with a unique ident{fil®) which is added to the checkpoint containing

the MET value. Moreover, we enhance the functioypaf the hardware check unit to be capable of
monitoring the correct sequence of basic blocksdmtecting logical control flow errors, too.

It is required to enable a fast and easy checkdutntime causing little overhead. In order taséat
these demands, we develop a technique to explipitbdict successors: IDs can be arbitrarily
assigned to basic blocks. Along with each ID, weresthe pre-calculated successor ID (also called
predicted successpior a list of two possible successor IDs of thasib block. So, the hardware
checker compares during the runtime phase, whetherctually executed basic block is an allowed
successor. To give a better understanding of oproagh, we regard each possible variation of the
control flow and describe the instrumentation pesgrin detail:

f/ CHECKPOINT) CHECKPOINT f/ CHECKPOINT)
BBID — a b BBIN c
Successors —» b c

6731% ' %D3%(4695 <9.60 <5+0B.

In the sequentialcase, the last instruction of a basic block ighagia jump nor a branch
instruction. That means the next executed basickh definitely the following block in the

program code. As depicted in Figure 3, we add i &neckpoint the ID of the basic block
itself and the ID of its follower.

/Jm‘

'CHECKPOINT CHECKPOINT
BBID — a ees X

Successors —+ “ “

6731% ' 9.60 <5+0B. C648 9 =3/2 6(.413046+(

In case of an unconditional (direggimp instruction at the end of a basic block, thererily
one allowed successor. Figure 4 shows how the gisztlsuccessor @B has to be updated
accordingly.

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 16 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

.7 - N S
. N
. A«
e
BB ID a b BBis1 ves X
Successrs + (G BJ) —

6731% #' 9.60 <5+0B. C648 9 <19(08

If a basic block ends with lranchinstruction, there are two possible successorkislat the
control flow, depending if the branch conditiortrige or false. As we cannot distinguish off-
line which path will be taken during execution, a&d both possibilities to the checkpoint.
So, basic blociBB in Figure 5 contains the IDs of both basic bloB&.; andBB., in a list

of successors. The instrumentation in caselobpinstruction at the end of a basic block is
done in the same way.

Call Return
‘CHECKPOINT ‘CHECKPOINT CHECKPOINT
BBID — BBi+1
Successors » {_x Y L ... J return

6731% ' 9.60 <5+0B. C648 0955 9(- 196431(

The handling ofcalls and returns is more difficult, as a function is usually callém
different positions within an application. Insideetfunction code it is unknown, where the
function was called and which will be the targettod return. In order to know which basic
block follows the last basic block in a functione Wwave to temporarily store the position of
the function call. This information can be useddagrediction of the function return. Figure 6
shows the instrumentation of calls and returnghis exampleBB.., is a function, which is
called fromBB; and potentially from other basic blocks. First, add the ID oBB., as the
only allowed successor in the checkpoinB&. Moreover, we append the basic block which
should be executed after the function's returnhii; exampleéBB,.;). Within the function, it is
now sufficient just to signal the return, because ¢aved value can be used for a prediction.
This instrumentation mechanism also works propierynested function calls, if we introduce
a stack memory to save multiple predictions forrétarn IDs.

In case ofindirect jumps a successor is hard to determine at compile tamet depends on
the register values during execution. However ndgect jumps rarely occur in our context,
we currently neglect this issue.

So, our instrumentation mechanism allows a handlinrgvery common variation of the control flow,
while the memory overhead caused by storing pakaticcessors is obviously limited. Neglecting
indirect jumps, the branching factor in the conffolv of an application is not higher than two. éls

for calls and returns it is sufficient to add tweeessive IDs inside a checkpoint.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal

SW and HW Protection
File name: TERAFLUX-D52-v5.docx

Page 17 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The hardware check unit, which becomes active as ae a checkpoint is detected during runtime, is
enhanced to interpret the instrumented values.chieek unit has to compare the current ID with the
predicted successor(s). Furthermore, it must sheectirrent prediction values for the checking
progress when the application reaches the nextkpbet. According to the control flow, different
compare operations have to be performed:

In case of asequentialcontrol flow or a (directjump, a basic block has only one possible
successor. So, the check unit makes sure thablbaving ID is equal to the predicted one.

If a branch or loop occurs, a basic block has two possible succesdergending on the
branch condition. Therefore, the check unit tefsthe following basic block corresponds to
the first or second prediction.

A function call has one allowed successor, similar to a sequartidtol flow. As described
before, the checkpoint also contains the ID of ltasic block which is executed after the
return from the function. So, the check unit hasdoertain that the following basic block is
the one inside the function. Moreover, it pusheslihsic block ID for the return on a stack
memory in order to be used for a compare operddiin.

In case of aeturn from a function, the check unit will take (and 1m) the stack's top entry,
in order to compare it to the following basic bldEk

For the prediction we have to provide memory farigg at most two successive ID values and a
stack memory for function calls. The stack sizeahe{s on the degree of function nesting, which is
usually determined by the processor architecture.

2.2.2 Double Execution

For our Double Execution approach, we duplicate &®&fhd DF1b during runtime. Therefore, we
follow the definitions given by Rotenberg [12] aadll the thread that is duplicatéshding thread
and its duplicatérailing thread

Since the execution of DF1la and DF1b threads ss-afifct free and writes are only assigned once,
we must only duplicate theontinuationof a thread. This relaxes the complexity for thenmory
management as well as the management of the trdiinead.

Within the Thread-to-Core List (TCL) in each D-TS&)|, continuations scheduled to a core within the
node are redundantly stored. Our approach thenduplicates the redundantly stored continuation in
the D-FDU and schedules it to another core withsmmriode. This means we can exploit data locality
by sharing the thread frame between the leadinglantrailing thread.

The D-FDU within a node is finally used as the cangpor of the result sets of both of the threadls. |
the fault free case, the writes of the leadingatrare forwarded by the D-TSU, i.e. written to all
consumer thread frames. Otherwise, the D-TSU trgytiee thread recovery mechanism.

In more detail, double execution works as follows:

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 18 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. Athread is duplicated at that moment its synclration count became zero, i.e. a thread has
received all its inputs and is ready to executee TH SU, which is in charge of scheduling
the threads to its cores, then proceeds with eixacof the leading thread as usual.

2. To indicate the thread duplication, the L-TSU sendtfication messages to the D-TSU and
the D-FDU. The D-TSU is now responsible for copythg redundantly stored continuation
of the thread and distributing it to the same arther core within the node, depending on the
type of fault to detect. To detect transient fawoitdy, the D-TSU can schedule the thread to
the same core. To detect permanent and intermitieits as well, the D-TSU schedules the
thread on a core within the same node, but on ferdift core by passing the copied
continuation to the L-TSU of the core.

3. When both threads have finished execution, the UFBdirects the writes of the threads to
the D-TSU and the D-FDU. The D-TSU buffers the asituntil the D-FDU, which is in
charge of comparing the results, gives a positeeliback.

4. In the case of a fault-free execution of both tHsgathe responsible D-FDU deletes the
continuation in its TCL and forwards the writes tbe leading thread to the appropriate
consumer threads. In the case of a fault it has-texecute the thread.

2.3 Fault Recovery of TERAFLUX threads

The chief advantage of the TERAFLUX execution moftel fault recovery is the side-effect free
thread execution. This inherent functional semamtedudes execution checkpoints between pure
dataflow threads (DFla and DF1b threads). In otlmds, a DF1la or DF1b thread can be restarted,
as long as no writes to consumer threads have faken. This is always the case for DF1a and DF1b
threads, since the output frame becomes visiblg after finishing the whole execution of the
producer thread. Compared to a state-of-the-artymare systems, these checkpoints promise a
smaller memory footprint and simpler semantic for@e rollback-recovery mechanisms.

Figure 7 shows how the recovery mechanism will wodkbte that we implicitly assume double
execution to detect faults. When the D-FDU deteasia fault within a monitored core (between time
T2 and T3), it provides the corresponding corettigether with the fault information to its affilexd
D-TSU. Subsequently, the D-FDU tries to determheedause of the detected fault. Depending on the
kind of the fault the D-TSU can either restart tinead (at T4, after the rollback between time i@ a
T4) on the same core or re-allocate all threadbhefaulty core to reliable cores. In the givenecab

a transient fault, usually the D-TSU will try to-eecute a thread again on the original core (&t T4
The re-execution can easily be done by overwritimg continuation field at the L-TSU with the
redundant continuation field hold by the D-TSU. Th&SU will then schedule the thread again. In
our approach restarting threads is assured by S, which only forwards writes to the
consuming thread frames if and only if the D-FDgnsils the fault free execution of the producing
thread.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 19 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Result set 1"

Result set r

Write
Continuation

Wnte
Continuation

Corg, Thread

Result set o’

D-FDU

DTS

6731% ' 81%9- 1% %E%0346+(%E9/25%

If the D-FDU assumes a permanent or intermittenitfdue to many re-execution attempts or
information from the L-FDU, it must exclude the ltgucore from further workload. This is done by
providing the D-TSU with the information, which eois faulty. Consequently, the D-TSU re-
schedules all threads of the faulty core on anotbkable core. In order to do that, the D-TSU
traverses its Thread-to-Core-List and searchesdmesponding entries scheduled on the faulty core.
If the D-TSU finds an entry that is associated wtité faulty core, it re-assigns the entry to aat#é
core.

Subsequently, the L-TSU has to allocate a threanhdrfor the newly assigned thread and fill the
frame with the data from the D-TSU.

We will pursue the described fault recovery mectianin project year 3. In particular, we will
incorporate DF2-Threads with Thread Local Storagk@F2-Threads with Transactions.

Deliverable numbeiD5.2

Deliverable nameDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 20 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 Clustering of Cores within a 2D Mesh-based NoC

The high level Teraflux architecture (see DelivéeabD6.1, D6.2, and Section 2) distinguishes a
node-external NoC from a node-internal local imargect. Within this section, we assume that the
“node internal interconnect” is not fixed by hardaeabut part of a uniform mesh-based NoC. We
introduce the notion of a Node Manager that coregres D-FDU and an associated D-TSU within a
“node” or “cluster”. We distinguish a hardware- amngdoftware-based Node Manager implementation
and evaluate the trade-off of a Node Manager'sicsfaitacement within a mesh-based NoC. In

coherence with DoW Task 5.2 description, we cadl thlustering of cores” around a Node Manager

(respectively D-FDU) to build up a “node”. Secti8r8 describes a re-clustering of cores to D-FDUs
in cases of detection of faulty components (intensxtions and cores) based on a software
implementation of the Node Manager.

We assume that one D-FDU will not be able to maraibcores of a 1000 core chip. Therefore, we
propose to have a certain number of D-FDUs coojpgratith each other in order to distribute the
fault detection workload. This results in a comneation pattern between the D-FDUs and raises the
guestion how the monitored cores are grouped ticdbglusters. A logical cluster may only be seen
by its affiliated D-FDU and D-TSU and can be baitid re-built dynamically.

We paid particular attention on the parameter fieled¢or clustering. One of these crucial paranseter
is the size of a cluster. The cluster size dessrimy many cores are included in the cluster. We
focused on this parameter, because the clustehaze direct impact on the chip performance and
the accuracy of our fault detection approach.

Additionally we focused on the traffic generatedHgartbeat messages. We assume that the D-FDU
is designed to be used on a many-core processbrawitesh-based shared interconnection network.
For this purpose and having the clustering in minid, necessary to investigate the impact of thétf
detection messages on the processor's intercooneatitwork. Different cluster sizes also have
different implications for the interconnection netk and especially the router connected to a D-FDU
is a bottleneck. In order to prevent bottlenecksthia interconnect heartbeat messages must be
coordinated. This raises the need to

1. balance the load of heavily utilized interconnesid

2. a sending pattern ensuring that at most one hedrtipessage arrives at this router per
network cycle. This is necessary because we expsigtady monitoring stream from all cores
sending heartbeat messages to the D-FDU. This &y tongestions if more than one
message arrives at the D-FDU in a network cycle.

This section addresses the impact of fault detectionitoring overhead on a 2D-mesh network and
its implication on the application communicationeWhvestigated XY and Staircase Routing and
propose a combination of both algorithms to redielays and jitters of application messaging. We
also implemented beartbeat message sending patteacth core has to obey. After we investigated
the size parameter for clustering, we describepopposed clustering techniques.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 21 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.1 Network Considerations

In our Deliverables D5.1and D5.2 we have propogsetirtiques that are able to establish a reliable
system out of unreliable components by simultanigogisploiting the architectural opportunities of
future many-core processors. Our D-FDU focuses hen rhonitoring of cores and analyses the
information gathered from them. If a faulty coraditected the D-FDU plans and executes a reaction
in order to recover from this fault. In order targéhe needed information from the monitored cores,
the D-FDU awaits heartbeat messages periodicatly fsem the monitored cores. This results in a
communication pattern of fault detection messagesitds the D-FDU, which is normally located in
the centre of the monitored cores (see Figure 8 Figdre 9). This centralized communication
overhead influences the communication capabiliesctly, as the heartbeat messages may interfere
with other messages within the communication ndtw&ince the D-FDU expects the heartbeat
message of a particular core at a certain poititria we can exploit the deterministic semantic &f X
Routing [3, 4] and its derivative Staircase Roufitg].

1000
o

8000
7000
6000
5000
4000
3000
2000
1000

Number of Messages

rows

6731% ' %4C+1B 5+9- -6.416<346+(6(-30%- <&<86891%..97%. 3.6(7 1+346(7

3.1.1 Baseline Network on Chip

A possible instance of the TERAFLUX Architecturenif@ate (cf. D6.2 and Figure 1) can use a "NoC
switch" as "local network". Therefore in the follmg discussion, we assumed such scenario in order
to investigate clustering and monitoring for NoQr®aseline Network on Chip (NoC) encompasses
a standard 2D-mesh topology with point-to-point-llised wormhole routers. Each router in the
communication network has five output ports ane fivput ports (which are north, east, south, west,
and local). The local port is connected to a prsiogselement. The remaining ports are connected to
its neighbouring router, if any. Each input pors feae input buffer, where a router stores incoming
flits.

8000

7000

6000
8000 - 5000
7000 |- 4000
E000 | 2000
5000 [2000
4000 | 1000
3000 |-
2000 |
1000 [

Number of Messages

IowWs

6731% F' %4C+1B 5+9- -6.416<346+(6(-30%- 4€98949%6..97%. 3.6(7 496109.% 1+346(7

Deliverable numbeiD5.2

Deliverable nameDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 22 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

On flit level one packet is divided into severdsfcomposed of one header flit, several body #itg

one tail flit. The number of body flits depends ihve packet size. We assume that the size of a
heartbeat message may vary due to the amount aimation that is transmitted from a monitored
core. A pure heartbeat message without any furttmee state information, however, may be
composed only of a header flit enclosingt#l alive bit. If this bit is set the router will not expest

tail flit for this message and immediately relettmeoutput port for subsequent messages.

3.1.2 Routing Considerations

Since the routers in Network on Chip architectuezuire a concise use of the spare chip size, we
decided to consider “lean” routing algorithms. Imst manner, we determined XY Routing and
Staircase Routing as appropriate routing algorithsitice they are well known lightweight routing
algorithms. Additionally, these algorithms have #uvantage that they are deterministic in case of a
fault free interconnection network. However, theitations of these static algorithms are faulty
elements in the interconnection network. In thdofeing, we describe these algorithms and their
limitations in more detail. We close this subsattwith an explanation on how to solve blocking
problems induced by faulty elements.

3.1.2.1The Staircase Routing Algorithm

As a derivate of the XY Routing, the Staircase Rauis a dimension ordered routing algorithm with
minimal path routing. The major difference betwdmath algorithms lies in the way they route a
packet through an interconnection network. The Xdufihg algorithm routes a packet in the x-
dimension until the packet reaches the destinatmumn and proceed the routing in y-dimension.
The Staircase Routing algorithm alternates the dgiom after each hop the packet takes. The
alternating routing results in a staircase-shap&ihg path which is depicted in Figure 10 (to
FDU). If the packet reaches its destination rowcolumn, the routing will then proceed without
alternating the dimension (to FDU). We will show in Section 3.2.4 that a donation of both
algorithms has a relaxing effect on the networKitra

6731% ' 496109.% +346(7" 6/%(.6+(+1-%1%346(7 957+1648/! C8608 954%1(94%. 64. 1+346(-6/%
9,4%1 %908 8+2 "90B%4. ,1+/ 9(- 91% 419(484- 4+ 48%

Simulations running with the static XY Routing aBthircase Routing showed that it is not trivial to
determine better static routing algorithm. Figurar®l Figure 9 show the results for a simulation of

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 23 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

heartbeat messages using XY Routing and Staircaséing for 100,000 cycles. The XY Routing
strategy results in a clear division of the grotdigares into four quadrants and represents the firs
significant effect of the dimension ordered routi@m the central axes of the group, the load on the
connections steadily increases, while the loadhef‘e€nclosed surfaces" between these axes increases
minimally. A problem that may arise in the diffetéoads is the increased risk of congestion atehes
central axes. Application based messages will baydd or jittered more often, when they try to
traverse the network over these links. However,sagss not traversing these links may not suffer
from delays and jitter at all.

The Staircase Routing is used to reduce the deldytlze jitter induced by the heartbeat messages
using XY Routing. In Figure 9 we show the same $atmon for heartbeat messages, using Staircase
Routing. The network load is, compared to XY Rogitimore widely distributed. It can be seen that
more different paths to the D-FDU are used fortthasmission. One can easily see the diagonal axes
relieve the central axes of the group and the ngessaneet only in the middle of the group (near the
D-FDU). In contrast to XY Routing the Staircasetiog in Figure 9 shows that more messages may
suffer from delays and jitter. However, in mostasathe effective delay will be smaller.

3.1.3 Prioritization of Packet Switching

To keep the deterministic characteristic for falgtection messages even for a fully occupied ndtwor
with application messages, we propose a prioritsetlaarbitration for packet switching. The high

priority class is dedicated for fault detection sages, which are preferably processed by the suter
The low priority class is used for application nagges and is stalled whenever a fault detection
messages is available. More elaborated prioritmatchniques, however, are already discussed in [2
6] and will not be further discussed in this work.

3.1.4 Case of Faulty Elements

We assume an interconnection network element dty fathen the element suffers from permanent
or intermittent faults. Although we do not spedilig consider the faultiness of routers and network
interfaces, we do this without any loss of gengralince a faulty component can be modelled byt a se
of faulty links. To detect a faulty link we follothe approach of Grecu et al. [7] using self-chegkin
mechanisms. As this is an already widely researeled and the self-checking mechanisms are well
known, we do not discuss those mechanisms further.

In cases of faults within the interconnection netwe static routing algorithms XY and Staircase
Routing fail to solve this situation adequatelygufie 11 illustrates the blocking situation for peisk
sent from Core and . sends a heartbeat message to the D-FDU, whikends an application
message to . Depending on the router implementation the bldcgeackets could either create a
deadlock or they will be dropped by the holdingtenwafter a certain period of time.

Dropping the packet releases one slot in the ibptfer of the router and other messages in this slo
may proceed. , however, may await a response fromregarding its dropped packet. This could
lead to a thread execution deadlock (if no timgnals a timeout). Also, since the D-FDU awaits
heartbeat messages in order to feed the interayssnphase, the D-FDU may mispredict that a core

is broken. This could also count for every coi takes the same path (or parts of it) to send the
heartbeat messages.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 24 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6731% ' (6(4%10+((%046+((%4C+1B C648 ,F36A&(%o

To overcome this issue we decided to extend th&éngualgorithms XY and Staircase to tolerate
faulty elements along a packet's path by takingadternative route to the destination element.
However, choosing an alternative route to the dastn may violate the turn restrictions of static
routing algorithms. For that reason, we have exdrttie routing algorithms by the turn-model west-
first. This model restricts less turns than XY &tdircase do, while supporting deadlock freedom [4]
In a fault free interconnection network, the extenss never triggered and the routing algorithms
behave just as static routing algorithms. In thsecaf faulty elements along a packet’'s path the
extension will be triggered. Figure 12 illustratisss behaviour for the two examples mentioned

above. Both messages were originally blocked, liektensions of the static routing algorithms take
now another route for the packet destination.

6731% '"9146955& 9-9246A% 1+346(7 %E4%4Q610%% +346(7

The path length of a packet may increase as atre$uhe way around the blocking element.
However, there are situations where no additiorldydis created.

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 25 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2 Heartbeat Message Impact

From the D-FDU point of view receiving heartbeatssages in every network cycle is the ideal
situation for the maximum fault detection accuraggfortunately at the expense of the application
message throughput of the communication network. a8&ume optimal fault detection accuracy
when we transmit a maximum of information from tbere to the D-FDU. But a fully utilized
network leads to message congestion particulaféctafg the application messages in terms of delay
and jitter. Therefore, it is necessary to inveséghe message overhead the D-FDU generates in orde
to balance fault detection accuracy and its impadhe application communication.

In this subsection we describe how the heartbeasages influences the application messages and
how we ensure that the heartbeat messages doteidere with each other.

3.2.1 Density of Heartbeat Messages

Unfortunately, it is not enough just to maximizes tfault detection accuracy, which would result
either in massively sent heartbeat messages ordisproportional high number of D-FDUs on the
chip. The number of D-FDUs on a chip is a tradefd#fween fault detection accuracy and area
overhead by preventing cores to be used for agjgicaxecution. We have determined that a D-FDU
amount occupying of the available cores (which is the area overh&agowerful enough to
run D-FDUs on a 1000 core processor. Of coursellsn@/erhead is desirable, but comes with the
before mentioned reduced fault detection accur@ibys accuracy suffers from bigger cluster sizes,
since we are using the heartbeat timing pattern¢twiegulates the amount of heartbeat messages
send from a core during a certain interval of tiée explain the problem with the fault detection
accuracy and the timing pattern in the followingysection in more detail.

An area overhead of means each group of monitored cores is composatmit 24 cores. The
upper bound for the heartbeat message density viesoh trade-off between the processor's
performance capabilities and the accuracy of tferimation received by the D-FDU. A high upper
bound means good results regarding the processrmpeance, but reduces also the accuracy of fault
detection due to long waiting intervals. The wajtintervals in turn have a direct influence on the
interconnection network, meaning a shorter waifimgrval for cores induces a higher load on the
network. We calculate the message overhead andagiestimation how this overhead leads to delays
and jitter for application traffic.

9<5% ' 1%9 +A%18%9- ,+1 -6,,%1%(4 053.4%1 .6:%.

Cluster size| 3x3 5x5 X7 9x9 11x11 13x13
Area 12.5% 4.2% 2.1% 1.3% 0.8% 0.6%
overhead

3.2.2 Heartbeat Timing Pattern

The D-FDU independently monitors an entire groupcaifes, detects faulty elements, and initiates
actions for problem treatment. In a large NoC s&vBrFDUs monitor each other in order to detect

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 26 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

malfunctioning D-FDUs or failed nodes. One of tley knetrics for the D-FDU is the latency of the
heartbeat messages. Since all heartbeat messagenaperiodically and routed with highest priorit
the arrival time of a certain message is detertiinighis determinism is used by the D-FDU to
check the accessibility of a core (including theecitself and the interconnect integrity). The lo$s
determinism is equivalent to the loss of the D-FDakcuracy and therefore the minimal latency has
to be ensured.

To avoid congestion induced by heartbeat messatgrdeiaving each other, we developed a heartbeat
message timing pattern, each monitored core habdg. In order to establish this timing pattern the

D-FDU sends configuration messages to its affilateres. Such a configuration message contains
the precise message sending timing interval foaréiqular core. To ensure that these timing values
are not corrupted by delayed message delivery,nekide the configuration messages in the high

priority class of the arbitration for packet swittip

1 | I 1 |
. Sending Waiting Sending
interval interval interval
I] E :
e 1?‘1 n‘ﬁ ——-
“‘ 2 — —
I I I
I 1 I
o=l !
=% # 6 DU 4 414 orx = - i
| !
#24|
- ' *‘19 #10F—-- l: 7/] >
““ Timc

6731% ' %..97% A46/6(7 2944%1(4+ OA+6- 6(4N6(BBIA914<%94 [%..97%.

Combined with the high priority of a message, fhadtern ensures, that no heartbeat message will
interleave with another one as long as there arfauty elements. As an example Figure 13 shows
the timing pattern for a 5x5 sized group of cofEse core in the centre of the group is the D-FDU,
where all heartbeat messages are sent to. The each core defines when a core is allowed td sen
heartbeat message. In this example, the senditgrpas based on the Manhattan distance between
the cores and the D-FDU. First, the cores with aihdtan distance of 4 (such as) are
allowed to send their heartbeat messages conselgutishe cores with the next lower distance follow
afterward. On each step from one Manhattan distamtiee next lower one, it is necessary to apply a
waiting phase until the next core sends its mesdagesrwise, the last message of a core with the
Manhattan distance will interleave with the first message of a corghwthe Manhattan distance

. The first core in that group (#1) will send itsxh heartbeat, when the last core (#24) has sent
its Heartbeat. Following this procedure, we canrgni@e a minimal latency for each heartbeat
message and therefore the necessary determinigimefaccurate D-FDU fault detection technique.

As stated before, an increasing cluster size dsesethe fault detection accuracy, because the
increasing number of cores per cluster also endattge messages timing interval. That means in turn,

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 27 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

that the cores have a longer waiting phase urey #re allowed to send a heartbeat message, which
results in a

1. larger amount of collected information by the L-FIBU
2. (if the L-FDU collects the information just befditee heartbeat message is send) that some of
the information may be already overwritten by tbeednternal mechanisms.
In any case we assume that the accuracy of thedatdction suffers from long waiting intervals.rFo
that reason, it is important to determine not ahly minimal but also the maximal size of a cluster.

3.2.3 Evaluation Methodology

In the following subsection, we describe the enwviment of our investigation, the implication of
heartbeat messages, and how these implicationglated to routing decisions. The subsection closes
with a method for calculating the overhead of cemrtbeat message based fault detection.

We defined the Accumulated Average Delay () as the key metric calculating the message
overhead induced by the heartbeat messages. The dedImines the delay cycles an application
message suffers from while traversing through #tevark. We split the calculation into three steps:

1. Determining the bandwidth costs for heartbeat ngEssfor each router interconnect

2. Determining the delay for application messages éeduby the heartbeat messages for each
possible communication path

3. Accumulating each delay value for a certain patigtle and calculating the arithmetic mean.

is the function returning the bandwidth coststf@ transmission (Step 1) from nodéo the
next node along the path by following the routing rules. Costs are risinghen more heartbeat
messages are sent over a certain interconnecterHgure 8). The values of vary between 0
and 1, while 0 means no heartbeat message will {messnterconnection and 1 means in every
network cycle a heartbeat message will pass therciomnection (100% utilization). Since the
heartbeat messages are prioritized the bandwidsts cwill be equal to the expected delay an
application message will encounter on this intengmtion.

The function W sums up the delays expected for a given commuarcatthp (Step 2):

w

with as the current node on pathSince we assume that all application messagewated via XY
Routing, all paths were generated by using thisimgustrategy. The function ADD sums up all
accumulated delays for paths with lendthnd divides the sum by the number of the posgibths
(Step 3):

ADD — W
p P

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 28 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

with as the set of paths with the lengthXY and Staircase Routing use shortest paths esdkpt

a circular formation of the messagescan simply be calculated by determining the nundfdrops
from the source node to the destination node , or Manhattan Distance). Calculating the AAD
for all possible paths in a network hosting a D-FRbd its affiliated cores shows the induced
overhead and the influence on the delays of apjpitanessages.

3.2.4 Application Message Delay Calculation

We applied our metrics to XY Routing and StaircRseiting. The bandwidth cost function

for heartbeat messages were separately calculatetyfand Staircase Routing, resulting in two cost
sets. We used both cost sets and applied the function to each set. Figure 14 and Figure 15
show the results for different sized groups of somdth respect to the calculated AAD value. The
values are grouped by the number of monitored cdrbe bars describe the delay an application
message suffers from along its communication petk. light grey bars of both Figure 14 and Figure
15 shows the average minimal delay that a packettdhva@xpect for a given group size. Figure 15
represents the combination of XY Routing (for apgifion messages) and Staircase routing (for
heartbeat messages) and shows that the averagaunirdelay decreases with the increasing number
of cores within a group. The reason for this desirgadelay is the broader traffic distribution gzdn
from using the Staircase Routing for heartbeat agess The dark grey bar in the middle of each
group represents the overall average delays a pdwee to expect. This value remains almost
constant, because the timing pattern is alwaystaddp the group sizes, respectively. Using Stagca
Routing for heartbeat messages also lowers theagwamaximum delay for application messages.
Comparing the average maximum delay of both algorst we can show that the delays induced by
Staircase Routing grow less strongly with the grsiges than XY Routing would. Especially for
larger groups of monitored cores, the combinatibrb@th routing algorithms results in smaller
average maximal delays.

AL

11x11 13x13

Delay

0

o

Group Size
6731% ' 3.6(7 1+346(7 957+1648/,+1 <+48%914<%94 9(- 922560946+(/%..97%.

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 29 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

6731% # 3.6(7 496109.% +346(7 ,+1 8%914xM69.97%. 0+/<6(%- C648 1+346(7 ,+1 922560946+ (
1%..97%.

3.2.5 Adequate Cluster Sizes

As a result of the density of heartbeat messages $ection 3.2.1) and the calculated delays for
application messages (see Section 3.2.4) the mirchaater size is constrained by the maximum

performance degradation we are willing to pay foslf tolerance. We determined that a degradation
of is a sensible price, since fault tolerance conmsfor free. Expressed in numbers, this

means we propose a minimum size of 5x5 cores pstezl

The maximum number of cores depends on the routiggrithm used to route the heartbeat
messages. In the case of XY Routing, we see inr€&ityd that the maximum delay crosses the 1 cycle
mark already at a cluster size of 7x7. In ordekdep the delay to a minimum, we propose to the set
the maximum cluster size to 5x5 while using XY Rogtfor both message types — heartbeat
messages and application messages. This might resalmore complex re-clustering, because the
clustering algorithm cannot assign several coresrieighbouring cluster that is already composed of
the maximum number of cores. For a worst case scerthis could lead to a system wide re-
clustering.

If the heartbeat messages are routed by StaircasénB, we can see that we have a little more
freedom of choice, which cluster size is sensibblee average delay is even with a cluster size of
13x13 slightly higher compared to the 5x5 versibX¥ Routing. This gives the clustering algorithm
more flexibility to assign cores to a neighbouriigster by costs of slightly higher average delays.
Nevertheless, we propose also for the combinedngw cluster size of 5x5, since we keep the
number of cycles — for both; additional averagexgébr application messages and waiting phases for
cores to send their heartbeat messages — low.

3.3 Clustering Mechanisms

As stated in the introduction of this section wepmse to arrange the cores into (logical) cludiars
fault tolerance purposes. A cluster is composed nfimber of cores monitored by the D-FDU. The
D-FDU itself is also part of each cluster and serbeside the fault detection as the host for the

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 30 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

clustering algorithm, which is responsible for ¢neg, altering, and breaking up clusters. In this
Section, we assume that the D-FDU is implementesbftware and executed on a core of a cluster.

For the clustering we use the configuration messagmt from the D-FDU to its affiliated cores.
These configuration messages are already usednfigere the heartbeat message sending pattern
mechanism. This configuration message containseaifsp command flag and several command
parameters that update the cores heartbeat behainothe case of building a cluster the D-FDU
sends a configuration message with the followingteot to each cluster affiliated core:

Instruction command (which similar to the configioa command of the heartbeat message
sending pattern)

The number of cycles representing the waiting uratker
The address to the monitoring D-FDU-core

Defined cluster borders are static in the starpbipse. From the location of the D-FDU and the size
of its affiliated cluster we can derive all coreB-#&DU has to configure.

In the following subsection we describe the mecdrasi we use to configure and establish static
clustering used in the start-up phase of the psmreship. In the second part of this subsection we
describe the dynamic re-clustering approach, whiehdeveloped to react on faulty elements during
runtime.

3.3.1 Initial FDU Placement and Entering into Servi ce

We propose the derived the functionality for thitiahD-FDU placement from the BIOS of IBM PC
compatible computers. Those BIOSs provide, amohgrsf basic CPU configuration mechanisms
such as clock settings, memory timings, and safetiings (e.g. temperature shutdown). We further
propose to extend the BIOS mechanism to the effiattit configures one specific core of the chip as
a Root D-FDU-Core. This core loads its code from a specific memogation and starts execution.
This code spawns additional D-FDUs at specific tioces on the whole chip. In order to do that the
Root D-FDU-Core sends initialization messages ® dlesignated cores and these cores load the
standard D-FDU-Code from the memory.

As an alternative approach, we can assume thdD4#RBU initialization messages are sent to each
node’s D-TSU, which then spawns a D-FDU-Threadhendesignated core.

This approach is very similar to bootstrapping teghes in today’s personal computer. The Root
FDU-Core is temporally in charge of all subseque+®DUs in order to spawn and configure them.

3.3.2 Initial Clustering

As stated in the introduction of this section werdid assume any faulty components on the chip
during the system’s start-up phase. However, ifdtage faulty elements on the chip the re-clusgerin
algorithm will solve bottlenecks for heartbeat naegss.

At the beginning of clustering, we logically decamsp the entire chip in equal parts, which forms the
actual clusters. The cluster size of 5x5 is derifrech the previously conducted investigation. Since

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 31 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

the detailed TERAFLUX architecture is still evolginwe assume a 32x32 mesh-based arrangement
of the cores. This arrangement combined with atetusize of 5x5 leads to clusters with irregular
size. Some clusters will be slightly bigger tharb Skollowing our previously mentioned assumption
we have then

25 clusters with the size of 5x5,
six cluster with the size of 7x5, and
one of the size 7x7.

Our investigations showed that a cluster size af iBxalso feasible. If the layout of the die change
(e.g. if the chip has a rectangular topology andansquared), we can easily adapt this clustenng t
gain a feasible cluster arrangement.

3.3.3 Re-Clustering of Cores

In the presence of faulty cores or network elem#érgsoptimal placement of the D-FDU is no longer
a trivial task. The centre of a cluster might netthe ideal position for a D-FDU anymore. For this
case we propose to determine the position of tHeDD-with a task-placement algorithm originally

developed to place communicating tasks on a Netwamk Chip. The Connectivity-Sensitive

algorithm [13] features a low complexity and trigs minimize the communication overhead by
keeping intensely communicating tasks close to edoér.

3.3.3.1Fault Model for Faulty NoC-Elements

We assume the following faults on component legelefvery component in a cluster and one fault in
a single component at a time if not stated otherwisnce nodes, routers, and D-FDUs are connected
by a regular 2D mesh-based interconnection netwitid, fault model includes the possibility of
multiple core faults within a cluster and differehisters as well as multiple D-FDU faults leadiag

a graceful degradation of a cluster and thus reatitadt detection capabilities.

Furthermore, we assume faults in the following cormgnts:

Link : Complete permanent faults and permanent bridtangs across multiple wires, furthermore
transient faults.

Core: Complete permanent faults and (within cores) temdaults.
FDUs: Complete permanent (D- and L-) FDU faults and tiemtdaults.
TSU: Complete (D- and L-)TSU faults and transient faul

Router: Complete permanent Faults.

3.3.3.2Connectivity-Sensitive Algorithm

The original Connectivity-Sensitive algorithm =[£B8]13] maps an arbitrary task-graph to a core-
graph. A task-graph depicts single componentseettecuting application as nodes which are linked
by their communication paths; a core-graph dessribe underlying interconnection topology by

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 32 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

representing each core as a node and the interciimypdinks as the edges of the graph. Both graph
types can have weighted edges to accurately mdffiefesht communication intensities of tasks and
differing bandwidth in the interconnection network.

Rate Task3 (E,V)(by number of connections and combined weight)

Rate Core£(E,V)(by number of working connections)

Choose taskwith highest rating

Place task on corec with highest rating

Put neighbouty of t in placement lisP as a tupléty, c)
for each elemert’, ¢')in P do
if t' is not placed yehen
Placet' onc,e,close toc'
Put neighbours df into P as a tupléty, Gew

end if

end for

6731% ' +((%046A64& %(.646A% 57+1648/

In the first step of the algorithm each core i®daby the out-degree of working connections to
working cores. If a connection or core is permalyefalilty it cannot be used and thus does not count
towards the rating. Similarly the tasks are ratgdhe number of connections to other tasks and the
combined weight of these connections. Initially afehe tasks with the highest rating is chosen and
placed on one of the cores with the highest ratiiger that all neighbours () of the placed task are
put into the placement list which contains tuples of all the tasks that $tille to be placed and the
location of the neighbour that put them into thet. INow each element of this placement lisis
examined. The elemefit, c’) is removed from the list and if it still has to pkaced, the algorithm
places it on a core as close"#tas possible. In the ideal case this would be ghteiur of*’, but if

that is not possible, as all neighbours are alreaklgn or failed, the distance is increased. Aftés
placed each neighbour task ofs also put into the placement listas a tuple of the task and the
currently used coregy, . When is empty the algorithm terminates.

To illustrate the algorithm, Figure 17depicts aaraple mapping. The algorithm selects task “A” as a
first placement candidate and places it on thereesdre. As a result of this, tasks “B” through “D”
are added to the placement list. After that “Bpliaced near to “A” and causes “E” to be added ¢o th
placement list. Now “C” and “D” are also placed néA”, but they are not able to expand the

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 33 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

placement list, as all tasks are already processedthe list. “E” is finally positioned near “Birhich
inserted “E” to the list.

The algorithm can handle permanently faulty elesmentthe chip if a fault tolerant routing strategy
used. Failed links and links to failed routers mo¢ counted in the summation of the out-degree and
failed cores are removed from the core-graph. Thas and routers however can still be used. In
case of the situation that a whole area is disottedegfrom the rest of the cluster, the affectech ase
not used for placement.

6731% ' (%EQ/25% +, 9 /9226(7 21+-30%- <& 48Y%046A648 Y%(.646A% 957+1648/

For the special case of D-FDU placement the algorican be used as it is. The task-graph is
generated as a star topology with the D-FDU indéetre (see Figure 18) and each monitored core
directly connected to it with a link of equal weigihe number of monitored cores is determined by
the remaining working and reachable cores in theeatinode. These nodes are determined with the
clustering method for chips without faults. If kdomes apparent that a node is no longer viable for
computations because the number of working andhedde monitored cores is very low, a whole
cluster is deemed lost. In that case it is posdiblbreak up the logical cluster and assign working
parts of it to the neighbouring clusters.

6731% ' E9/25% 49.B 71928 >5%,4? /9226(7 +{6UB5 053.4%1 C648 ,9354& 6(4%10+((%046+(%5%/%(4.

Figure 18 depicts an example mapping of a taskigcammposed of monitored cores (white cycles)
connected to the D-FDU (grey cycle). In this exanpve omit the remaining monitored cores, for

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 34 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

reasons of clarity. The resulting mapping is shamnthe right side, where the D-FDU is the grey
square and the monitored cores are representediites sguares with a cycle in them. As mentioned
before the D-FDU was placed to a core with beshfjtout-degree. Faulty elements are represented
as missing links between the monitored cores @ bross placed in a square as faulty router.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 35 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 Inter-Cluster Fault Detection Mechanisms, Groupin ¢
Strategies, and Device Controller Monitoring

As stated in Section 3, it is supposed that onk &meurs in one component at a time. Note, thiat th
includes the possibility of multiple faults in ohat not in different components.

Hence, we must not only incorporate faults on inivde level but also on inter-node level. This
means beside core and link faults within a nodé;0Ms and links between nodes can suffer from
transient, intermittent, and permanent faults, idwerefore, we have already described in Deliverabl
D5.1 that D-FDUs monitor not oniptra-core elements (D-FDU monitors it affiliated cores) ligo
inter-core elements such as other D-FDUs in other nodesHigeee 20). This inter-node monitoring
is motivated by two observations.

1. In the case of a D-FDU fault all results and eveggserated by the components within the
respective node must be considered incorrect, she@ode’s D-FDU can no longer ensure
reliability and fault detection.

2. The information about the reliability state of adeaand its affiliated cores must be distributed
to other D-FDUs to ensure a reliable inter-node agament.

6731% F' 08%/9460 AB%C +(48% 4+ /+(64+16(7 8% .%(-. 8%914<%94 /%..97%. 4+ 9
[+(64+16(7

Cases in which the D-FDU may be faulty can leaddnous problems such as committing results
from a corrupted thread execution or erroneoudbgllang a core as faulty even though the core is
working correct. In order to prevent this behaviowe incorporate — in contrast to the
relationship of the intra-node monitoring —a& - inter-node monitoring relationship.

4.1 Inter-Cluster Monitoring Mechanisms

We consider a D-FDU as software, running on a @eddt core. This dedicated core can be either a
specialized embedded controller or one of the gdqemrpose cores within a node, which is not
considered for dataflow thread execution. This me#mt the inter-node monitoring exploits
techniques already described for intra-node manigan Deliverable D5.1.

In particular, each D-FDU core has also attached-BBU sending both periodic heartbeat messages
and event messages to the observing D-FDUs in othées. Furthermore, every observed D-FDU
exploits existing state-of-the-art Machine Checlchitecture techniques and uses the control flow

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 36 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

checker, described in Section 2.2.1. The code ngnhmin each D-FDU core must be therefore
instrumented for the control flow checker, too.

Additionally to the monitoring of the observed D-Bxore's state, the monitored D-FDU tells the
monitoring D-FDUs the state of all monitored intrede elements of the respective node. The state of
a single component within a node, e.g. a core,axgd between nodes is defined a§ *.

Monitored D-FDUs send the states of the node’s amapts in form of a vector + - . to the

observing D-FDU.

4.2 Grouping Strategies for Inter-Cluster Monitorin g

We exploit different strategies for grouping themitoring relations between D-FDUs. The amount of
D-FDUs another D-FDU is able to monitor is resaitby two things. First, the additional overhead
for gathering the information, which is basicallyetinduced network overhead and second the
overhead in memory and execution time to analysegithered information. The network overhead
explicitly incorporates the distance between thEMJs.

The easiest solution for D-FDU grouping is thatreBeFDU monitors one neighbouring D-FDU and
each D-FDU is monitored by a neighbouring D-FDUisTRing grouping is depicted in Figure 20.

6731% ' 6(7 [+(64+16(7 +,

As an extension to the very naive grouping stratelygve, we propose a second technique. The
motivation of this approach is to minimize the phb#ity of false-positives. If one D-FDU monitors
another one, there are situations where we arabietto distinguish which D-FDU is actually faulty.
Additionally, as mentioned, a faulty D-FDU can aftf@ whole cluster of monitored cores, such as
shutting down cores, scaling down cores, etc.

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 37 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6731% ' (954%1(946A% 71+326(7 .4194%7&89A% 94 /6(6/3/ 4C+ +48%1 . /+(64+16(7
64

To tackle this problem, we propose to increase¢dandancy of the D-FDU monitoring. We propose
that at minimum two D-FDUs monitor each other. Emeount of D-FDU to D-FDU monitoring can
differ depending on the location of a D-FDU; in tt@ners of a 2D-mesh a D-FDU is monitored by
its direct neighbours and at the edges a D-FDUttha® other D-FDUs monitoring it. Hence, the D-
FDUs near the centre of the processor chip may hawveost four other D-FDUs monitoring them.
We will investigate both described variants, intjgafar incorporating the D-FDU’s MAPE cycle
execution time, in the TERAFLUX integration platfioin project year 3.

4.3 1/0 and Memory Device Controller Monitoring

I/O and Memory Controllers are located at the brdd the NoC and connected with an external
interconnect to peripheral devices or memory unigspectively (see Figure 23). Both, /O and
memory controllers are enhanced by an L-FDU. THeDIJ monitors the devices attached to and
transfers collected state information to the D-FB§Jsending heartbeat messages. These messages
will be sent by the L-FDU similarly to the D-FDU-@monitoring.

State information is mainly composed of availapitiita regarding devices such as printer, keyboard,
etc. If a device is not available (or not pluggaylany more than this information is sent to the D-
FDU, which propagates this information to the OS.

We propose two different implementation variantsoth a device controller. The first option is to
implement the controller as a dedicated hardwaiteomnchip (see Figure 22). This unit needs to have

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 38 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

an L-FDU attached similar to the other cores witthia node, since the state information is sent by
heartbeat messages.

6731% ' (6/25%/%(4946+(A9169(4 ,+1 9 %AG0%/+1& +(41+55%1 /+(64+1%- <& 9

The second implementation variant is the usageaifra extended with additional capabilities. This
core has a direct connection to the device it tiached to. Figure 23 illustrate this variant. AlDI
requests are sent to this core, which then trassldhe requests according to the device
communication.

6731% ' 08%/9460 A6%C +(9 -%A60% /+(64€Q687667 9(+,, 0862 ; 0+(41+55%1 9(- 9(+,, 0862
1%/+1& 0+(41+55%1

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 39 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimmu(ICT-2009.8.1)

5

In this section we combine our system level resmananagement approach introduced in Deliverable
D5.1 with fault-tolerance techniques.

5.1 The general structure of the system

In order to manage a large and complex Teraflutegyswe believe that we must impose a hierarchy
among the cores. Based on the structure of Figaredage 10, the system’s physical memory can be
structured as follows:

/A1 /A1

0=3C71 <CO01#
2/BC2

<CO01#

6731% ' %(%195 .4130431% +, 48% /%/+1&

The system is divided into nodes. All cores withinode share the same resources and may maintain
hardware coherence within its node. The memoryaocheode can be divided into local memory that
cannot be accessed by other nodes and global mentoch can be accessed (but does not require
hardware coherence) by all other cores in the systerom an application point of view, the
aggregation of all shared pools of memory createwear virtual address space.

In order to guarantee an efficient resource managenwe assume that the system is logically
divided into two parts: the service part (nodeg tha a “full operating system”) such as a Linux or
Windows kernel, and the nodes, which provide supijporthe Teraflux execution model. Every node
is controlled by a microkernel, which is resporsifir scheduling and local resource allocation.

For a better understanding the system works as#sl|
1. The Compiler generates DF-threads out of sequerddg (e.g., C)

2. The execution always starts on the service nodssgénerate DF-threads and send them to
the different nodes.

Deliverable numberD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mechaisms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 40 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3. All DF-threads distributed to the nodes are kepa ifsafe memory” queue and scheduled to
the node’s cores by the D-TSU.

4. After finishing the execution and assuming no fadturred, the results are written to the
node’s “safe memory” and the D-TSU writes the rssdilack to global memory. After
successful update of the global memory, the thigaeimoved from the node’s queue.

6731% #' %/+1& /92 +, 48% +2%1946(7 .&.4%/

5. If a fault is detected by the D-FDU during the #ua&s execution, the thread is killed (no side
effect for DF1 threads) and rescheduled on anatbwer within the node.

6. If a fault occurs while reading or writing datarimcor to the main memory, we assume a
retransmission mechanism to guarantee the complétib that point we assume that the
operation must complete. We may weaken this assomjpt the future.)

7. Threads are generated dynamically. The operatiatesyon the service nodes generate the
dataflow threads and schedule them on the nodesdapoint the algorithm is centralized,
but the next step we will incorporate a distributedsion).

Health information gathering and load balancinthatOS level (in the service node):

» Cores send health information (e.g., speed, termyeranumber tasks completers,
etc.) to the D-FDU.

« The D-FDU sends the information to the service-node

* The service node takes the health conditions ohtltkes into account in order to load
balance new dataflow threads.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 41 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We believe that the hierarchical execution modstdbed above is a key for managing large and
complex systems in the future.

This approach is well suited for handling soft esr@s well. Here, we made an important
classification of the problems into few categoriepending on the HW support we can get. At
that point we are focusing on the simplest modaiciwvis based on the following points:

— All memory structures and buses are shielded byr erorrecting codes or at least
parity bits.

— The underlying dataflow execution model providessde-effect free execution.
— We assume that if the “update global memory” phmesgns, it will terminate.

Since we assume that all memory structures aresgiemt by error detection and correction
mechanism, we mainly will next focus on faults imetlogic. This can be done by space
redundancy or time redundancy.

— Space redundancy executes the code on 2 cores (aded for recovery but only 2
for detection), compare the observable outputsraise a flag if found not to match

— Time redundancy: execute the code twice on the samgeand compare results.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 42 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[1] A. Aho, R. Sethi, and J. UllmarCompilers: Principles, Techniques, and Toofsldison-
Wesley, Harlow, UK, 1986.

[2] P. Bhojwani, R. Mahapatra, Eun Jung Kim, andChen. A heuristic for peak power
constrained design of network-on-chip (noc) basedtimode systems. IVLSI Design, 2005. 18th
International Conference gpages 124 — 129, jan. 2005.

[3] William Dally and Brian TowlesPrinciples and Practices of Interconnection Netveork
Morgan Kaufmann Publishers Inc., San Francisco, (T34, 2003.

[4] Jose Duato, Sudhakar Yalamanchili, and Ni Llonénterconnection Networks: An
Engineering ApproachiMorgan Kaufmann Publishers Inc., San Franciség,ISA, 2002.

[5] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, . Violante. Soft-Error Detection
Using Control Flow Assertions. IRroceedings of the 18th IEEE International Sympmosan Defect
and Fault-Tolerance in VLSI Systems (DFpages 581-588, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[6] Kees Goossens, John Dielissen, Jef van MeegberBeter Poplavko, Andrei Bulescu,
Edwin Rijpkema, Erwin Waterlander, and Paul WielaGearanteeing the quality of services in
networks on chippages 61-82. Kluwer Academic Publishers, Hinghd, USA, 2003.

[7] C. Grecu, A.Ilvanov, R. Saleh, E.S. Sogomonyamd Partha Pratim Pande. On-line fault
detection and location for noc interconnectsOlmLine Testing Symposium, 2006. IOLTS 2006. 12th
IEEE International page 6 pp., 2006.

[8] N. Oh, P.P. Shirvani, and E.J. McCluskey. Cohtiow Checking by Software Signhatures.
IEEE Transactions on Reliabilityp1(1):111-122, 2002.

[9] J. Ohlsson, M. Rimen, and U. Gunneflo. A Stufythe Effects of Transient Fault Injection
into a 32-bit RISC with Built-in Watchdog. IRroceedings of th@2™ International Symposium on
Fault-Tolerant Computing (FTCSpages 316—-325, Los Alamitos, CA, USA, 1992. IEE&mputer
Society.

[10] Antoni Portero, Zhibin Yu, and Roberto Gior@i-Star (T*): An x86-64 ISA Extension to
support thread execution on many cores. pages/ip280. HIPEAC ACACES-2011, July 2011.

[11] R.G. Ragel and S. Parameswaran. A Hybrid HardwSoftware Technique to Improve
Reliability in Embedded Processor&dCM Transactions on Embedded Computing Systems
10(3):36:1-36:16, 2011.

[12] Eric Rotenberg. AR-SMT: A Microarchitectural pproach to Fault Tolerance in
Microprocessordnternational Symposium on Fault-Tolerant Computi@d@4-91, 1999.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 43 of 44

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[13] S. Schlingmann, A. Garbade, S. Weis, and Tg&der. Connectivity-sensitive algorithm for
task placement on a many-core considering faulgyores. InParallel, Distributed and Network-
Based Processing (PDP), 2011 19th Euromicro Intdomal Conference gnpages 417 —422, feb.
2011.

[14] M.A. Schuette and J.P. Shen. Processor Corfilolv Monitoring Using Signatured
Instruction Stream3EEE Transactions on Compute6(3):264-276, 1987.

[15] Sebastian Weis, Arne Garbade, Faruk Bagci,Tdreb Ungerer. Fault detection and reliability
techniques for future many-cores. 6th internatiGahmer school on advanced computer architecture
and compilation for high-performance and embeddgstesns (ACACES 2010), pages 175-178,
2010.

[16] Sebastian Weis, Arne Garbade, Sebastian $ghann, and Theo Ungerer. Towards Fault
Detection Units as an Autonomous Fault Detectiopr@pch for Future Many-Cores. ARCS 2011
Workshop Proceedingpages 20-23. VDE Verlag, February 2011.

[17] Sebastian Weis, Arne Garbade, Julian Wolf,nBard Fechner, Avi Mendelson, Roberto
Giorgi, and Theo Ungerer. A Fault Detection and d¥ecy Architecture for a Teradevice Dataflow
System. InData-Flow Execution Models for Extreme Scale Comgu{DFM) 2011 Workshop
ProceedingslEEE Computer Society, 2011.

Deliverable numbeiD5.2

Deliverable namebDevelopment of Inter-Cluster Fault Detection Mecharsms and Core-Internal
SW and HW Protection

File name: TERAFLUX-D52-v5.docx Page 44 of 44

