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Moore’s Law – historical note

� Two of the many versions of Moore’s Law

� Number of transistors on a die doubles every 18 
months (the original form)

� Measured performance of computer systems doubles 
every two years (one of many variations)

� Implications:

� Enables adding value to the user

� Enables innovation

� Enables new applications and markets

�Allows to maintain prices and 
revenue 

Prof. Avi Mendelson - FASPP123 6/10/2012

What’s had been changed?

� Process stop scale “ideally”; we can still get the growth in 
transistor budget but with cost of power luck of frequency 
scale. 

� Small sizes of transistors implies (1) higher rate of 
soft-errors increases and (2) process variation in respect to 
power and performance

� In order to meet the expectation of constant growth of 
“benefit to the user”, number of cores on die increases.

� It is expected that in the near future we could put tens or 
even hundreds of cores on the same die (Silicon)

� How many cores SW can use?

It is mostly depends on 
software/OS/algorithms/developing environment/etc., 
rather then on HW capabilities.

Prof. Avi Mendelson - FASPP12
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What is TERAFLUX about?

Architecture + Programmability+ Reliability
of Future (single chip) Many-cores
(targeting 1000+ cores)

6/10/2012Prof. Avi Mendelson - FASPP12
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Teraflux in a nutshell
● An EU research project (FET).

● Assumes 1000’s processors on die

● Connected through a NoC

● No system-wide support for HW coherency

● HW components can become faulty

● Transient errors

● Stuck at faults

● SW needs to make sure it works transparency to potential faults

● Resource allocation and scheduling should be distribution

Disclaimer: The project examine different potential solutions, this presentation 
presents my approach 
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APPLICATIONSAPPLICATIONS

• 1000 Billion- or 1 TERA-

device computing 

platforms pose new 

challenges:
– (at least) 

programmability, 

complexity of design, 

reliability

• TERAFLUX context:
– High performance 

computing and 

applications (not 

necessarily embedded)

• TERAFLUX scope:
– Exploiting a less 

exploited path 

(DATAFLOW) at each 

level of abstraction

Working Hypothesis

TERA LUX.EUF
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Basic SW assumptions
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Fundamental approach (General): 

General Purpose
� Target to run any program 

in a reasonable 
performance and power 
consumption

� Mostly assume to be 
latency sensitive

� Use “reverse engineering” 
(e.g., branch prediction) to 
unveil the internal 
structure of the program

Special purpose

� Targeted specific class of 
applications

� Applications the don’t fit 
into this category may 
not run or run in a very 
inefficient way.

� Usually Use SW/HW 
co-design

� Can be an order of 
magnitude more efficient 
than general purpose 
architectures for specific 
class of applicationProf. Avi Mendelson - FASPP129 6/10/2012

Fundamental approach (Teraflux): 

� The system is dynamically partitioned 
between cores that can run General 
purpose applications and cores that can 
run “special purpose” accelerator code, 
A.K.A Teraflux cores/

� The code for the Teraflux cores is based 
on Special branch of the DataFlow
paradigm, called Task-Parallelism (similar 
to Actors)

� The Teraflux cores subsystem is built as 
SW/HW codesign

6/10/2012Prof. Avi Mendelson - FASPP1210
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Data-Flow is back

Prof. Avi Mendelson - FASPP1211

� Dataflow can extracts massive parallelism out of 
sequential code 

� HW only methods; e.g., OOO, are not sufficient. 
Parallelism needs to be exposed at all levels, such as 
compilers, algorithms, tools, etc.

� Dataflow languages are limited. Needs to apply DF 
techniques for procedural and shared memory based 
languages such as C, OpenMP and hybrid languages such 

as  Scala and Heterogeneous OpenMP (OpenMP+MPI)

� Use of modern HW techniques to overcome  performance 
power and reliability issues

6/10/2012

Back to the future

Data Flow model

� DataFlow was defined by Prof. Dennis as “A Scheme of 
Computation in which an activity is initiated by presence of 
the data it needs to perform its function”

� Data flow preserves “pure execution”; i.e., no side effects

� Task parallelism reserve (1 & 2) while doing it at the level of 
tasks (a collection of instructions)

� The code is generated automatically (in the future) from C, 
Java , OpenMP, etc. programming languages.

� The “pure execution code is achieved by a combination of 
run-time scheduling an/or  transactional memory (out of the 
scope of this discussion.

� Task can be suspended at any point (for any reason) and be 
re-executed if needed

6/10/2012
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Basic HW assumptions

6/10/2012Prof. Avi Mendelson - FASPP1213

Future Scenarios

G. Hendry, K. Bergman, “Hybrid 
On-chip Data Networks”, 
HotChips-22, Stanford, CA –
Aug. 2010

== 3D stacking, 8nm, 3D transistors, Graphene

Pawloski, May 2011, Exascale Seminar, GhentProf. Avi Mendelson - FASPP1214

Fab D1X (OR), 42 (AZ) starting the 14nm node in 2013

6/10/2012
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How to fit 1000 cores on die?
The unstructured option The Structured (hierarchical) option

Platform Peripherals 

Compute 

Basic Architecture
� Clustered architecture

� Same ISA to all processors

� HW based coherency within the cluster and no HW based 
coherency between clusters. 

� Clusters can be symmetric or asymmetric; 

1. Service-cluster(s): GP core that runs GP OS such as Linux. 

2. Auxiliary clusters: e.g., single issue, power efficient computational cores

� NoC: Supports 

1. Topological connections of resources (cores, memories, accelerators, etc.) within 
a node (cluster) and among nodes (clusters)

2. The inner cluster NoC may be different than the external NoC

� Memory hierarchy 

1. Globally addressable physical space to guarantee on-chip global accessibility, 
possibly with variable latencies (NUMA)

2. Physical memory may be partitioned into local memory vs. global memory
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Put it all together

6/10/201217 Prof. Avi Mendelson - FASPP12

System Overview 
Target System
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Target System
OS Requirements 
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CPU

CPU

Linu
x

L4
L4 (uKernel)

Linux (Full OS)

• Manages jobs on uKernel (uK) 
cores
• Proxies uKs I/O requests
• Remote debug uKs/self
• Runs high level (system) FT

managing uK/self faults

• Each uK runs a Task (or Tasks)
• Tasks sent by full OS (FOS)
• Tasks are DF entities, no side-
effects
• Failed task simply restarted
• Runs low level FT, reporting to 
FOS

Single chip
Multi cores

Memory hierarchy 

� The Teraflux virtual address 
space is divided into equal 
disjoint “segments”
� A segment is controlled by a cluster

� Coherency is handled by HW within the 
cluster (sequential consistency)

� Physical memory may be 
partitioned into local 
memory vs. global memory

� The “physical memory” as 
was seen by the User (OS) is 
the collection of all Global 
Memory parts (Segments) 
connected to the NOC

� Between clusters no HW 
coherency

Prof. Avi Mendelson - FASPP12
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Private       Shared 

6/10/2012



20/06/2012

11

How it works

� Compiler generate DF code out of sequential code 

(e.g., C) or programing languages that support parallelism 

(e.g., OpenMP, Java, Scala )

� The execution always starts on the service cores that 

generate the Tasks (Tokens) and send them to the 

different clusters.

� All tasks sent to a cluster are kept in a “safe memory” 

queue and being scheduled to cores by the TSU

� After finishing the execution and assuming no fault 

happen, results are written to the task-memory and the 

TSU is reported it can write the results back to main 

memory. After successful update of the global memory, 

the Task is removed from the clustered queue.

How it works

� Threads can be generated dynamically. At that point we 

assume that new threads are generated at the service cluster 

and being distributed to the clusters again 

�next step we will distribute the algorithm

� Health information and load balance

� Cores sends health information (e.g., speed, temperature, number 

tasks completers, etc.) to the cluster-level

� The Cluster-level sends the information to the service-cluster

� The service cluster uses the health conditions of the cluster into 

account when decide where to create new Tasks.
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Task life
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A Task’sLife

�Task creation request

�TSUs handles & replies to the request

�C-TSU spawns a Thread on the L-TSU

�Thread execution
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Three Phases

�Pre-Load
Load Data from Frame Mem.

�Execute
Execution with no further Mem. Access

�Post-Store
Writes results to Frame Mem. 
and/or Main Mem.
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COTSon

Simulator

infrastructure

. . .

Simulator  

“illusion”

(SW should 

only assume

what seen at 

this level) X86-64 ISA 

cruncher-1

X86-64 ISA 

cruncher-2

X86-64 ISA 

cruncher-3

X86-64 ISA 

cruncher-N

LINUX +

TFX scheduler patch awareness

TSU
FDU

scheduling

TFX APPS
(e.g. 

GROMACS)

LEGACY APPS
(e.g. ORACLE 

DB)

(x86-64 ISA      &    NEW  Memory Model)

DF-threads L-/S-threads

Evaluating a MANY-CORE chip of the future 
(2020), i.e., 1000+ cores on a chip

6/10/2012Prof. Avi Mendelson - FASPP1225

Faults in large systems

Two types of faults

6/10/2012
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Hard/Permanent faults Soft/transient faults

If re-execute – the fault remains 
The same.

If re-execute – the 
system behaves 
correctly.

For large scale systems, one should assume  that the probably 
for a faulty part at any given time is significant. 

A reliable system with 1000s of processing elements 
should be built of non-reliable components

At Teraflux we decide to address faults, at all levels as 
“first-class citizens”.
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Reliability and Fault-Tolerant – high level
� We use a SW/HW co-design in order to address the very 

complicated issue

�At SW level we take advantage of the DF model that allows 

to re-execute a “task” w/o causing side effects.

�At HW level we build the system to detect faults, to avoid 

single point of failure and to dynamically reconfigure

� FT is implemented at all different levels of the hierarchy

�At the Global Level – the Linux OS manages the resource 

partition, global scheduling, load balance, migration, etc.

�At the NoC level, an adaptive algorithm is developed to 

manage failures of links 

�At cluster level we manage and report statistics on failure 

to upper level in order to balance the execution

�At core level we assume a detection mechanism to report 

when the core, or execution of the core is faulty

Management and Reliability Components

28

At each level of the Hierarchy we have 2 dedicated 
HW/SW units to help handling faults

� TSU – Task Scheduling Unit

� FDU  - Fault detection Unit

At Core Level. 

� L-TSU: HW scheduler of tasks (if MT at core level is 
supported

� L-FDU: Detect faults, indicates that re-execution is 
needed and sends Heartbeat (HB) Messages to the 
C-FDU

At the Cluster level

� C-TSU: Implement the match-logic, communication, 
schedule tasks  and maintain load balance

� C-FDU: Part of the distributed Fault Detection 
algorithm 
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Soft-Errors (Transient errors) - WIP

Prof. Avi Mendelson - FASPP1229
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Classification

� Detection and handling soft-errors can be relatively simple 
or extremely difficult depending on the assumptions and 
HW mechanisms we are introducing. At that level of the 
research we are focusing on the following assumptions:

� All memory structures and buses are shielded. 

� The DF mode of operations we described before allows to 
terminate an execution w/o any side effects 

� We assume that if the “update global memory” phase began, 
eventually it will be completed

� Base of these current assumptions (that most likely will be 
refined later on), at that point we are focusing on 
detection errors in the control logic so we can indicate 
that an error occur.

Prof. Avi Mendelson - FASPP1230
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Detection mechanism – re-execution

�Can be done via space redundancy of time redundancy

�Space redundancy: execute the code on 2 cores (3 are needed 

for recovery but only 2 for detection), compare the observable 

outputs and raise a flag if found not to match

�Time redundancy: execute the code twice on the same core and 

compare results. If dine smartly can cost only 4-10% 

performance hit.

�Need to take care on endless loops and few other corner 

cases

�Need to address the I\O, exceptions, etc.

Prof. Avi Mendelson - FASPP1231
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Future work

� Heterogeneous cores

� Same ISA

� Different ISA

� System on a chip

� Combination

� Multi-chips

� OS for heterogeneous systems

� Memory hierarchy

� Distributed I/O

� Distribute the system level algorithms.

32 Prof. Avi Mendelson - FASPP12
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Questions?
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