Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device

SEVENTH FRAMEWORK
PROGRAMME

Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Computing

D7.4 — Report on knowledge transfer and training

Due date of deliverable: 3December 2012
Actual Submission: 20December 2012

Start date of the project: Januafy 2010

Duration: 48 months

Lead contractor for the deliverable: UNISI

Revision See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU | Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiunti§ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Change Control

Version# | Author Organization | Change History

0.1 Marco Solinas UNISI Initial template

1.0 Marco Solinas UNISI UNISI parts

1.2 Marco Solinas UNISI Added contributions fromitpars

2.1 Roberto Giorgi UNISI Final revision

3.0 Marco Solinas UNISI Executive Summary and ldtrction
Release Approval

Name Role Date
Marco Solinas Originator 08.11.2012
Roberto Giorgi WP Leader 28.11.2012
Roberto Giorgi Coordinator 13.12.2012

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training

File name: TERAFLUX-D74-v10.doc

Page 1 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENT
GLOSSARY

EXECUTIVE SUMMARY

1 INTRODUCTION

1.1 RELATION TO OTHER DELIVERABLES
1.2 ACTIVITIES REFERRED BY THISDELIVERABLE
1.3 SUMMARY OF PREVIOUSWORK (FROMD7.1,D7.2AND D7.3)

2 NEW SIMULATION FEATURES

2.1 BRIEFOVERVIEW OF THETERAFLUX EVALUATION PLATFORM (ALL WP7PARTNERS)
2.2 T* INSTRUCTION ANDBUILT-IN SUPPORT IN THEC LANGUAGE (UNISI, HP)
2.2.1 Brief Introduction to COTSon’s Implementation of T*
2.3 NEW T* BENCHMARKS (UNISI)
2.3.1 Matrix Multiplier
2.3.2 Other Benchmarks
2.4 SINGLE NODE T* TESTS(UNISI)
2.4.1 T* Timing Model
25 MULTI-NODE T* TESTS(UNISI)
2.5.1 Framework design
2.5.2 Demonstration of multi-node capability of the nastributed scheduler
2.6 POWER ESTIMATION USINGMCPAT (UNISI)
2.6.1 Off-line vs. on-line Power estimation
2.7 EXeCUTION OFUSERLEVEL DDM oNCOTSoN (UCY)
2.8 INTEGRATING DDM TSUINTO COTSON (UCY)
2.9 GCCBACKEND AND OPENSTREAM EXPERIMENTS ONCOTSON (INRIA)
2.10 DOUBLE EXECUTION AND THREAD RESTART RECOVERY IN A SINGLE NODE (COTSON MODULES)
(UAU, HP)
2.10.1 FDU subsystem in COTSon
2.10.2 Double execution and Recovery Support
2.11 HIGH LEVEL FAULT INJECTIONTECHNIQUE (COTSON MoDULES) (UAU)
2.12 TRANSACTIONAL MEMORY SUPPORT INCOTSON (UNIMAN)
2.12.1 Functional Transaction Support
2.12.2 Adding timing support with COTSon

3 DEVELOPMENT AND SIMULATION ENVIRONMENT AND SUPPORTS

3.1 THE“TFX3"- TERAFLUX SIMULATION HOST
3.2 PIKE — AUTOMATIZING LARGE SIMULATIONS (UNISI)
3.2.1 Overall organization
3.2.2 Functions Exposed to the User
3.2.3 Current limits
3.2.4 Examples
3.3 THE ECLIPSEMODULE FORTFLUX (UCY)
3.3.1 The Content Assistant Plug-in
3.3.2 The Side Panel Plug-in
3.4 SUPPORT TO THEPARTNERS FORIMPLEMENTING COTSON EXTENSIONS(HP)

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 2 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.5 TUTORIAL SESSIONS ONOMPSSOPEN TO THEPARTNERS(BSC)
APPENDIX A

LIST OF FIGURES

L # $ #
o % "t I#
! &
| # ! ($# # # # 1 #
$ # yoo#) <)L #%
@+ #
#
) !
(" * !
#o1 ! #
- #
o $) # o
L # ## e
* % ! # *)
#
(#
(#
l#
" # # (
! i # $ # N
! Hi# $! B G2 0" .1 L#I" *
P
L#e $ #
L #" Smr $# 1 # oI
L#e $ *of) #

L $# o # #

Deliverable number: D7.4

Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 3 of 50

Project. TERAFLUX

- Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

Auxiliary Core

A core typically used to help the computation (arlger core than service
cores) also referred as “TERAFLUX core”

BSD

BroadSword Document — In this context, a file thahtains the SimNow
machine description for a given Virtual Machine

CDG

Codelet Graph

CLUSTER

Group of cores (synonymous of NODE)

Codelet

Set of instructions

COTSon

Software framework provided under the MIT licengeHi-Labs

DDM

Data-Driven Multithreading

DF-Thread

A TERAFLUX Data-Flow Thread

DF-Frame

the Frame memory associated to a Data-Flow thread

DVEFS

Dynamic Voltage and Frequency Scaling

DTA

Decoupled Threaded Architecture

DTS

Distributed Thread Scheduler

Emulator

Tool capable of reproducing the functional behgveynonymous in this
context of Instruction Set Simulator (ISS)

D-FDU

Distributed Fault Detection Unit

ISA

Instruction Set (Architecture)

ISE

Instruction Set Extension

L-Thread

Legacy Thread: a thread consisting of legacy code

L-FDU

Local Fault Detection Unit

L-TSU

Local Thread Scheduling Unit

MMS

Memory Model Support

NoC

Network on Chip

Non-DF-Thread

An L-Thread or S-Thread

NODE

Group of cores (synonymous of CLUSTER)

OWM

Owner Writeable Memory

0S

Operating System

Per-Node-Manager

A hardware unit including the DTS and the FDU

PK

Pico Kernel

Sharable-Memory

Memory that respects the FM, OWM, TM semantics ltd TERAFLUX
Memory Model

S-Thread

System Thread: a thread dealing with OS servicéor

StarSs

A programming model introduced by Barcelona Supapaing Center

Service Core

A core typically used for running the OS, or seegicor dedicated 1/O or
legacy code

Simulator

Emulator that includes timing information; synonymoin this context of
“Timing Simulator”

TAAL

TERAFLUX Architecture Abstraction Layer

TBM

TERAFLUX Baseline Machine

TLPS

Thread-Level-Parallelism Support

TLS

Thread Local Storage

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training

File name: TERAFLUX-D74-v10.doc

Page 4 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

™

Transactional Memory

TMS

Transactional Memory Support

TP

Threaded Procedure

Virtualizer

Synonymous with “Emulator”

VCPU

Virtual CPU or Virtual Core

Deliverable number: D7.4

Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 5 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdleet the list of contributors to the writing ofdldocument.

Marco Solinas, Alberto Scionti, Andrea Mondelli, HoNam, Antonio Portero, Stamatis Kavvadias,
Monica Bianchini, Roberto Giorgi
Universita di Siena

Arne Garbade, Sebastian Weis, Theo Ungerer
Universitaet Augsburg

Antoniu Pop, Feng Li, Albert Cohen
INRIA

Lefteris Eleftheriades, Natalie Masrujeh, George Méhael, Lambros Petrou, Andreas Diavastos,
Pedro Trancoso, Skevos Evripidou
University of Cyprus

Nacho Navarro, Rosa Badia, Mateo Valero
Barcelona Supercomputing Center

Paolo Faraboschi
Hewlett Packard Espafola

Behram Khan, Salman Khan, Mikel Lujan, lan Watson
The University of Manchester

2009-13 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published inyjtédr the TERAFLUX Consortium, on the www.teraflexs web site and can be
distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedhis tlocument. The authors and the
publishers make no expressed or implied warrantarof kind and assume no responsibilities for ermromissions. No liability is
assumed for incidental or consequential damagesrinection with or arising out of the use of thieimation contained in this document.
This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and mayydbe used or copied in
accordance with the terms of the License. The im#&tion in this document is a work in progress, tigideveloped by the members of
TERAFLUX Consortium ("TERAFLUX") and is provided finformational use only.

The technology disclosed herein may be protecteohigyor more patents, copyrights, trademarks aridide secrets owned by or licensed
to TERAFLUX Partners. The partners reserve all tdghith respect to such technology and related madde Any use of the protected
technology and related material beyond the termthefLicense without the prior written consent &RAFLUX is prohibited. This
document contains material that is confidential EGRAFLUX and its members and licensors. Until padtion, the user should assume that
all materials contained and/or referenced in timsudnent are confidential and proprietary unlesemifse indicated or apparent from the
nature of such materials (for example, referencgmiblicly available forms or documents).

Disclosure or use of this document or any mateatained herein, other than as expressly permiggatohibited without the prior written
consent of TERAFLUX or such other party that magngrpermission to use its proprietary material. Tlademarks, logos, and service
marks displayed in this document are the registemed unregistered trademarks of TERAFLUX, its mematend its licensors. The
copyright and trademarks owned by TERAFLUX, whetregistered or unregistered, may not be used imexiion with any product or
service that is not owned, approved or distribligdTERAFLUX, and may not be used in any manner thdikely to cause customer
confusion or that disparages TERAFLUX. Nothing @méd in this document should be construed asigahy implication, estoppel, or
otherwise, any license or right to use any copyngithout the express written consent of TERAFLLUKS, licensors or a third party owner
of any such trademark.

Printed in Siena, Italy, Europe.

Part number: please refer to the File name in toeichent footer.

DISCLAIMER:

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFKUSPECIFICATION IS PROVIDED BY TERAFLUX TO
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING WITHOUT LIMITATION, ANY DAMAGES ARISING
FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFIDATA OR GOODWILL) ARISING IN CONNECTION WITH
ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPEIFICATION, WHETHER IN AN ACTION IN CONTRACT,
TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 6 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

In this report, we provide a description of theegration activity, through the COTSon simulation

platform, of the research of the TERAFLUX partneas, progressed during the third year of the
project. Thanks to the common simulator tools amtdrihal dissemination, partners have been also
able to transfer their respective research knovdéddhe other partners.

The support for T* instructions has been impleme@ritethe simulator: this means that partners are
now able to run actual benchmarks containing tha RRLOW Instruction Set Extension (T* ISE)
designed in the previous period of the project. Theead Scheduling Unit provides full support for
the execution of TSCHEDULE, TDESTROY, TREAD and TWR (variants of these basic
instructions are also implemented in the simulatogrder to meet some compiler needs highlighted
by the partners working on WP4). An interface fojecting directly such T* built-ins in C
applications is also available, and in this repeg provide the description of some first kernel
benchmarks (i.e., the Recursive Fibonacci and Madltiply) exploiting this feature. The support of
the GCC compiler for generating executable T* hewmdirectly from OpenStream annotated C code
is also available to partners, and applicationgsiyda-compile are also published in the public
repository. Finally, the support for multimode Tsantional Memory is implemented in the simulator,
and available to all the Partners and publicly laéé for download and run. We believe that all the
above will enhance the capability of the reseamrhrounity to simulate Teradevice systems.

The multi-node Distributed Thread Scheduler (DT&key element of the TERAFLUX Architecture)
has been also implemented in COTSon, and is alsbcfyuavailable for downloading and running
experiments. In this report, we show how the vameT* application-binaries running on the single-
node configuration have been also successfullyimua multi-node system. This implementation of
the multi-node DTS currently encompasses the fanatiimplementation and a partial timing model
(not fully connected with other component timingdats). The support for power estimation is now
integrated in the evaluation platform. The Faultdggon Unit (FDU) subsystem is also implemented
in COTSon, providing support for double executiéthoeads, and thread restart/recovery, both in the
single-node case. Moreover, in order to test theectmess and effectiveness of the fault detection
mechanisms, the single-node DTS implementatiorbbas extended with a high level fault injection
technique, which is also described in this delisbzaMoreover, other Dataflow variants, like the
Data-Driven Multithreading (DDM) - from the UCY Reer, have been also tested in COTSon, both
in the single-node and multi-node configurations.

All the newly implemented characteristics have bsarcessfully integrated in the common platform
also thanks to the support provided by the HP parfwhich released COTSon at the very beginning
of this project) to all the TERAFLUX partners.

A new tool (called PIKE) for extending the knowleddetails to perform “large target-machine”
simulations has been realized and released inubkcprepository, to the TERAFLUX partners and,
more in general, to the scientific community. Ttosl acts as a wrapper of the COTSon simulator,
and simplifies the configuration process neededdoning a set of simulations, thus speeding-up the
evaluation process of newly-implemented researliiion.

The originally planned simulation server is avdiato all the TERAFLUX partners.

Finally, tutorial sessions on OmpSS have been agdrby BSC; such tutorials were open to all the
TERAFLUX partners.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 7 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

The main objective of the workpackage WP7 is tealthe integration of the research performed by
each TERAFLUX partner. This is done mainly by meaha common simulation infrastructure, the
COTSon simulator, which can be modified by partnarsrder to meet their research needs while
transferring the reciprocal knowledge to the otbartners. In this report, we provide a summary of
the activities performed by the TERAFLUX Consortigiring the third year of the project, working
on the common evaluation platform (see sectiorfd. &n introduction to this concept).

As the content of this Deliverable shows, the kremlgk transfer about the simulation infrastructare t
the TERAFLUX Partners has been very successful.

The T* instructions have been introduced as annsita of the x86_64 ISA, as designed in D7.2, and
are now integrated in the simulator: we provide ighftevel description of the fundamental
mechanisms in sectiad2. Since an interface for writing C applicatidres also been realized, we
report in sectiorn2.4 a brief description of some kernel benchmahet we realized, while the
compiler support for generating T* applicationgéported in sectio2.9. The extension of the TSU
to the multi-node case is now available to partnassdescribed in sectidh5; in section2.4 we
describe the first steps of the implementation tfréng model for T* instructions, in the singleg®
case, which is still an ongoing activity. The agble mechanism for estimating power consumption is
reported in sectio@.6.

In section2.7 and2.8, the activities performed for integrating in T&n the DDM-style hardware
scheduler are reported. The implementation of Be Fnechanisms for double execution and thread
restart-recovery are described in secth0, while sectior2.11 provides a description of the fault
injection model. The enhanced support for Traneaati Memory (for the multi-node case) to
COTSon is discussed in sectipri2.

Finally, in sectiorB we describe the simulation environment and tipgpaeu that was made available
to the Partners, from both the hardware side aftdiae side. Moreover, in sectié5 we report on
some training events on OmpSS, organized by BS@paded to TERAFLUX partners.

1.1 Relation to Other Deliverables

The activities under the WP7 are related to thegration of the research performed in the other
TERAFLUX workpackages. In particular, we highlighe following relations:

M7.1 (WP7): for the first architectural definition;

D2.1, D2.2 (WP2): for the definition of the TERAFXUelevant set of applications;
D4.1, D4.3 (WP4): for the compilation tools towaids

D5.1, D5.2, D5.3 for FDU details;

D6.1, D6.2, D6.3 (WP6): architectural choices talaring the first 3 years of the project;

D7.1, D7.2, D7.3 (WP7): previous research undex \tiP.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 8 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.2 Activities Referred by this Deliverable

This deliverable reports on the research carrigdrothe context of Task 7.1 (m1-m48) and Task 7.3
(m6-m40). In particular, Task 7cbvers an ongoing activity for the entire duratiminthe project that
ensures the tools are appropriately disseminated supported within the consortiufeee Annex 1,
page 52), while Task 7.3 is related to the impletaigon in the common evaluation platform of the
fault injection and power models (see Annex 1, fzgje

1.3 Summary of Previous Work (from D7.1, D7.2 and D7.3)

During the first two years, the TERAFLUX partnetarted using COTSon, and modified it in order
to implement (test and validate) new features, ¢etntheir research needs. In particular, we are abl
to boot a 1000+ cores machine, based on the basamighitectural template described in D7.1. The
target architecture can exploit all the featuredealdby the various partners to the common platform:
this is very important for the integration of tlesearch efforts carried out in the various TERAFLUX
WPs. In particular, an initial FDU interface withet TSU (both DTS style and DDM style), has been
described in D7.2, and further detailed in D7.3nifirly, in D7.3 a first model for the developmeat
monitor power consumption and temperature was tegor

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 9 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 New Simulation Features

2.1 Brief Overview of the TERAFLUX Evaluation Platform(ALL WP7
PARTNERS)

The TERAFLUX project relies on a common evaluatatform that is used by the partners with two
purposesi) evaluate and share their research by using suelgrated, common platform, aid
transfer to the other partners the reciprocal kedgé of such platform.

In Fig. 1 is shown the high-level vision of the kenadion platform.

A

APP
OuUTPUT

AP PS TERAFLUX PERFORMANCE
EVALUATION METRICS
PLATFORM

E e

INPUT

The APPSblock represents the applications that researchesfeed to the evaluation platform, as
well as other “pipe-cleaner” benchmarks like theodescribed in Sectidh3 of this document, or
the ones coming from the activities of WP2. Anotingportant point emerged by the WP2, is a proper
choice of the inputs, in order to be able to shbe pgerformance at the “TERADEVICE level” (i.e.,
for at least 1000 complex cores, as discussedeviqus deliverables like D7.1, D7.2, D7.3, i.e.0Q0

x 10° transistor devices).

The TERAFLUX evaluation platform is the set of coomtools available to partners: the extended
simulator (i.e., the extended COTSon, see sectibps2.4, 2.8, 2.10, and2.11), compilers (see
section2.9), the hardware for hosting simulations (sedi@@@.1), and external tools for power
estimation (see sectich6), or to easily configure and run the simulds®e sectio.2). Theoutput
block represents the outcome of the benchmarkslevithe performance metricare the set of
statistics that can be obtained when executinghraadks in the common platform (see sectigrbs
and 2.5). Finally, in this context, thepp outputis necessary for verifying the application had
executed correctly during the evaluation.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 10 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.2 T* Instruction and Built-In Support in the C Languge (UNISI, HP)

In the TERAFLUX project, the T* Instruction Set Extsions (ISE) to the x86_64 ISA has been
introduced for managing threads in a dataflow styje means of dedicated hardware units for
executing the custom instructions. In order to expent with these T* new instructions, we used a
simulation mechanism which overloads a set of whesesting x86 instructions, thus allowing us to
rely on very well tested virtualizer like SIMNOWa(of COTSon).

In order to simulate this feature in COTSon andehanore flexibility in the register mapping of the
compiler, we overload the semantic of a particul3® 64 instruction, callegrefetchnta . This
has the advantage of being a “hint” with no ardtiteally visible side-effect and does not clobbay a
architectural register. From the x86_64 instructimemual [x86]:

prefetchnta m8

wherem8 is a byte memory address respecting the x86_6dxed base + offset format ([x86],
Chapter 2). This instruction is harmless to thee@xecution, since it is just a “cache hint”; teathy

we selected it as the mechanism to convey “additioriormation” into the simulator. It is also rich
enough to support a large encoding space, as wath@ediates and registers for T* instructions, as
we describe in more details below. The “additioimdbrmation” include the T* opcodes and its
parameters, as introduced in D6.1, D6.2, as wetlthsr T* new instructions, besides the 6 original
ones introduced in D7.1, D6.2, whose need becapwan as we started experimenting with more
complex code. Moreover, this instruction is a gomatch to the compilation tools because it doesn’t
alter any content of the general purpose registas.example, other user-defined functionalities of
COTSon, and the initial T* implementation, use CBUsee D7.1, D7.2), which has the unpleasant
side effect of modifying RAX, RBX, RCX, RDX, whiotauses compiler complexity and unnecessary
spill/restore overhead.

In order to minimize the probability of overloadiag instruction used in regular code, we selecsed a
MOD R/Mbyte [x86] the value 0x84, which means that m&8@s a (32-bit) memory address that is
calculated as[%base]+[%index]*2 scale tdisplacement32 . The %base, %index register
identifiers and the scale bits (2 bits), are packed so-calledSIB byte [x86]. displacement32 is
another 4 bytes. In such case, we have a totabgfes (after the opcode and Mi©D R/Mbyte) that
are available for the encoding of T* ISE. We thefikd a “magic value”Qx2daf), as a reserved
prefix that indicates a prefetch 6&2daf0000 (766,443,520 bytes) of a scaled index and base
address, which is not something that has any cealolei use in practice. As a matter of fact, we
tested routine execution of a running system feesa billion instructions, as well as all the hies
shipped with our standard Linux distribution, withhcany occurrence of that instruction. With the
above choices, the overloaded instruction encoldioks as follows:

0f 18 84 rr XX Il af 2d
01234567

whereOx0F18 is the x86 opcode faurefetchnta , 0x84 is the value of tht1OD R/Mfield of
the prefetchnta instruction, rr* (1 byte, that was corresponding BB byte), Il ' (1 byte) and
'XX' (1byte) are the two remaining byte from the dispiment.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 11 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

This allows us to use:

Therr value for encoding two x86 registers is used s Th instruction. We currently chose
to limit the registers to the core set availableboth 32b and 64b x86 ISA variants for
simplicity, but we may extend the choice to mord @6dgisters in the future if the need for
additional registers arises

The XX value for encoding the T* opcode (for up to 256 aqes)

Thell value for encoding an 8-bit T* immediate, if neéder other 2 registers like for the
field).

Let's consider, as an example, what happens witlRBADoperation (see D6.2 Table 1) from the
frame memory of a DF-thread, at the “slot” numbeThe compiler should then target such T* built-
in. For testing, we also provide a set of C-langulgilt-ins that can be embedded in manual C code,
and would be expressdoF TREAD(5) as shown here (a more extensive example is provide
Appendix A for quick reference):

uinté4 _t a;
a = DF_TREAD(5);

This will then be assembled as:
prefetchnta Ox2daf050e(%rdx,%rdx,1)

and will have a meaning:
TREAD $5, %rdx

In fact, the corresponding bytes representingribiuction will be:
OF 18 84 12 OE 05 AF 2D

The “container” of the custom instruction is therefOxOF1884... AF2D which is already described
above and is the same for all the custom instrosti®he “useful bits” (underlined) are:

0x12 specifies the identifier of the destination regisif the TREADQI (which is connected
to the destination variable ‘a’ by the gcc-macrpansion),

OxOE is the T* opcode for TREADQI (TREAD with immediatealue — other currently
experimented opcodes are reported below),

0x05, this is the immediate value of the DF_TREAD.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 12 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

In Table 1, we provide the full list of all the TSE opcode (i.e., all the possible values for Xxe
field) introduced so far in the COTSon simulator.

Io"#$"% & ' & (&)* & (&+ ** I~ . *& 1 * |
(&&/1 * , . *& 0

OPCODE | INSTRUCTION |OPCODE |INSTRUCTION |[OPCODE [INSTRUCTION
0x01 TINIT 0X0D TSCHEDULEI 0x19 TDECREASEN
0x02 TSCHEDULE OxO0E TREADQI DX1A TDECREASENI
0x03 TREAD OXOF TWRITEQI 0k1B TWRITEP
0x04 TWRITE Dx10 TSCHEDULEP (x1C TWRITEPI
0x05 TALLOC Ox11 TESCHEDULEPI | 0x1D TWRITEQPI
0x06 TFREE 0x12 TLOAD DX1E TSCHEDULEZ
0x07 TPOLL DX13 TSTORE OK1F TWRITE32P
0x08 TRESET Ox14 TISTOREQI 0x20 TWRITE32P!I
0x09 TSTAMP 0x15 TSCHEDULEF | Ox21 TSTOREP
0x0A TDESTROY 0x16 TSCHEDULEFI | 0x22 TSTOREP!I
0x0B TREADI OX17 TCACHE
0x0C TWRITEI Ox18 TDECREASE

2.2.1 Brief Introduction to COTSon’s Implementation of T*
The set of supported T* ISE, currently experimeniedhe following.

tschedulepi %tid = %ip, %cnd, $sc Schedules (conditionally) a thread with address i
register %ip to be executed. Register %cnd holdgtedicate. The immediate $sc holds the
synchronization count (0..255). It returns a thrieaddle in register %tid, or O if the predicate
is falsé. The %tid is guaranteed to have bits 0..31 ae@ T#RITE. Constraint: %tid and
%ip must specify the same register identifier (itlee same x86_64 register). For variable sc
or sc > 255, the general versiarfSCHEDULEPis required.

tdestroy %dfr: Called at the end of a dataflow thread to sighalTSU the end of a thread
execution and free up thread resources. To redoadation polling overhead, the thread is
destroyed internally and returns the address othe thread (if any available) in register
%dfr; this slightly deviates from the previouslyfided syntax (just TDESTROY). It is a
“peeling” optimization dealing with the (common)seawhen the queue of ready threads is
not empty, so that there is no need to returneqthiling loop.

treadqi %res = $im: Reads the 64b value stored at the $im (immedadtst of the frame of
the selfthread. This is the immediate form with $im < 25@&r $im > 255 or variables, use
the general formTREAD. The offset immediate is expressed in 64b words ¢ffset=2 is
byte=16).

234 3567 689:484,3<362; 67 7:6=53:> ?6 @GBBAIBACACDA? 6; " B54A4 B4 9A29274? 32 BAG3
2;>>6; C<74 2@ 3AF4 C2;?6362; 35<3 67 37CIBP)ESGEC;?) H7C

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 13 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

twriteqi %tid, %tval, $im : Writes the 64b value in register %tval to theakimn at $im
(immediate) offset of the frame of thread %tid. s the immediate form with $im < 256.
The offset $im is expressed in 64b words (i.e.etff8 is byte=16). For $im > 255 or variable,
use the general fornrT(VRITE.

talloc andtfree are encoded but semantics to be defined.

The above instructions correspond to the instructinos (TSCHEDULE, TDESTROY, TREAD,
TWRITE, TALLOC, TFREE as introduced in the previous deliverable D6.2 (see Table 1).
Additionally, we are currently experimenting witther instructions:

tschedule %tid = %ip, %sc: Schedules the thread (unconditionally), while ¢kert address

is located in register %ip. Register %sc contales synchronization countschedule
returns a thread handle in register %tid. By desige decided to use thread handles
expressed on 32 bits; moreover, for efficiency saaswve store such handles on the 32 most
significant bits of %tid. In this way, we can damstlard address arithmetic on thread handles
(e.g., add an offset to obtain the address of diviolual element of the thread frame) almost
as if they were addresses. This is the general fsed with variable sc or sc > 255. For
immediate version (sc < 25@%chedulei is more efficient.

tschedulei %tid = %ip, $sc Schedules thread (unconditionally) with addreseegister %ip
to be executed. Immediate $sc holds the synchromizaount (0..255). It returns a thread
handle in register %tid. The %tid is guaranteedhéwe bits 0..31 at O (SeBWRITEH.
Constraint: %tid and %ip must specify the samestegiidentifier (i.e., the same x86_64
register). For variable sc or sc > 255, the genayadion TSCHEDULEIs required.

tschedulep %tid = %ip, %sccnd Schedules thread (conditionally) with addresseigister
%ip to be executed. Register %sccnd packs 'sc'c(spunt) and ‘cnd' (predicate) as
%scend = (sc << 1) + cnd . It returns a thread handle in register %tid, af the
predicate is false The %tid is guaranteed to have bits 0..31 ate@ T®VRITE. This is the
general form used with variable sc or sc>255. Ronédiate version (sc < 256), tschedulepi
is more efficient.

tschedule %tid = %ip, %sc: Schedules the thread (unconditionally), with steat address in
register %ip. Register %sc contains the synchréinizaount.tschedule returns a thread
handle in register %tid. By design, we decided 46 thread handles expressed on 32 bits;
moreover, for efficiency reasons we store such lesndn the 32 most significant bits of
%tid. In this way, we can do standard addressragtit on thread handles (e.g., add an offset
to obtain the address of an individual elementhef thread frame) almost as if they were
addresses. This is the general form used with Marisc or sc > 255. For immediate versions
(constant sc < 256)schedulei is more efficient.

tread %res = %off: Reads the 64b value stored at the offset of Yagfister of the frame of
the same thread. This is the general form of t{eed alsd’READI) with variable (or > 256)
offset.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 14 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

treadi %res = $im: Reads the 64b value stored at the $im (immeddategt of the frame of
theselfthread. This is the immediate form with $im < 266r $im > 255 or variable, use the
general form TREAD.

twrite %tloc, %tval : Writes the 64b value from register %tval to tloedtion stored in
register %tloc. This is the general formTVRITE (see als@WRITEI) with variable frame
locations. The %tloc register packs a thread hafidle) and offset ¢ff), so that %oc
=tid +off . tidis the return value of ttechedule instruction (and its variants) and is
guaranteed to have the 32 least significant bit$os@. Hencetid andoff can be used to

construct the thread frame location, by addingvidlees or doing any other standard address
arithmetic.

twritei %tid, %tval, $im : Writes the 64b value in register %tval to thealban at $im
(immediate) offset of the frame of thread %tid. S'ts the immediate form with $im < 256.
The offset $im is expressed in bytes and has ®bealigned. For $im > 255 or variable, use
the general formMWRITE. This is just a different way to write tA&VRITEQI.

tload %res: Loads the TSU frame values into a locally alledatnemory chunk of size %res
that is directly accessible by the thread with dtaid loads and stores. (Depending on the
implementation of the TSU, it could be simply aom-

tstore %tloc, %optr, %len : Writes the values in memory starting from addrégstr and
length %len to the frame location %tloc. The %fiegister packs a thread handle (tid) and
offset (off), so that %tloc = tid + off. The valeétid is the return value of tiESCHEDULE
instruction (and its variants) and is guaranteekae the 32 least significant bits set to 0, so
that a thread location can be constructed withdstethaddress arithmetic (for example, tid
could be the address of the frame).

tstoreqi %tloc, %ptr, $len: Immediate version of thESTOREoperation, with $len a 1-256
immediate.

Other instructions are used in the runtime:

tpoll %dfr : called within a worker thread, polls the TSU abaork to do work (address of
the dataflow thread to start) is returned in thggster %dfr. Used in the runtime and not in the
dataflow program.

tinit %nopr, %pstack : initializes a dataflow worker and sets the "n@@ion" function in
the register %nopr and a reserved region of mermorggister %pstack. The no-operation
function is used to optimize the simulation idldlipg loop. The reserved stack is used to
materialize the local frame (by tload, see abowedhat it can be used by standard x86 load
and store operation by the compiler. Used in tinetime and not in the dataflow programs.

treset %ors, %rn: resets the dataflow execution, freeing all theeadd preparing for a new
execution. The register %rs points to a string anmmary of length stored in register %rn (for
simulation debugging purposes).

And finally, these instructions are used for debng@nd tracing of execution statistics

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 15 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

tstamp %ts = %buf: collects per-core stats (instr, cycles, idlesthi@ memory pointed to by
register %buf and returns the current value of &tmn nanos in reg %ts. Can be used to
address execution statistics (in a much more mressy than using performance counters)
from a guest program.

2.3 New T* Benchmarks (UNISI)

By exploiting the T* ISE support for the C-languagé&oduced in the section 2.1, new benchmarks
have been implemented for running in the COTSoruksitar. TheMatrix Multiplier benchmark is
already available in the COTSon repository, whikeRadix Sortbenchmark is going to be released in
the near future.

2.3.1 Matrix Multiplier

The matrix multiplication algorithm chosen for ti& C-like implementation is the blocked matrix
multiplication version, in which the result matx= A-B is recursively constructed as:

s
Cab 1 Aac chb

where G, represents a sub-block of the result matrix. Tt matrices A and B are required to be
square for simplicity, and defined as:

a=tal B=(B)

The input parameters that the algorithm needsxXecw@ion are two integeisandnp, both required
being power of 2:

s— number of rows and columns of the square matdce8 and C;
np — total number of partitions (blocks).

For example, running the application wigk32 and np=4, will perform a multiplication of2x2
blocked matrices, in which each block is composedGx16elements. Details on the structure of the
dataflow version of this benchmark are reportedppendix A.

The source code of the matrix multiplier algoritienavailable to the TERAFLUX partners in the
public SOURCEFORGE website [SF]. We report the dodeuick reference in the Appendix A.

2.3.2 Other Benchmarks

A Dataflow version of the Recursive Fibonacci apgion has been implemented in C using the
built-ins introduced in Section 2.2, similarly teetMatrix Multiplier described in previous section.

The well-known Radix Sortbenchmark, which is one of the kernel applicatiodluded in the
SPLASH-2 suite [Cameron95], has been also develapd¢de T* C-like style for our experiments.
The implementation of this algorithm is still onggibecause it requires some protection mechanism

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 16 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

for managing concurrent accesses to shared daee 8i the TERAFLUX project the Transactional
Memory (TM) is supposed to be adopted for this paep the implementation of this benchmark will
be completed in the near future by exploiting tea/TM feature added by the UNIMAN partner to

the COTSon platform.

2.4 Single Node T* Tests (UNISI)

In order to show the potential of the implementatad T*, we show here the possibility to collect
some statistics (number of Dataflow Threads thatexecuting, running and waiting) related to the
execution of some benchmarks on the modified COTgatfiorm.

We selected for this sake Matrix Multiplier desedbin Section 2.2.1 or the Recursive Fibonacci
(already introduced and described in previous dedibles D6.1, D6.2) as “pipe-cleaners”. The first
step has been to code those examples by handder t allow the WP4 to have some simple

examples to target the proposed T* instructions.

On the simulator side, the efforts in this year leen to support properly the execution of the
Dataflow Thread (this is coded in the publicly dabie modules TSU, TSU2, TSUS3 on the Source

Forge website)

DF Threads can be either waiting to become ready tfieir synchronization count has not reached
zero), or already in the ready queue, waiting fa@caition once some core becomes available. In the
single node experiments, we varied the number odscérom 1 to 32. In this context, simulations

have been successfully performed.

Wrﬁ:\ et [2345567
: i \\ A b - 23 %8
' Vi < \ g ~ 23 66567
* P & ‘4 i \ o
; / Z/:/:/‘/:/:A Arafive [y :‘\‘\ \ E; B “A A":{fi:’ AAAAAA :A::“l‘; “\
’ / ‘/ﬂ/(t/f AAA _\\ * " ‘/{{:;A A:A: ‘k “
© LA N A
~— AAA 1 Z\k. A\
$(((&) &0 $C0() a0
2 - e |
N A

= / 3 o] x
- | f A e
. NN
AN SN
TN RERY/ V!
— ‘Af ““I& - A‘f :f:

,“AA AAﬁ fﬁ %

$((() & $((() &
L@o: 1 * & & L (&

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 17 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

In the following, results of the execution of thkdnacci benchmark are discussed. In particula., Fi
2 shows the number of threads waiting, ready anding in the system during the execution of the
recursive computation of the 35th term of the Féumm series, targeting four different single node
configurations (4, 8, 16 and 32 cores). The fidughlights two aspects. First, the maximum number
of threads created in the system is 1.5M, ovedifftrent configurations. Second, the executioretim
is reduced by a half when the number of coresemthde doubles.

These results show that the COTSon simulator is able to support the T* execution model (a
dataflow execution model) achieving almost perseetling. However, the timing model still has to be
tuned up by connecting the existing memory hienariiming models of COTSon to the T*
components: such activity is ongoing and brieflga#ed in section 2.3.1. In Fig. 3, we also show a
“zoom” of the bottom part of the thread graphs. Each configuration, except for the “startup” and
“ending” phases, we observe that there is alwaysnaber of running DF-Threads equal to number of
cores, demonstrating that the execution paradiguways able to load the system.

(e [ce]

—~ 2345567
© 23 %8
—~ 23 66567

$ (¢ (($ (- ((

9(& (&

()0 1 * &)< .. * & 0

2.4.1 T* Timing Model

Currently, the TSU implementation already provifi@sctional execution for all T* instructions. In
this section, we describe the implementation efféot the timing model within the simulator, which
assumes the baseline architecture described in 06.8he TERAFLUX DTS (Distributed Thread
Scheduler).

For explaining the current methodology, we assumeekistence of a component still under research
in the Architecture workpackage, which is the DiasRe cache.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 18 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The implementation of the timing model is organizsdshown in the Fig. 4. The execution flow is
managed as follows:

During the execution, T* instructions and memorgesses are dropped from SimNow into
COTSon.

The Filter component filters all T* memory accessePF-Frames by passing them to the
TSU in order to model the DF-Frame cache, DF-Framamory, and all queue structures. All

other instructions (i.e., the ones that are pathefregular x86_64 ISA) are passed directly to
the COTSon Timer, which already implement the tgmmodel for non T* instructions.

Inside the TSU, the DF-Frame memory and the DF-Eraathe are modeled. For example,
we can assume that the access latency to DF-Fractee ds equal to Core Level Cache
Hierarchy (CL$H in the Architectural Template pnetsel in D6.2, Figure 1), and the latency
access to physical DF-Frame memory is equal to albmmemory access.

The latency feedback for these accesses in thei§ 8aksed to the timer in COTson.

SIMNOW

¥

Filter

Frame accesses

Frame Memory Modeling

A 4

Frame Cache Modeling

COTSON 'atency

*':(

In order to provide the COTSon user with an easy iwanodel the architecture, for example with the
purpose of exploring different configurations whigte characterized by different timings, we define
the size of DF-Frame cache, DF-Frame memory, queuasconfiguration file (e.g. thisu.luafile)
which is processed by COTSon.

In the current simulator integration, we have impéated the filtering of T* instructions and memory
accesses into TSU. The next steps will be mod@&iRg-rame memory and DF-Frame cache.

2.5 Multi-Node T* Tests (UNISI)

The simulation environment described in sectionc2eated the basis for single node simulations (we
decided not to exceed the size of 32 cores per ratlgrent commercial processors like the AMD

6200 encompass 16 cores per processor). In ordgmtdate systems with a higher number of cores,
the number of nodes of the target machine mushéreased. In particular, if we want to simulate a

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 19 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

system with say 1024 cores (target for this progstpresented in previous deliverables and in
particular in D7.2), we may need at least 32 nodes.

Extending COTSon in order to allow many node sirtioiis with T* support has been performed by
UNISI, with the support of HP. Currently, the TSlbadel is able to perform thread scheduling among
many nodes. It has to be tuned up by connectingrtheg models of the several existing components
(like caches, memory, to the TSU models). We ptacoimplete the multi-node case in the next year.

In the following, we provide some insights on thanfiework, and show preliminary results of
Fibonacci and Matrix Multiplier running on targetnhine up to 1024 cores.

Node 0 DF-Frame Information Node n
(Shared Memory)

TSU | SC | sc TSU

SC
. P | IP P [—
A -
Circular Queue

FPi <1—+ C—N—OFPK

Ready Queue

Scheduler
X

sse20e swel{-4(
ss@99e awel4{-4q

message queue FO | F1 Fn message queue

DF-Frame Memary
(Allocation/Deallocation)

Manager/Monitor

* & (o+ - - & & & & *&

2.5.1 Framework design

A scheme of the framework for multi-node simulatisshown in Fig. 5. The access to the DF-Frame
information among nodes is provided through shanednory allocated on the host machine. Such
shared data structures hold 1) a Circular Queuddtating the continuations of created DF-Threads,
which are not ready for execution, and 2) the Re@dgue for those threads whose synchronization
count has reached zero. A Scheduler is resporfeibleanaging properly these queues. In the current
implementation, the Scheduler distributes the re@#&yThreads among nodes following a simple

round-robin policy. Nodes can access the DF-Frarambty through a message queue to a high-level
entity we called Manager. Such manager is resplenfib allocating-deallocating DF-Frame Memory

dynamically.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 20 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

A timing model for the multi-node framework will likesigned and developed in the next period, as
an extension to the single-node timing model, antlirently under development.

2.5.2 Demonstration of multi-node capability of the new dstributed scheduler

Fig. 6 shows the speedup — with respect to thelesiogre case — of the execution time for both
Fibonacci (computation of 40) and Matrix Multiphwih matrix size of 512). We simulated a number
of cores from 1 to 1024, in steps of powers ofnizthie configurations up to 32 cores the systems are
single node, from 64 to 1024 cores each simulationon systems with many nodes, each node
hosting 32 cores.

57"6 $$5 @ 5 @ 5#8
. =
//"// /.//'/
o —
/"// il
o "
/"// i
A /'/ N /./
o -
et L= || - | =
o [[] | g~ [[1
6! (& 6! (&
2@ ;. & N (O & /. @ =@ J+* =
&< =/ . ol (-& A * (&

As we can see, we have reached the ability to sitauhe dataflow execution model not only in the
single core but also across nodes, without chanfi@grogramming model or execution model when
passing from the single node case to the multi-reade Of course, we need to tune up the system in
order to evaluate the sensitivity to the availépitif resources like bandwidth and memory contrslle
(as explored initially in the deliverables D2.1,.R2egarding the Application work package).

In the case of the matrix multiply benchmark, wertsto see some loss of scalability after 512 cores
this is due to the lack of parallelism as we chaosesmall a data set for this experiment. As & sid
note, we can see that the simulator is also abtattth such behaviors.

2.6 Power estimation using McPAT (UNISI)

Power estimation along with temperature and rditgbis an important metric that enables the
envisioned architecture to schedule DF-Threads thighaims of improving the overall resiliency of
the system. This has been extensively discusseideirprevious deliverable D7.3. Here we briefly
describe how this mechanism has been extendeddrooif-line to an on-line methodology. This is
necessary to drive the scheduling actions duriagptbgram execution.

Looking at the simulation level, power estimatignobtained with the use of an external tool called
McPAT [MCPATO09]. McPAT has been developed by HP with #dality of estimating power
consumption, timing and area of a given microaethitre. Specifically, McPAT implements an
internal model to compute the power consumptionetbaen the activity within the modeled
microarchitecture. The activity refers to the iostions executed by the modeled systems, and in

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 21 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

particular to the internal structures that arevatéid during the execution of each instruction.
Combining these statistics with a description @& #pecific modeled microarchitecture, the tool can
estimate static and dynamic power consumption compis (e.g., power consumption for the cache
memories, power consumption for the cores, eim)ng and area utilization.

In order to enable the simulated system to schddbtéhreads according to policies that count fer th
current power consumption, as well as the temperand the reliability level, the system must be
equipped with a power, fault and temperature memsent system. From the perspective of the
simulator, this goal can be obtained by integratimgMcPAT tool within the COTSon simulator.

2.6.1 Off-line vs. on-line Power estimation

As a first step towards a complete integration, MEmPas been enabled to run at the end of the each
heartbeat computing power estimation on a periodic base&ioBie power estimation is obtained
storing execution statistics coming from the COTSanulator at every heartbeat. The heartbeat
represents the internal interval used by the sitouln store the statistics (the interval size @ n
fixed). In the off-line approach, McPAT is run &etend of the COTSon simulation: it processes all
recorded heartbeats in sequence at the end ok#oeiton of the program. On the contrary, in the on
line approach, McPAT is run during the simulatiaght after a heartbeat has been produced, while
the program is still running.

Fig. 7 shows the current tool chain used to esénmwer consumption with an off-line/on-line
processing and some first sample of output.

| HEARTBEATS | 1—5 | 6—10 | 11—15 | 16—20 |
Core clock 3000 |MHz 3000 |MH 3000 |[MHz 3000 [MHZ
Cycles 518001021 cc | 74150146B cc [98850196P cc | 74200146P cc
Time 172.667 | msqc247.167 | msgc329.501 | msgc247.334 | msqc
CPU <cpu0>: ISubthreshold Leakage power 2.39913 | W| 2.39913 2.39918 2.39913
Gate Leakage power [0.005459¢ W |0.005459¢ W |0.0054596 W |0.005459¢ W
Total Leakage power [2.4045896 W |2.404589¢ W [2.4045896 W |2.404589¢ W
Runtime Dynamic power | 0.269286] W| 0.269339 0.269316 0.269268/
Total power 2.6738756 W |2.6739286 W [2.6739056 W |2.6738546 W
Core clock 3000 |MHz 3000 |MH 3000 |[MHz 3000 [MHZ
Cycles 518001021 cc | 74150146B cc [98850196P cc | 74200146P cc
Time 172.667 | msqc247.167 | msgc329.501 | msgc247.334 | msqc
CPU <cpul>: ISubthreshold Leakage powdr 2.39913 | W| 2.39913 2.39918 2.39913
Gate Leakage power [0.0054596 W |0.005459¢ W |0.005459¢ W |0.005459¢ W
Total Leakage power [2.4045896 W |2.404589¢ W [2.4045896 W |2.404589¢ W
Runtime Dynamic power | 0.268092| W| 0.26809: 0.268093 0.26809%/
Total power 2.6726816 W |2.6726826 W [2.6726826 W |2.6726816 W
Core clock 3000 |MHz 3000 |MHz 3000 |MHz 3000 [MHZ
Cycles 51800102] cc | 74150146B cc [98850196p cc | 742001460 cc
Time 172.667 | msgc247.167 | msgc329.501 | msgc247.334 | msqc
CPU <cpu2>: ISubthreshold Leakage powdr 2.39913 | W| 2.39913 2.39918 2.39913
Gate Leakage power [0.0054596 W |0.005459¢ W |0.0054596¢ W |0.005459¢ W
Total Leakage power [2.4045896 W |2.404589¢ W |2.4045896 W |2.404589¢ W
Runtime Dynamic power | 0.268092| W|[0.268098 0.268093 0.268092/
Total power 2.6726816 W |2.6726826 W [2.6726826 W |2.6726816 W
Core clock 3000 |MHz 3000 |MHz 3000 |MHz 3000 [MH4
Cycles 51800102] cc | 74150146B cc [98850196p cc | 742001460 cc
Time 172.667 | msgc247.167 | msgc329.501 | msgc247.334 | msqc
CPU <cpu3>: ISubthreshold Leakage powegr 2.39913 | W| 2.39913 2.39918 2.39913
Gate Leakage power [0.005459¢ W |0.005459¢ W |0.0054596 W |0.005459¢ W
Total Leakage power [2.4045896 W |2.404589¢ W [2.4045896 W |2.404589¢ W
Runtime Dynamic power | 0.268092| W| 0.268098 0.268093 0.268092/
Total power 2.6726816 W |2.6726826 W [2.6726826 W |2.6726816 W
Dynamic 1.073562| W| 1.07361 ,1.073595| W, 1.073541| W,
JAll CPU total power: Leakage 9.6183584 W |9.6183584 W, [9.6183584 W, |9.6183584 W,
total 10.6919204 W| 10.69197p4 10.6919534 [¥0.691899] W

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 22 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Simulation McPAT
Statistics Configuration

MePAT [
COTSon DB cenfiguration > XML McPAT

generation

!

Power consumption
vs. heartbeats
(PLOT)

CPU 0 Power in 4 Periods

3 m Total Leakage power

2.5 I I I I

<2
35
172.667 247.167 329.501 247.334

ol
35
Duration (ms)

rl.o

#+ & & &

The off-line power estimation process starts witikamplete simulation running on the COTSon
simulation infrastructure. During the simulatiodl, the relevant statistics are collected througé th
internal timer components of the simulator withis@L local database. The database also contains
the main configuration parameters of the simulateathine. Simulation statistics are organized on a
per-heartbeat basis. At the end of each heartbeatdntent of the database is parsed in order to
provide, for each heartbeat, an XML-based configomafile for the McPAT tool. The XML
configuration file contains both the main statistitor the current heartbeat, and the machine
architecture description. Hence, for each heartlibat MCPAT tool extracts a power consumption
estimation. As shown in, in the case of the on-lisver estimation, the set of power estimation
values is stored back in the database. This altbesTSU to properly schedule the DF-Threads in
order to respect the power/temperature and ralalfiee also SectioB.10 in this deliverable and
Deliverable D5.3) constraints, and their correlatrath power consumption. Similarly to the off-line
approach, the XML configuration file is generatgdtbe McPAT configuration generator script at
every heartbeat. Finally, in this case the samefggbwer consumption values can be used to respect
the power profile of the simulated machine.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 23 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

2.7 Execution of User Level DDM on COTSon (UCY)

Within the context of WP7 we have been working loa éxecution of DDM applications using our
user-level DDM TSU runtime. With our first implentation reported earlier we were able to execute
on single node COTSon instances. Within this yearhave extended the TSU to support execution
on distributed systems. Our first attempt to exeari a multi-node COTSon setup did not turn out
successful due to problems with the data commuipitaupport across multiple COTSon nodes.

We developed a small benchmark program for the comnrations layer and we were able to identify
that COTSon did not progress when the user sendsages larger than 2KB. To overcome this issue
we developed an intermediate communication layénenT SU network unit that accepts messages of
any size and splits them into smaller packets hieae successful communication. As it is shown in
Fig. 8 we have managed to successfully execute sl RBpplication using 4 nodes on COTSon with
the user level TSU.

This configuration was compiled on the tfx2 mach{ne. one of the simulation hosts provided by
UNISI with 48 cores and 256 GB of shared memorsgyiged by UNISI.

Numeric Display(s)

Numeric Display(s)

Numeric Display(s)

Numeric Display(s)

Simulator Stats

389.29 Host Seconds

713.98 SIm Seconds

- Simulator Stats

398.69 Host Seconds

713.28 Sim Seconds

Simulator Stats

398.52 Host Seconds

714.73 Sim Seconds

Simulator Stats

398.55 Host Seconds

71417 Sim Seconds

IDE Primary Display

0 master read

0 master written
184,320 slave read

3.92 Avg MIPS i 4.07 Avg MIPS 4.09 Avg MIPS Reset Av 4.13 Avg MIPS Resef Avg
0.42 MIPS 0.05 MIPS 0.00 MIPS 0.00 MIPS SR AR jplEvR i

PIO/DMA mode

DATA RCV: 120 [31
DATA INIT: 124
[Starting Get my ID
[Starting Sync

Total 0.017089
Data Verified
Idlel0] 0.014733
Execution 0.016782

f inished

Finished Execution
Data Verified

Idlel1] 0.013197
f inished

RCU:
RCV:
RCV:
RCV:
RCV:
SND:
SND:
SND:
SND:
RCV:
RCV:
RCV: 120
RCV: 120
INIT: 124
Btarting Get my ID
Starting Sync
ompleted Sync
Starting Execution
Finished Execution
Data Verified
IdlelZ] 0.010409
finished

120
120
120
120
120
115
115
115
115
120
120

RCU:
RCU:
RCU:
RCU:
RCU:
RCU:
RCU:
RCU:
RCU:
SND:
SND:
SND: 115
SND: 115
INIT: 124
Starting Get my ID
Starting Sync
onpleted Sync
Starting Execution
Finished Execution
Data Verified
Idlel3]1 0.019829
f inished

120
120
120
120
120
120
120
120
120
115
115

kput: could not open lgxput: could not openfxput: could not open local filxput: could not open local file #tmp-ping.log
1ser@node-0000: " /nodZafuser®node-0000 : ~/nodjuser@node-0000 : " /nodZannp isnpguser@node-0000 : ~/modZannpismpssHicro§ _

Running

Running

Running

%@ $">/+*

Running

L&

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training

File name: TERAFLUX-D74-v10.doc

Page 24 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Ed [1] AMD SimNow Main Window -- Public Release (tfx2) - + %
File View Special Keyboard Help
[8o[s s[eafafe

MNumeric Display(s) L]

Simulator Stats ~ IDE Primary Display |IDE Secondary Display — Diagnostic Ports Flappy Display
mHost Seconds ’Wmastﬂr read ’—Omaster read ’E,E’E FB 83-80 ’—Oread
’m Sim Seconds ,T,‘IQS master written ’—0 master written ’Emm. 00 87 - 84 ’—Owriﬂen
Wm’g MIPS ResetAvgl [Oslaversad [0slaversad | [0 [00[00 [00 e3-<0

WMIPS ’—Oslave written ’—Oslave written

,m mode ’m mode

RUNNING
orker 0:
orker 1:
orker 2:
orker 3:

TSUClient

stack 0x21e7000
stack 0x21ec000
stack Ox21f1000
stack OxZ1f6000

16384
16384
16384
16384

Matrix Size: 32, Bloc

Program: Matrix Multiplication, Cores 4, Af] threashold: 1,

at OxZ21e?7000
at OxZ21ec000
frame at OxZ1f 1000
Deallocate worker frame at OxZ1f6000
All workers done, goodbye

Serial time: 0.000188

Parallel time: 0.000237

Speedup: 0.792757

+ xput LOG rvar-homeZ/georgios/svnscotson.labsbranches/tflux-test/tsu.ddm/LOG
+ touch terminate

+ xput terminate terminate
root@cotson:™# _

frame
frame

worker
worker

Deallocate
Deallocate
Deallocate worker

Running

B?(-.@ =@ , (*

2.8 Integrating DDM TSU into COTSon (UCY)

As a continuation of the work described in the mes Section, we have integrated the DDM TSU
into COTSon by using as template the tsu2 codeigedvin the TERAFLUX public repository
(https://cotson.svn.sourceforge.net/svnroot/cotsamches/tflux-test/tsu2/) and the TSU++ version of
the DDM system. The tsu2 operates as an interne@Bl to provide communication between the
user application and the TSU unit.

To validate this implementation of the TSU, we hasmecuted the blocked matrix multiply
benchmark for 4 workers on a single machine (sge%i

We have used a single queue to store threads thateady for execution and a FIFO policy for
scheduling. The TSU does not operate in busy-wailenbut instead it is event-driven execution,
which seems to make simulation faster. This comfigon was compiled on the tf’x2 machine (see
above).

2.9 GCC Backend and OpenStream Experiments on COTSNRIA)

The TERAFLUX backend compiler has been maturing t¢ive course of the third year of the project.
It compiles OpenStream programs (data-flow stregmémtensions of OpenMP) to T* intrinsic
functions, themselves compiled to the T* ISA. Tlwele generation pass has been developed as a
middle-end pass in GCC 4.7.0, operating on threlesms GIMPLE-SSA code. The traditional

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 25 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

compilation flow is being modified according to pesialized adaptation of the built-in-based, late
expansion approach described in D4.2 (first yedivetable). See alsflil2, Lil2b]. Built-ins are
used both to convey the semantics of input andubutiauses in streaming pragmas to the compiler
middle-end, and to capture the semantics of effiydanguages such as HMPP, StarSs/OMPSs and
TFLUX. More details can be found jRop13]and Deliverable D4.1).

As part of the training and internal disseminatamtivities, a step by step OpenStream tutorial has
been designed and distributed with the OpenStreguository. It consists of a set of 15 thoroughly
commented examples illustrating all the featuretheflanguage.

The applications ported to OpenStream in WP2 haen ldistributed together with the OpenStream
source code. They have also been packaged asatarebenchmarks with multiple data sets and
auto-tuning scripts to facilitate the adaptatiortraf grain of parallelism to the target. The cuirtes

of distributed OpenStream programs is: choleskyratho, seidel, fft-1d, jacobi, strassen, fibo,
knapsack, matmul, bzip2 (SPEC CPU 2000) and fdR&ARSEC). For some of these programs,
multiple versions are provided, to compare date-tyle, Cilk/join-style, and barrier-style
implementations.

All OpenStream applications are supported by thiwsoe run-time implementation of T*. In
addition, most applications run on COTSon when atedpusing the hardware-ISA branch of the
TERAFLUX compiler (i.e., the SourceForge public esjory [SF]). The only problematic ones are
the Cilk/join and barrier-style variants of the bkmarks that make use of the lastprivate or tagkwai
constructs of OpenStream. These currently cannohpkemented using T* (the compiler makes use
of scheduling and stack manipulation mechanismsugported by the tsu2 branch of COTSon). This
is not a major issue as the data-flow-style prograompile and run properly, but for completeness
and to facilitate the implementation of larger éggtions, we are working on an extension of the T*
ISA to support these constructs directly.

At this time, the TERAFLUX memory model is in pregs in COTSon. A preliminary (formal)
specification exists for Owner-Writable Memory (OWBee D7.1) regions [Gin12] and UNIMAN
implemented TM in COTSon, but the former is not yaplemented and the latter has not been
merged with the tsu2 and tsu3 branches of the atmulAs a result, only pure data-flow benchmarks
are currently able to scale to 1024 cores, or toamw multiple nodes in general. Unfortunately, the
current compilation flow for OpenStream makes us@ntermediate/proxy data structures for run-
time dependence testing. This is necessary to mmaié the sliding window semantics of the
language's streams, and to support the rich regpeed dependences of StarSs/OMPSs. Because of
this, OpenStream programs currently run on a singiée only, and will stay that way until the
memory model is implemented in the simulator. T@ecavith this limitation, and also to enable
additional performance comparisons, a low-levelrimstc/builtin interface to T* has been
implemented in the TERAFLUX back-end compiler. Thiterface retain a C syntax and semantics,
abstracting the low-level optimization details b& tcompilation flow, but it requires the programmer
to think directly in terms of data-flow threadsyrging the frame meta-data explicitly. Still, il@avs
pure data-flow programs to be written and to soal¢he full architecture.

Technical information, source code, tutorial exaspland benchmarks are available online and
updated regularly: http://www.di.ens.fr/OpenStreaml.en.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 26 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.10Double Execution and Thread Restart Recovery in andgde Node
(COTSon Modules) (UAU, HP)

In this section, we will give an overview of thepglamentation details of tHeDU subsystepDouble
Execution and Thread Restart Recoveiy the TERAFLUX simulator. For more details abaolg
Double Execution and Thread Restart Recovery masiman please refer to Deliverable D5.3, which
describes the technical implications of Double Exien and the thread restart recovery for the
TERAFLUX architecture. The enhanced source codmuidicly available in the tflux-test branch of
the public COTSon SourceForge repository.

All simulator extensions in this section are basadhe functional tsu2 implementation provided by
the partners HP and UNISI. Please note that apthiig of the simulator integration there is neithe
functional differentiation between D-FDU and L-FDidr between the D-TSU and L-TSU. Hence,
we refer just to FDU and TSU, respectively.

2.10.1FDU subsystem in COTSon

The FDU subsystem uses the periodic AMD SimNow tiedlback FDU::call_periodic).
The FDU itself is, similar to the TSU, implementesia singleton object.

At each periodic call, the monitoring subsystem egates heartbeats and pushes them into the
FDU's monitoring queue. After all cores have pustiedr heartbeats, the FDU singleton processes
them in itsM(onitor) A(analyse)P(lan) E(execute) cycle, stores the information in its kiemge
base, and updates its core records. For more sletailhe MAPE cycle and the FDU internals please
refer to the Deliverables D5.1, D5.2, and D6.2.

The current D-FDU implementation maintains integfsito two TERAFLUX device types:
1. The cores within a node
2. The TSU (used version: tsu2)

The FDU/core interface implements a FIFO quéuessage_queue), shared between the cores
and the FDU. The FDU/TSU interface is a functiget(core_record()) exposed by the FDU
singleton. This function is called by the node’dJr&nd returns the latest core record for a givee co
ID, enclosing information about the current corefgranance, its reliability value, and wear-out of a
core. Whenever the TSU tries to schedule a nevadhiequeries the FDU for a new core record and,
if required, adjusts its scheduling policy.

2.10.2Double execution and Recovery Support

Double Execution and Thread Restart Recovery baglire an execution free from side-effects. To
ensure this in the TERAFLUX simulator, we extendeeldthread data structure in the TSU by a
per-thread write-buffewbuf . This write-buffer is created along withdshread object when the
TSU has received a TSCHEDULE operation. After theedad becomes ready to execute, all
subsequent TWRITESs of this thread will be redirddte thewbuf data structure. The TWRITESs of
the leading thread are held in the write-bufferilumdth the leading thread and the trailing thread
executed their TDESTROY instructions. Additionallige CRC-32 signature, incorporating the target

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 27 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

thread ID, the target address and the data of sagle TWRITE, is calculated and stored in the FDU
for both the trailing and the leading thread.

When the TSU receives a TDESTROY instruction, ieads whether the redundant thread has
finished its execution by verifying the thread'sreut state. If the redundant thread is still rugni
the TSU marks the finished thread as ready-to-ch@dkerwise, the TSU calls the FDU singleton to
indicate that both threads have finished their etten. The FDU in turn compares the stored CRC-32
signatures and returns a Boolean result indicadirigult-free execution (true) or a faulty execution
(false).

Additionally, partner HP extended the baseline Tilplementation to support speculative thread
creation. Speculative thread creation means ditaead objects created by a potentially faulty
thread are tagged as speculative and can be distarden the FDU detects a fault in the parent
thread. To enable the elimination of speculativeedds in case of a fault, each speculative thread
stores the parent ID of its creator indtbread object.

As described in Deliverable D5.3, the write-buféerd the speculative thread creation are required to
ensure the execution without side-effects and thexeenable Double Execution and Thread Restart
Recovery. Our Double Execution implementation are@dd Restart Recovery mechanism fully
support the T* instruction set, as described in\i2ehble D6.2.

Double Execution and speculative thread supportbeaactivated in the COTSon configuration file
by setting the following options:

options = {
tsu_speculative_threads=true #Activate speculativ e thread creation
double_execution=true #Activate Double Execution

2.11 High Level Fault Injection Technique (COTSon Modus (UAU)

To investigate the thread execution performancBaible Execution and Thread Restart Recovery
mechanism in presence of failures, we extendedbtseline TSU implementation by a failure
injection mechanism. Currently, the failure injectimechanism assumes a constant failure raer
core. However, we will incorporate more compleduia distributions in the last year of the project.

From the constant failure ratdKoren07], we derive the reliabilitR of a core at tim®t with
R() = e™"

where Dt is the duration since the last failure occurradthis core. A core’s reliability value is
updated when the core executes a thread and iasSLiBESTROY or TWRITE instruction. The TSU

subsequently generates a random numdeaand | withO rand 1 and verifies whether the core
has suffered from a defect:

bool faulty = random > reliability;

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 28 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We distinguish between two failure injection modes:

Bit flip failures and
thread failures

For the bit flip injection the TSU determines tlediability on each TWRITE and checks whether the
core became faulty. If the core has suffered frorfawdt, one random bit within the TWRITE
parameters is flipped.

For the thread failure injection, the TSU checles hliability during each TDESTROY operation. If
the core has suffered from a defect during thre@dgion, the TSU tags the thread as defective and
starts recovery actions.

The failure injection functionalities are managadhe COTSon configuration file by activating the

core_failure_injection=true parameter while the failure rate per second can be
adjusted by theore_failure_rate parameter. Finally, the failure injection modesédected by
the failure_injection_mode parameter. Fig. 10 shows exemplary the performance

degradation induced by thread failure injection #mead restart recovery for Fibonacci(40). More
results using the failure injection mechanism caridund in Deliverable D5.3.

Performance Degradation of Fibonacci(40)

22 = Failure Rate
20 - —e— 10/s
8- 100/
1.8 =
g
8 - [, |
= 1.6 - U - S
B 14
m
2 124
n
g 1.0 o
]
E 08+
E 0.6 4
0.4 4
I—)
02 - @ : —
0.0 —~
[I T 1
4 8 16 32
Cores
* *
#(. . 1 ()0 & . c(+ & (
D& . D&

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 29 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.12 Transactional Memory Support in COTSon (UNIMAN)

This section describes the implementation of Tretnsaal Memory (TM) on SimNow and COTSon.
Although COTSon provides the timing model for oim@dations, we cannot control the flow of the
program (as required in TM implementation) from hiit COTSon. Correctly dealing with

transactional execution and transaction abortsiresja TM module for SimNow which exists outside
COTSon.

There are two interfaces provided by AMD in ordeirtteract with SimNow: Analyzer interface and
Monitor interface. The Monitor interface is muctstier than the Analyzer interface but allows less
interaction with execution. If we intercept mema@ygcesses, as required during Transactions, then
Analyzer interface runs 40-50X slower than the rtaminterface. This performance advantage was
why the Monitor interface was chosen for COTSon.

For our TM implementation, two important features aeeded. Intercepting memory accesses to
detect conflicts, and saving and then restoringstegstate of the processors to correctly dedah wit
aborts. Further, to arrive at realistic performaasgmates, existing performance models in COTSon
need to be extended with Transactional behaviarthis reason we will be using both the interfaces
together, when using transactions.

2.12.1Functional Transaction Support

Functional support in a SimNow analyzer module ketepck of read and write sets, detects conflicts
and performs the necessary cleanup in case ofsalfdrthis level, our system can model both eager
and lazy versioning, and eager and lazy conflitecte®n. The behavior of the TM is described in
more detail in Deliverable D6.3. During the implaertagion and testing of this module, several bugs
were identified in SimNow. These were addressedAMD and fixed in an NDA versidnof
SimNow. This means that the TM module works cotyewith the NDA version, but not the current
public release.

The functional TM support has been made availableTERAFLUX partners and the wider
community through a branch in the COTSon Sourced~cegository. Further, a subset of the STAMP
(kmeans, vacatigrbenchmarks is included for testing and demonstrat

2.12.2Adding timing support with COTSon

Timing models for Transactional Memory have beedeadin a separate branch of COTSon. This
branch includes models for two TM systems. Thegsftire relevant contributions are:

The first is a simple bus based broadcast impleatient

The second is a more scalable distributed systdms. ifivolved adding timing support for a
distributed directory based cache coherence prbtoco

A network model has been implemented in place efdtandard bus simulation present in
COTSon, leading to a more realistic model for lssgalable systems.

2 =43 3567 J4AT62;) 354 6;34A4734? 9<A3;3B5H<7 32'67C:27484;3 =A4484;3 B635 " 567 57 ;23
>43 D44; 92776D:4 @2A <:: <A3;4A7

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 30 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Scalable Transactional Memory mechanisms have be#hon top of these protocols. This timing
support is separate from the functional simulatiothe SimNow analyzer module described above,
but needs to be used in conjunction with it.

On the level of timing simulation, the TM systengpgorted are lazy-lazy implementations. Further
details are described in Deliverable 6.3.

As with the functional module, TM timing support available in a branch on Sourceforge. This

includes the TM models themselves, distributedatiimy based cache coherence, network simulation,
and the scripts, documentation and tests to go thitise. Similar to SimNow, this work exposed

several bugs in COTSon, for which we have contaBdixes in conjunction with our partners at HP.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 31 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 Development and Simulation environment and supports

The adoption of architectural simulators has becassential for assuring the correctness of any
design. Architectural simulators historically swéfé from low simulation speed and accuracy,
imposing serious limitations on the ability of pietthg correct behaviors of the designed architectu
[Porterol2, Giorgi96, Giorgi97], especially in theny-core era. With the aim of providing a tool
characterized by a high simulation speed and acgui@ a heterogeneous kilo-core architecture
integrating an accurate network-on-chip simulatoe, TERAFLUX project adopts a framework based
on the COTSon [COTSon09] infrastructure. Comparedth veurrent state-of-the-art simulation
platforms, this approach offers a complete envirentor a many-core full-system simulation, and
for its power consumption estimation. In order taantee fast simulations, COTSon implements a
functional-directed approach, where functional atiah is alternated to a complete timing-based
simulation. The result is the ability of supportitg full stack of applications, middleware and ©Se
The modular approach on which COTSon is based allesvto adopt the proprietary AMD SimNow
[SIimNow09] as emulator. Finally, the integrationtb& proposed framework with the McPAT tool
[MCPATQ9] provides the ability of estimating powansumption.

= & * 0% # % / & &

3.1 The “tfx3"- TERAFLUX Simulation Host

The host machine that we selected as Consortiune wiighulation host (and its cost was initially
planned in our Annex-1) is shown in Fig. 11. Tlighe computer where we run the simulated virtual
processor, and the guest machine as the simulaaetine. We verified that such platform is able to
support the simulation of a very high humber ofesof7000+ cores in recent tests). In order to
achieve this goal, we need a powerful simulatiosteay. Currently, we use as host machine a DL-
Proliant DL585 G7 based on AMD Opteron™ 6200 Sefiés<3], which provides 64 cores coupled
to 1 TB-DRAM of shared main memory.

There is a trade-off between complexity of the gneschine and the time required by the simulation.
Higher complexity in the guest machine (numberiofutated cores, memory etc.) produces longer
simulations. A good trade-off is to use one hosedor each functional instance (i.e., a functional
instance is equivalent to a node in the simulategd architecture) representing a node. Each node ca
have up to 32 cores but we found out that 16 x8@di4s per node can better scale up in terms of
execution time. Hence, the simulation of a thouszor@ system can be achieved by distributing the

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 32 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

simulation to more than one host. However, sincemaat to focus on the simulation of a 1K-core
system, considering a single host machine is seffic In order to correctly simulate a kilo-core
architecture, we booted up 64 virtual nodes, eawh aontaining 16 x86-64 cores based on AMD
Opteron-L1_JH-FO (800Mhz) architecture, and 256MADRper core. Fig. 12 depicts the system
host and guest systems.

Moo oll.] (oo ol .
/! ® ®
2@ 9E 68 > oo O ® 00O o ®
=== : L L
s 15 [
5 %%II- @"%5 5% >4552
Q 5%%§élll u
== |] .
fES am B Do of |- oo ol .
oo o] 7] oo o] [

W orsr<okaz 5 2na [6n3F<i6Ka? 482A> 23n2: 4] 6A3F<i6KA? 43B2AL 34A@<C4

2& &&F >&

Each node runs a Linux operating system. On toghf system, we are able to run several
benchmarks based on both OpenMP and MPI programmoudgls. One of the main modifications
we did is the implementation of the DF-Thread supforteroll, Giorgil2, D72, KaviOl, Giorgi07]
through the ISA extension. DF-Threads enable a&mfft execution model based on the availability
of data and allow many architectural optimizations possible in current standard off-the-shelf sore

2 .+ 28@ , <
E
- [
E
E
E B @A44 8482A%
v oE
c mF747? 8482A>
< E
" E
® E
E
61 =939 (&) .&0
6! F $&&@ , < 28 # % 7 >

) 2@ /9 =939 (&0

We can still double the number of virtual nodesfr64 to 128 (one master node and 128 slaves)
resulting in a 40% usage of the DRAM memory in flest machine. Fig. 13 shows the trend if we
increase the number of virtual nodes. As expedteel,main memory consumption and the CPU
utilization on the host increase. We achieved moutite 220 nodes of 32 cores, 7040 cores in total
using the 92% of the main memory and the 93% ofhibet CPU utilization. This demonstrates the

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 33 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

ability of the proposed simulation framework tolsdhe simulations to 1 kilo-core range and beyond
(up to 7 kilo-cores were tested).

3.2 PIKE — Automatizing Large Simulations (UNISI)

Many steps that are necessary to setup a COTSarasiom requires the knowledge of many details
that slowdown the learning curve of using our satioh platform. Therefore, UNISI decided that a
good way to improve the knowledge transfer wouldehbeen to provide an additional tool to easy
this process: this tool is called PIKE.

COTSon is a full system simulation infrastructureveloped by HP Labs to model complete
computing systems ranging from multicore nodesouglisters with complete network simulation. A
single simulation requires the configuration ofiwas parameters by editing a configuration file
(written in the Lua language); further configuratiof some scripts is recommended to allow more
control of simulated events, for example to set sygcific option (e.g. MPI) or specify featurestsuc
as the definition of a region of interest, or ewrput of the simulation in a file stored in thesho
machine. In addition, this work should be donedach parameter of the benchmark used. PIKE can
be run in two different modesilent (the simulation steps are shown) ardbose(a debug mode in
which every single operation performed by PIKE riacéd). Fig. 14 shows an example of the
information provided by pike when it is executedsilent mode, and Fig. 15 depicts the execution of
pike in verbose mode.

=(#G &

The purpose of PIKE is to automate the simulationfiguration and execution generating all Lua
files and scripts suitable for benchmark executloraddition, it allows the user to use all avdiab
host cores, and enables simulation in batch modenesns of a thread pool mechanism created
according to the characteristics of the host maehin

3.2.1 Overall organization
PIKE uses a single configuration file to set theap@eters of the simulation. Such file is used to se

1. the list of simulations to run;
2. software configuration like communication type,unfile name and region of interest;

3. hardware properties like cache configuration, tgmmodel, node number and core number.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 34 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Through this single configuration file, PIKE prodsc simulation output and statistics inside a
specified folder, which we refer to as WorkingDirectory The PIKE configuration requires the user
to specify the path to the directories listed ifbl€a2:

[72)

bin/ Contains all the benchmarks binaries (usuzdiyipiled on host machine)
for simulation, and scripts that run on the guest

config/ Containghe config file for simulation, currently this da®ry must contai
the ROM file eventually specified in the configuoat

cotson/ Path to the COTSon installation (if it & imstalled, PIKE can download
and install it automatically)

image/ Directory that contains the optional ISO gesfor SimNow, and any file
*-reset.bsd useful for creating custom BSD

src/ source directory, in which SimNow binary pagkés stored. If this
directory is empty, PIKE tries to download the SiowNbinary package
files directly from the AMD website

simnow/ SimNow installation directory if it exists

log/ log directory file, where statistics, errordamutput are stored at the end

the simulation

Df

Lo#*x x . (, .., #5G

If the path of a specific directory is not spedfien the configuration file, it is searched in the
WorkingDirectory It is possible to create a skeleton of M&rkingDirectory using the script
create_skel.simside the tools directory. The PIKE directory tias structure shown in Table 3.

lib/pike

contains the libraries and classes forgike operations

bin/

contains the main PIKE scripts

o> (*#G . (,

3.2.2 Functions Exposed to the User

PIKE currently allows the user to automate the atien of batch simulations. It allows specifying
custom parameters in order to explore differentdWware configurations for the target system,

Deliverable number: D7.4

Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 35 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

together with control parameters eventually needgedhe benchmarks. Such parameters can be
specified in the PIKE configuration file. The list main sections of the configuration file is refear
in Table 4.

I > (*#5G (

[system] Allows us to specify a custom path for BJHisted in Table 1.
Appropriate links to any SimNow ISO images will fmgtomatically
created in the COTSon data directory

[log] Allows us to specify the output directory thie log produced by the
simulation, together with the names for the oufjpes if needed. If such
names are not customized, PIKE creates log filagyum alphanumeric
code as simulation’s identifier.

[file] Characteristics of the simulation as the BI®OM file (if present) and
custom Hard-Disk image file (if any)

[hardware] @est hardware configuration to be used in the bmack, i.e. the numby{
of nodes, number of cores, and the size of the ram

[software] Software packages to be installed orgtiest before running the

simulation. The COTSon mediator is used to proeithernet based
connection among the simulated nodes. PIKE suppottsdeb and rpm
based packages

[support] Simulation support files, like input sgtbenchmark configuration
parameters

[simulator] Binaries to run and parameters. Foheatry a different simulation will
be launched. Each run will be identified by a dif& alphanumeric cod¢

[options] To enable or disable mpi support

[cache] Cache parameters and configuration

[mediator] Mediator configuration inside the sintida

3.2.3 Current limits

PIKE currently does not allow complete control othex timing options of the simulations. It does not
allow the execution of too complex benchmarks, likese that need an ad-hoc installation process
rather than loading a single executable binaryrandt. Another limitation of the current versioh o
PIKE is the impossibility to redirect and contrbketbenchmark output file (if any), for example to
copy it from guest to host. PIKE uses the mostnegersion of COTSon to work. If the COTSon
installation directory is not present, neither e tconfiguration file nor in th&/orkingDirectory
PIKE will download and install it on a specific f@r WorkingDirectory. This technique allows
having a number of independent working environmenIkE is strongly coupled to COTSon: it is a
wrapper of the simulator. Consequently, if the datar has bugs, PIKE automatically inherits them.

3.2.4 Examples

In the PIKE installation folder there is also anaewle of the configuration file called
“pike_example.conf’. Running this example uses ghdpt "binary_test.sh" that prints to standard
output a given parameter (always specified in gumétion file). Fig. 16 shows the SimNow console
running this test example for a single simulatitins possible to use this example to test a single
node. If the user wants to run more sophisticatedtiimode simulations, like using MPI or other
multi-node simulation options, he/she may use ecussanNow HD images (like debian.img).

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 36 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[1] AMD SimNow Main Window —— Public Release (su tfxa.promana.unisi.it)

File Wiew Specia Keyboard Help

FEIEEICEI
Mumzriz Disalzy(s) b
— Simulatcr Stass————— ~ Uk Primary Display—— - IUE Secondary Display — Diagnosiic Forts FHoppy Display-

15.52 Heet Ssconde 962560 master resd 0 master resd ,EE,E FB 83- 80 0 read

20.72 Sim Seconds 131,072 master writtzn 0 master writtz 1 'ﬁﬁ'ﬁ 00 87- &84 0 writen

155 Avg MIPS FesetAvgl 0 slave read 0 slave read 'E ag ’E 00 =l-20
WMPS | 0 slave written | 0 slave written
DMAFID mode FISPID mude

To access official Ubuntu documentation, please visit:
http://help.ubuntu.comns

root@cotson:™# xget ..rdatascluster.sh b : sh .rh

fill setrshnsts

otzon_nctwork_rcstart

stopping all network conmands
generating setc/networksinterfaces
cleaning retcsresolv.conf

baptize nic

setting hostname

start networking

= Restarting OpenDSD 3ecure Shell server sshd
esting script: parameterl

Running 4
9>6+ & (+* & = E& &

Fig. 17 shows two SimNow windows that are openeémBIKE is executed with the same binary
file (binary_test.sh) using two different applicats, customized per-nodsimulation_binaryland
simulation_binary2 Two different simulations are running, each wiitle respective log and output
files stored in the PIKE log directory, and ideieiif by an alphanumeric code. These simulations use
physical cores on the host machine through a tipeatimechanism.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 37 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

+>6++ .+& (& & #5G

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 38 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.3 The Eclipse Module for TFLUX (UCY)

In the context of WP3, we explored the augmentatibthe data-flow model with the support for
transactions. In this workpackage (WP7), we repaoit progress on providing tools to additional
transferring the knowledge of TFLUX; in particulare present here an Eclipse module for TFLUX.

Programmability is a major challenge for futureteyss as users need to adopt new models as to fully
exploit the potentials of such systems. The uskes wish to program using the Data-Driven
Multithreading (DDM) model are faced with two ddilties. First, given the nature of the model
being based on the dataflow execution of thredususers need to make an analysis of the problem
and split it into threads and find the data depeogeelations among those threads. This is usually
the hard step of the programming. But in additithe, second difficulty is that in order to express
these threads and dependencies, the users nesd t new set of directives in their programs. In
order to address this last issue we have develagadg-in for Eclipse that helps the programmers
with the task of adding the DDM directives to theagde and also integrates in an easier way the
different tools needed to generate the DDM exedeitahe DDM Eclipse plug-in is composed of
three modules: the Content Assistant, which showsop-down list of available pragma directives
while the user is coding; the Side Panel, whiclpldigs a panel next to the code that shows available
directives and their arguments; and the Pre-processegration, which offers the ability to calleth
DDM pre-processor and generate the DDM code frothiwiEclipse. The following figures show
different screenshots from the procedure of dewetpp DDM code using the new Eclipse plug-in.

D (&& & ;& F I %%@ - ,+ .&

3.3.1 The Content Assistant Plug-in

Fig. 18 illustrates the basic functionality of thentent assistant plug-in. While a user is writang
pragma directive by typingipragma ddmafter leaving a blank space and pressing the CRTL
SPACE key combination, a proposal window will appedth all the available options for that
specific pragma.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 39 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

B: * (&& & ; * %%@ - ,+ & & + *HWF@3l * &(*.

(. **.

In Fig. 19 the user is already editing a DDM pragsw@only valid proposals appear. Proposals are
made according to what user has written so far.yM#rthe parameters in a pragma directive have
predefined values, like the scheduling policiesrghm the above image.

CF & ; A | &

3.3.2 The Side Panel Plug-in

Fig. 2CErrore. L'origine riferimento non & stata trovata. depicts the side panel plug-in imported to
the Eclipse platform. This plug-in consist of twst$, theSample Viewist and thePropertylist. The
Sample Viewcontains the pragmas that are available to the tasese. A user can insert a specific

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 40 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

pragma by just clicking on an item of tBample View listThe Propertylist, as the name suggests,
contains the properties of each pragma along \withavailable parameter values.

& &+ L+ & & *&(*.

An example is shown in Fig. 21 where the threadypiais selected at tfgample View lisand the
Property list shows its properties such as thread numtreduling mode and value, ready count
value etc.

-y ; (. (& * %%@ &

The side panel plug-in autocompletes the endingifofpmacros for a DDM pragma after pressing
Enter at the end of a pragma directive line (FR). 2

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 41 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

& ; &+ * & & (.

A user is able to change the properties of a spgmiigma by moving the cursor on the line of that
pragma. This will cause the Property list of thdespanel plug-in to show the properties of the
selected pragma, as show in Fig. 23.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 42 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.4 Support to the Partners for Implementing COTSon Exisions (HP)

The COTSon simulator is released by HP to the s@iercommunity. In the context of the
TERAFLUX activities, the COTSon simulator has bestended in order to provide the partners with
all the features needed for their research. Iriqudatr, the simulation platform is shared amongfad!
members of the TERAFLUX consortium, so that eactinga can add features (or extend existing
ones). In this process, it is important to havérang support from the simulator releaser, in otder
speed up the development phase. To this end, anl le®fore the project started, HP provided a
strong support to the other TERAFLUX partners ia tmplementation process. Partners contacted
HP members directly, or even via the COTSon forang received a quick answer to their requests
(suggestions, doubts, etc...). This has been aredeyant contribution to all partners and it sldoul
appreciable throughout this document.

3.5 Tutorial Sessions on OmpSS Open to the Partners@3S

The StarSs programming model is the proposal frddC Bn TERAFLUX to provide a scalable
programming environment to exploit the dataflow mloon large multicores, systems on a chip and
even across accelerators. StarSs can be seereateasion of the OpenMP model. Unlike OpenMP,
however, task dependencies are determined at remnbiamks to the directionality of data arguments.
The StarSs runtime supports asynchronous execafidgasks on symmetric and on heterogeneous
systems guided by the data dependencies and chothencritical path to promote good resource
utilization. The StarSs (also named OmpSs) tuteriddve also covered the constellation of
development and performance tools available for ghegramming model: the methodology to
determine tasks, the debugging toolset, and thavBaperformance analysis tools. Experiences on
the parallelization of real applications using St&have also been presented. Among them, the set of
TERAFLUX selected applications in WP2 have beentqubto StarSs and made available to the
partners. Such training and tutorials have beerrgat TERAFLUX meetings and related summer
schools, Workshops and conferences, like CASTNE®8&SYops, the PUMPS Summer School 2011
and 2012, the HIPEAC 2012 conference and the Sapgrating 2012 conference.

The second activity from BSC to train other parsni@rthe use of the target simulation environment
has been on the occasion of the mechanism dewotsidaring memory among COTSon nodes. It is
based on the characterized release consistencyn amderlying foundation for the TERAFLUX
memory model. The three proposed operations hags: lcquire Region / Upgrade Permissions /
Release Region, that have enabled the exploratioimter-node shared memory techniques, by
replicating application memory in all nodes and piag all guest memory onto a single host buffer.
We have implemented a release consistency backer@dTSon, where the application can request
acquires/upgrades/releases on memory regions. &uyr rhemory replication aggregates multiple
updates and a functional backend copies memory @amodes. Discussions among partners have
enhanced the implemented backend and benchmaskit®at shown its usability.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 43 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[Cameron95] Cameron Woo, S.; Ohara, M.; Torrie, E.; Pal Sidgland Gupta, A., The SPLASH-2 programs:
characterization and methodological consideratibmBroc. of the 22nd annual international sympmsan Computer
architecture (ISCA '95). ACM, New York, NY, USA, 243

[COTSon09] Argollo E., Falcon, A.; Faraboschi, P.; Monchievh; Ortega, D., Cotson infrastructure for full syste
simulation. ACM SIGOPS Operating System Reviews. dgnR009, 43:52—61, 2009.

[D72] Giorgi R. et al, “D7.2— Definition of ISA extensignaustom devices and External COTSon API extensions”

[Giorgi96] Giorgi, R.; Prete, C.A.; Prina, G.; Ricciardi, L.,Hybrid Approach to Trace Generation for Performance
Evaluation of Shared-Bus Multiprocessors, IEEE PP@nd EuroMicro Int.I Conf. (EM-96), ISBN:0-8186-748, Prague,
Ceck Republic, Sept. 1996, pp. 207-214

[Giorgi97] R. Giorgi, C.A. Prete, G. Prina, L. Ricciardi, "Trdeactory: Generating Workloads for Trace-Driven Sation
of Shared-Bus Multiprocessors", IEEE ConcurrencyN9892-3063, Los Alamitos, CA, USA, vol. 5, no. 4t01997, pp.
54-68, doi 10.1109/4434.641627

[Giorgi07] Giorgi, R.; Popovic, Z.; Puzovic, N., DTA-C: A Decdag multi-Threaded Architecture for CMP Systems,
Proc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007,288-270

[Giorgil2] Giorgi, R.; Scionti, A.; Portero, A.; Faraboschi, Rrchitectural Simulation in the Kilo-core Era, ¢hitectural
Support for Programming Languages and OperatinteBys(ASPLOS 2012), poster pres., London, UK, A@B1,2

[Kavi0l] Kavi, K. M.; Giorgi, R.; Arul, J., Scheduled DatafloExecution Paradigm, Architecture, and Perforneanc
Evaluation, IEEE Trans. Computers, Los Alamitos, OSA, vol. 50, no. 8, Aug. 2001, pp. 834-846

[Koren07] Koren, I.; Krishna, M. C., Fault-Tolerant Systeman%rancisco, CA, USA: Morgan Kaufmann Publishecs, In
2007.

[MCPATO09] Sheng Li, Jung Ho Ahn ; Strong, R.D. ; Brockman, JBullsen, D.M. ; Jouppi, N.PMcPAT: An integrated
power, area, and timing modeling framework for meolte and manycore architectures. In Proc. of @xe4Annual
IEEE/ACM International Symposium on Microarchite&u2009. MICRO-42. 12-16 Dec. 2009, 469 - 480

[Porterol1] Portero, A.; Zhibin Yu; Giorgi, R., T-star (t*): Ax86-64 isa extension to support thread executiomany
cores. ACACES Advance Computer Architecture and Catipii for High-Performance and Embedded Systerds,7t:
280, 2011.

[Porterol2] Portero, A.; Scionti, A.; Zhibin Yu, Faraboschi; Boncatto, C.; Carro, L.; Garbade, A.; Weis, S.; UageT.;
Giorgi, R., Simulating the Future kilo-x86-64 con@&essor and their Infrastructure, 45th Annual $ation Symposium
(ANSS), March 2012, Orlando, Florida

[Ronen97]Ronen, R., Method of modifying an instruction sehitecture of a computer processor to maintain \aot
compatibility, patent US5701442, Dec. 1997

[SF] http://cotson.svn.sourceforge.net/viewvc/cotson/

[SimNow09] AMD SimNow Simulator 4.6.1 User's Manual, NovemR&09. Available at:
http://developer.amd.com/tools/cpu-development/siwsimulator/

[TFX3] http://h10010.www1.hp.com/wwpc/us/en/sm/WF06a/1585351-3328412-241644-3328422-4194641.html?dnr=1

[x86] “Intel® 64 and IA-32 Architectures Software Devedr’'s Manual”, Vol. 2: “Instruction Set Manual”, Mzh 2010

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 44 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix A

The Matrix Multiplication, developed at UNISI neetth® nhumbes of rows and columns of the square
matrices A and B, andap for the number of partitions within the result mmatto which the
multiplication algorithm is recursively applied, iaput parameters.

After a first construction phase for the A and Btricas, which are composed kyrandom integer
elements, the algorithm allocates the C matrihefgame size, then partitions the @@asub-blocks.
At this point, the multiplication algorithm is apgd to each sub-block;C

Fig. 24 shows the structure of the dataflow versibrthe algorithm implemented using the T*
extension to the x86_64 ISA, referring to its immpéntation introduced in Section 2.1. Each DF-
Thread of the algorithm is represented with a ejrprecedence between two threads is highlighted
with arrows, so that the source of the arrow ishim scheduling thread, and points to the scheduled
thread.

mul_thread
_next_el

(current block == np) ?

(current elem
== last) ?

mul_thread

_end (current term

==last) ?

% + * *1(-.@ =@ (*

The main thread is responsible for reading the input valdesn the command line, and
unconditionally scheduling two threads: floen_threadswith a synchronization count ofp+2, and
themain_ep_lthread with synchronization count 10. Tjban_threadsrepresents the very last thread
of the algorithm: it has to wait for 2 data to betien in its frame memory (that is, the pointeittie
matrix C and its size), plugp “fake” values, one for each partition of the résoéatrix, written at the
offset zero of the frame once every sub-block has been catmlilarhis mechanism allows the
join_threadsto synchronize its execution: it will run only whall the sub-blocks are ready, because
its synchronization count will be reduced to zeydhe last TWRITE operation for the “fake” value at
offset zera The main_ep_1thread receives in its frame memory, from thain thread, all the
information needed for execution (e.g. memory mmfor matrix A, B and C, size of the matrices
and of each sub-block, etc...): it is responsibleuinconditionally scheduling thraul_thread(which

is the real multiplication algorithm for the sulwsbk) and then to re-schedule itself under the
condition that the multiplication algorithm has hestarted for all thap partitions (i.e. this isot the
np" execution of thenain_ep_1thread).

The mul_threadis responsible for calculating the bound indexes the sub-block, and then it
unconditionally schedules timeul_thread_next_edhread, which will compute the indexes for reading
from the input matrices A and B, and pass therhégalc_curr_elthread for calculation.

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 45 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Thecalc_curr_elthread reads the current element values from ceastrh and B, then calculates the
value of the current element of C; if all the termisthe sum have been calculated, then the
move_to_next_ehread is scheduled, otherwise it schedules itggdin for reading the next elements
from the input matrices.

The move_to_next_dhread is responsible for checking the completeméshe current sub-block
calculus: if the sub-block is ready, then timeul_thread_endis scheduled, otherwise the
mul_thread_next_ethread is scheduled again for calculating the mdemment of the current sub-
block. Themul_thread_endhread is responsible for writing the “fake” valisethe frame memory of
thejoin_threads

Please note that:

themain_ep_Imust be separated from timainthread, since the latter schedules one instance
of the join_threads but main_ep_1is schedulednp times since it must schedulap
mul_thread one for each sub-block;

the mul_threadand mul_thread_next_etan’t be merged: the former calculates the bound
indexes for the current sub-block, while the lateescheduled for each element of the sub-
block (i.e.s/np times);

the calc_curr_el can't be merged with thenul_thread next elthe first performs the
multiplication-and-sum operation needed for commtihe current element, and this it is
scheduled for each term of the sum (i.e. pair emeints read from A and B), while the
second only once for each element;

themove_to_next_ehust be separated from thalc_curr_thread because it must check for
the current sub-block completeness once the cuelament of the sub-block has been
successfully calculated;

the mul_thread_endan’t be merged with thmove _to next_dbecause it is scheduled once
for each sub_block (it is responsible for the “fakeite in thejoin_threadsframe), while the
other is scheduled once for each element of théokdk.

In the following, we also list the mmul.c code, tmmpleteness:

#define TSU_PRELOAD_FRAME
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

#include "tsu.h"

#define DF_TSCHEDULE(_cond,_ip,_sc) df_tschedule_co nd(_ip,_sc,_cond)
#define DF_TWRITE(val,_tid,_off) df_write(_tid,_of f,_val)
#define DF_TWRITEN(val,_tid,_off) df_writeN(_TLOC(_tid,_off),_val)

#define DF_TREAD(_off) df_frame(_off)
#define DF_TLOAD(n) df_Idframe(n)
#define DF_TDESTROY() df_destroy()

/I stat reporting help
uint64_t tt;

uint64_t ts0[100],ts1[100];
1
/I df threads pre-declaration
void main_ep_1 (void);
void main_end (void);

void mul_thread (void);

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 46 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

void mul_thread_next_el(void);
void calc_curr_el(void);

void move_to_next_el(void);
void mul_thread_end(void);
void join_threads(void);

void usage() {
printf("\nMatrix Multiplier\n****siiickiir\ n|
printf(" s - size of the (squared) matrix\
fflush(stdout);

}
int main(int argc, char **argv)
uinté4_tr4, r5, i;

if (argc < 3) {
usage();
return 1;

}

rd4 = atoi(argv[1]); // matrix size
r5 = atoi(argv([2]); // number of processors

srand(time(NULL));

uinté4_t r8 = rd*r4;
uint64_t *r2 = malloc(r8*sizeof(uint64._t)); // m
uint64_t *r3 = malloc(r8*sizeof(uint64._t)); // m
for (i=0;i<r8;i++) {

r2[i] =rand();

r3[i] =rand();

tt = df_tstamp(ts0); // START TIMING

uint64_t *r12 = malloc(r8*sizeof(uint64._t)); // m
for (| =0;i<r8; i++) r12[|] =0;

uinté4_trl4 =0,
rié =0,
rl0 =r8/r5, /I size * size / num_pro
r55 = log2(r4); /I log(size)

uinté4_trl3 =r5 + 2;

uinté4_t r58 = DF_TSCHEDULE (1, join_threads, 10)

DF_TWRITE (r12, r58, 4); // write in the FM of "]
DF_TWRITE (r4, 158, 5); [/ write size of the res

uinté4_t r59 = DF_TSCHEDULE (1, main_ep_1, 10);

DF_TWRITE (r2, 159, 1); // A
DF_TWRITE (r3, 159, 2); // B
DF_TWRITE (r12,r59, 3); // C
DF_TWRITE (r4, r59, 4); // size
DF_TWRITE (r5, r59, 5); /I np
DF_TWRITE (r14, 159, 6); //

DF_TWRITE (r10, r59, 7); // size * size / num_pr

DF_TWRITE (r55, r59, 8); // log(size)

DF_TWRITE (r58, r59, 9); // pointer to the FM of

DF_TWRITE (r16, r59,10); //

return O;

}

void main_ep_1 (void) [l frame is the fram
DF_TLOAD(10);
uinté4_tr2 = DF_TREAD(1), // A

r3 = DF_TREAD(2), // B
r12 = DF_TREAD(3), // C

=)

Jmmul s np\nwhere:\n");
n np - number of available cores\n");

atrix A
atrix B

atrix C = AxB

cessors

oin_threads" the pointer to matrix "C"
ult matrix "C"

ocessors <-- represents this part size

thread "join_threads"

e pointer of the thread "fib"

Deliverable number: D7.4

Deliverable nameReport on knowledge transfer and training

File name: TERAFLUX-D74-v10.doc

Page 47 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

r4 = DF_TREAD(4), /I size

r5 = DF_TREAD(5), // np

rl4 = DF_TREAD(6), //

rl0 = DF_TREAD(7), /I size* size | np

r55 = DF_TREAD(8), // log(size)

r58 = DF_TREAD(9), // pointer to the FM of thread "join_threads"
r1l6 = DF_TREAD(10); // current proc

uinté4_t r60 = DF_TSCHEDULE (1, mul_thread, 8);

DF_TWRITE (r2, r60, 1); // A
DF_TWRITE (r3, r60, 2); // B
DF_TWRITE (r12, r60, 3); // C
DF_TWRITE (r4, r60, 4); /I size
DF_TWRITE (r14, r60, 5); //

DF_TWRITE (r10, r60, 6); // size * size / num_pr ocessors <--- represents this part size
DF_TWRITE (r55, r60, 7); // log(size)

DF_TWRITE (r58, r60, 8); // pointer to the FM of thread "join_threads"

ri4 +=rlo;

ri6 += 1,

uint8_t cnd = (r16 ==r5);
uint64_t r59 = DF_TSCHEDULE(!cnd, main_ep_1, 10) ;

DF_TWRITE (r2, 159, 1); // A
DF_TWRITE (r3, 159, 2); // B
DF_TWRITE (r12, 159, 3); // C
DF_TWRITE (r4, r59, 4); /I size
DF_TWRITE (r5, r59, 5); /[np
DF_TWRITE (r14, 159, 6); //

DF_TWRITE (r10, r59, 7); // size * size / num_pr ocessors <--- represents this part size
DF_TWRITE (r55, r59, 8); // log(size)
DF_TWRITE (r58, 159, 9); // pointer to the FM of thread "join_threads"

DF_TWRITE (r16, r59,10); // next proc

DF_TDESTROY();
}

void mul_thread (void)
DF_TLOAD(8);

uinté4_t r2 = DF_TREAD(1), // A
r3 =DF_TREAD(2), // B
r4 =DF_TREAD(3), //C
r5 = DF_TREAD(4), // size
r6 = DF_TREAD(5), //
r7 = DF_TREAD(6), /I size* size | np
r55 = DF_TREAD(7), // log(size)
r58 = DF_TREAD(8); // pointer to the FM of thread "join_threads"

r7 +=16; // r7 holds the end index
uinté4_t r10 = r6; // r10 takes the start index

uinté4_t r44 = DF_TSCHEDULE (1, mul_thread_next_e I, 8);

DF_TWRITE (r2, r44, 1); Il A

DF_TWRITE (r3, r44, 2); /I B

DF_TWRITE (r4, r44, 3); /I C

DF_TWRITE (r10, r44, 4); // start index

DF_TWRITE (r55, r44, 5); // log(size)

DF_TWRITE (15, r44, 6); // size

DF_TWRITE (r58, r44, 7); // pointer to the FM of thread "join_threads"
DF_TWRITE (r7, r44, 8); // the end index for th is part

DF_TDESTROY();
}

void mul_thread_next_el (void)

{
DF_TLOAD(S);

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 48 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

uinté4_t r2 = DF_TREAD(1), // A
r3 = DF_TREAD(2), // B
r4 =DF_TREAD(3), //C
rl0 = DF_TREAD(4), // start index
r55 = DF_TREAD(5), // log(size)
r5 = DF_TREAD(6), // size

r58 = DF_TREAD(7), /I pointer to the FM of thread "join_threads"
r7 = DF_TREAD(8); /I the end index for this part
uinté4_t r32 = r10 >> r55;
r32 *=r5;
uinté4_t r30 =r10 - r32,
r26 = 0, // needed for calculating curre nt element (sum)
r34 = 0; // needed for calculating curre nt element (counter)

uinté4_t r44 = DF_TSCHEDULE (1, calc_curr_el, 12) ;

DF_TWRITE (r2, r44, 1); Il A

DF_TWRITE (r3, r44,2); /I B

DF_TWRITE (r4, r44, 3); /I C

DF_TWRITE (r32, r44, 4); // index for A

DF_TWRITE (r30, r44, 5); // index for B

DF_TWRITE (15, r44, 6); /I size

DF_TWRITE (r26, r44, 7); I/

DF_TWRITE (r34, r44, 8); I/

DF_TWRITE (r10, r44, 9); // start index

DF_TWRITE (r58, r44, 10); // pointer to the FM of thread "join_threads"
DF_TWRITE (r7 , r44, 11); // the end index for th is part
DF_TWRITE (r55, r44, 12); // log(size)

DF_TDESTROY();
}

void calc_curr_el (void)
{
DF_TLOAD(12);

uint64_tr2 = DF_TREAD(1), // A
r3 =DF_TREAD(2), //B
r4 =DF_TREAD(3), // C
r32 = DF_TREAD(4), /I index for A
r30 = DF_TREAD(5), // index for B
r5 = DF_TREAD(6), // size
r26 = DF_TREAD(7), /I
r34 = DF_TREAD(8), //
rl0 = DF_TREAD(9), // start index

r58 = DF_TREAD(10), // pointer to the FM of thread "join_threads"
r7 = DF_TREAD(11), // the end index for this part
r55 = DF_TREAD(12); // log(size)
uinté4_t *A = (uint64_t *)r2, // r2 contains the address of the first element of matrix A
*B = (uint64_t *)r3; // r3 contains the address of the first element of matrix B

uint64_t r28 = A[r32],
r29 = B[r30];
r26 +=r28*r29; // current part of the sum
r30 +=r5;
r32++,
r34++;

/l'if (current element is the last for this sub-b lock) schedule(move_to_next_el);
/I else schedule(calc_curr_el);

uint8_t cnd = (r34 ==r5);

uinté4_t r44 = DF_TSCHEDULE (cnd, move_to_next_el ,12);

r44 |= DF_TSCHEDULE (!cnd, calc_curr_el, 12);

DF_TWRITE (r2, r44, 1); Il A

DF_TWRITE (r3, r44, 2); /I B

DF_TWRITE (r4, r44, 3); /I C

DF_TWRITE (r32, r44, 4); // index for A

DF_TWRITE (r30, r44, 5); // index for B

DF_TWRITE (15, r44, 6); /I size

DF_TWRITE (r26, r44, 7); // current part of the sum

Deliverable number: D7.4
Deliverable nameReport on knowledge transfer and training
File name: TERAFLUX-D74-v10.doc Page 49 of 50

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

DF_TWRITE (r34, r44, 8); /I

DF_TWRITE (r10, r44, 9); // start index
DF_TWRITE (r58, r44, 10); // pointer to the FM of
DF_TWRITE (r7 , r44, 11); // the end index for th
DF_TWRITE (r55, r44, 12); // log(size)

DF_TDESTROY();
}

void move_to_next_el (void)
{
DF_TLOAD(12);

uinté4_t r2 = DF_TREAD(1), // A
r3 = DF_TREAD(2), // B
r4 =DF_TREAD(3), //C
r32 = DF_TREAD(4), // index for A
r30 = DF_TREAD(5), // index for B
r5 = DF_TREAD(6), // size
r26 = DF_TREAD(7), // the sum for this
r34 = DF_TREAD(8), //
rl0 = DF_TREAD(9), // start index
r58 = DF_TREAD(10), // pointer to the FM
r7 = DF_TREAD(11), // the end index for
r55 = DF_TREAD(12); // log(size)

uinté4_t *pC = (uint64_t *)r4; // r4 holds the ad

pC[r10] = r26;
r10++;
/'if (r1l0 ==r7, means this is the last element)

/I else schedule(mul_thread_next_el);

uint8_t cnd = (r10 ==r7);

uinté4_t r44 = DF_TSCHEDULE (cnd, mul_thread_end,
r44 |= DF_TSCHEDULE ('cnd, mul_thread_next_el, 8)

DF_TWRITE (r2, r44, 1); Il A

DF_TWRITE (r3, r44,2); /I B

DF_TWRITE (r4, r44, 3); /I C

DF_TWRITE (r10, r44, 4); // start index
DF_TWRITE (r55, r44, 5); // log(size)
DF_TWRITE (15, r44, 6); /I size

DF_TWRITE (r58, r44, 7); // pointer to the FM of
DF_TWRITE (r7, r44, 8); // the end index for th

DF_TDESTROY();
}

void mul_thread_end (void)
DF_TLOAD(1);

uint64_t r58 = DF_TREAD(7); // pointer to the FM
DF_TWRITE (1, r58, 1); /I "fake" write, nee

DF_TDESTROY();
}

void join_threads (void)
{
DF_TLOAD(2);

uinté4_t r4 = DF_TREAD(4), /I pointer to the re
r5 = DF_TREAD(5), // size of the resul
tt = df_tstamp(tsl) - tt; // END TIMING

DF_TDESTROY();
df_exit();
free((uint64_t *)r4);

thread "join_threads"
is part

result matrix element

of thread "join_threads"
this part

dress pointer to the matrix C

schedule(mul_thread_end)

8);

thread "join_threads"
is part

of thread "join_threads"
ded to signal the thread "join_threads"

sult matrix C
t matrix C

Deliverable number: D7.4

Deliverable nameReport on knowledge transfer and training

File name: TERAFLUX-D74-v10.doc

Page 50 of 50

