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Glossary  
Auxiliary Core  A core typically used to help the computation (any other core than service 

cores) also referred as “TERAFLUX core” 
BSD BroadSword Document – In this context, a file that contains the SimNow 

machine description for a given Virtual Machine 
CLUSTER group of cores (synonymous of NODE) 

COTSon Software framework provided under the MIT license by HP-Labs 
DDM Data-Driven Multithreading 

DF-Thread A TERAFLUX Data-Flow Thread 
DF-Frame the Frame memory associated to a Data-Flow thread 

DVFS Dynamic Voltage and Frequency Scaling 
DTA Decoupled Threaded Architecture 
DTS Distributed Thread Scheduler 

Emulator Tool capable of reproducing the Functional Behavior; synonymous in this 
context of Instruction Set Simulator (ISS) 

D-FDU Distributed Fault Detection Unit 
L-Thread Legacy Thread: a thread consisting of legacy code 

L-FDU Local Fault Detection Unit 
L-TSU Local Thread Scheduling Unit 
MMS Memory Model Support 
NoC Network on Chip 

Non-DF-Thread An L-Thread or S-Thread 
NODE Group of cores (synonymous of CLUSTER) 
OWM  Owner Writeable Memory 

OS Operating System 
Per-Node-Manager A hardware unit including the DTS and the FDU 

PK       Pico Kernel 
Sharable-Memory Memory that respects the FM,OWM,TM semantics of the TERAFLUX 

Memory Model 
S-Thread System Thread: a thread dealing with OS services or I/O 

StarSs A programming model introduced by Barcelona Supercomputing Center 
Service Core A core typically used for running the OS, or services, or dedicated I/O or 

legacy code 
Simulator Emulator that includes timing information; synonymous in this context of 

“Timing Simulator” 
TAAL  TERAFLUX Architecture Abstraction Layer 
TBM  TERAFLUX Baseline Machine 
TLPS Thread-Level-Parallelism Support 

TLS Thread Local Storage 
TM  Transactional Memory 

TMS Transactional Memory Support 
Virtualizer  Synonymous of “Emulator” 

VCPU Virtual CPU or Virtual Core 
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Executive Summary 
This document provides a report on the current status of the simulation platform in relation with: 
power, temperature and fault injection. As of our deliverable and task planning this is NOT a report of 
the several other activities that we carried out in this Workpackage (these are reported more 
synthetically in the Periodic Progress Report for Year-2). The evidence of most of those activities is 
publicly available through the realized software, in particular on the public website 
http://cotson.sourceforge.net (branches).  

This document also serves, as of our initial intention, to document to the partners and the rest of the 
world: 

• the availability of some simulation features in the TERAFLUX – COTSon based simulator, 
to support the evaluation of Future Teradevice systems consisting of many cores (i.e., 1000+ 
cores), with respect to not only Performance, but also Temperature, Power, and Faults 
within a single toolchain that provides full-system simulation, at a reasonable simulation 
speed.  

As of our knowledge this is still above the State-of-the-Art when considering all the capabilities that 
are provided in the COTSon HP-Labs based tools and the TERAFLUX extensions. 

In particular, we present the developments in Year-2 to monitor power consumption, temperature and 
the fault injection support model. As overall project goal, is our aim to exploit dataflow principles to 
reach power efficiency, reliability, efficient parallel programmability, scalability and data bandwidth. 
TERAFLUX project proposes the exploitation of dataflow both at the task level and inside the 
threads, in order to: offload and manage accelerated codes, localize the computations, manage the 
fault information with appropriate protocols, easily migrate code to the available/working components 
and respect the power/performance/temperature/reliability envelope for efficiently handling the 
parallelism and having an easy and powerful execution model, to produce a more predictable 
behavior. One key component to achieve that goal is the Distributed Thread Scheduler (or DTS) 
presented in D6.2, that operates at low-level: here we recall this, as it plays an essential role for the 
unified management of temperature, power, resiliency in respect to faults, and – of course – 
performance. The modeling in the simulator of DTS features for managing power, temperature, fault 
information is also detailed in this document. 

IMPORTANT NOTE: This document was not strictly necessary, as the outcome that we wish to 
deliver was mainly SOFTWARE (this deliverable is in fact marked as OTHER not as REPORT 
in our Annex-1 “EC-Approved”), but we think it’s an yway an useful document for the progress 
of the project and therefore we submit it also to point out how to use the actual software, which 
is the real deliverable. 
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1 Introduction 
Our idea for taking under control the load balancing, the consumed power, the reached temperature 
and the resiliency to faults is to rely on a distributed resource manager, namely the Distributed Thread 
Scheduler (or DTS), which is available as an additional COTSon component since this Year-2 of the 
project on the public sourceforce.net website. The first instances are provided by HP-Labs. 

An important decision, in the overall picture, regards the granularity of the above parameters that we 
want to control through the DTS. While many “local techniques” have been proposed we believe that 
future many-cores (or teradevices) will have to manage the complexity of the design by controlling 
such parameters at the level of the core and for 1,000 or 10,000 cores simultaneously: 

“The core is the new transistor” 

as pointed out by many. Therefore, a critical component of the new chips will be a powerful “resource 
manager” that can flexibly and rapidly manage the dynamic situation: our TERAFLUX architectural 
template embeds this important conclusion (see D6.2) and in the WP7 we are now developing the first 
simulative prototypes of this concept. 

In the following, we explain how the work on power, temperature, faults in the WP7 is related with 
other WPs and previous deliverable. In the next Sections, we present a short summary of the ongoing 
work on power, temperature, faults in the common simulation framework. 

This document also serves as part of the knowledge transfer task T7.1 and provides some “what-if” 
cases (requested by the Year-1 review). 

1.1 Relation to other deliverables 
Furthermore, WP7 serves to integrate the research contribution from All Partners into a single 
simulation platform (while keeping into account of course, any feasibility limitation). Therefore we 
refer to activities carried out in all other work packages. In particular: 

• Work Package 2 (WP2): some applications like Graph-500 and Linpack have been tested at 
the 1000-core scale and we are working to make the platform encompassing also, e.g., power, 
temperature estimations. Support from BSC has been important to setup the experiments. 

• Workpackage 3 (WP3): in particular support for programming models based on Transactional 
Memory has been proposed in the simulator by partner UNIMAN and HP. However, the 
integration of that work with power and temperature information has still to be considered. 

• Workpackage 4 (WP4): preliminary back-ends form GCC have been tested and served to 
setup initial code testing for automatic generation of code that respects dataflow execution 
principle so that it will be possible the re-execute threads in presence of faults. 

• Work Package 5 (WP5):  shows model experiment techniques to detect and recover from 
unreliability of the system. More precisely in D5.1- Section 3 is provided the general 
specification of the fault detection Unit (FDU), Section 4 presents the FDU interface 
specification and section 5 presents the core-internal fault detection mechanism. In D.5.2, 
there is a section which explains a refined version of fault detection and recovery 
architecture; it reports the way a group of cores are clustered together to form a node and the 
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nodes are connected with a 2-D mesh based network-on-chip (NoC). There is also an 
explanation in inter-cluster fault detection mechanism, grouping strategies and device 
controller. 

• Work Package 6 (WP6): provides an execution model, an architecture that uses off-the-shelf 
components augmented with some core extensions like the T*-ISA extension and the DTS, 
for reaching performance while respecting power/thermal constraints. In the deliverable 
D6.1, Sections 3 and 4, the TERAFLUX basic execution model and architecture are proposed. 
The newer DTS extensions that also support information about temperature, faultiness 
level and power consumption. In the deliverable D6.2, Section 2.2.1, the DTS (Distributed 
Thread Scheduling) is introduced: this hardware module ensures that each core remains below 
a predefined temperature threshold. 

• Work Package 7 (WP7): D7.1 and D7.2 presented a very extensive overview of the features 
and the work carried out during the first year in order to enable all partners to simulate a 
1000-core platform.  

1.2 Year-2 activity referred by this deliverable 
This deliverable reports on the research carried out in the context of Task 7.3 (m6 - 40). 

An important requirement on the simulation platform for the TERAFLUX project is to provide an interface for 
the TERAFLUX partners to be able to support their research activities in the context of energy reduction and 
reliability. This involves supporting a mechanism to inject and trace faults as well as connecting the simulation 
platform to existing power-modeling tools. In a similar way in how we planned Task 7.2, Task 7.3 includes 
different stages: 

• A definition phase, where all partners together will contribute to define the requirements and 
specifications for the power modeling, fault injection and fault tracking interfaces. This involves 
defining the granularity of the power-related events required by WP3 and WP6 and - if needed - the 
power-impacting actuations (e.g., processor P-States, idle and sleep modes, etc.) that the research 
activities require. The fault-tolerant work package (WP5) will classify the types of faults we want to 
model, how to detect them and how to support the fault detection and recovery at the simulation level. 

• A simulator-core implementation phase, where UNISI with guidance from HP will implement the 
necessary changes in COTSon to support the defined enhancements and expose them in a new version 
of the COTSon SDK. 

• An application-specific implementation phase, where the interested partners will implement (test and 
validate) their specific fault and power models on the new SDK version and document the work to 
make it available to the rest of the TERAFLUX consortium. 

 

Hence, we believe, all goals of WP7 for the second year were achieved. 

1.3 Summary of previous work (from D.7.2, D.7.1) 
Most notably after the first year: 

• ALL the partners were able to use COTSon (our common simulation framework) through a 
set of shared benchmarks (Project Milestone M7.1) and can commit in a single repository.  

• COTSon has been released as open-source simulator, thus providing the reciprocal benefit 
for the TERAFLUX project and the international research community since the first month of 
the project. 
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• We are able to boot a simulated system including Applications, OS (full-system simulation) 
for the TERAFLUX Baseline Machine (TBM) as designated in D7.1 consisting of more than 
1000 cores. This put us in the world-wide frontline for experimenting with simulated system 
of such size and it demonstrates a continued relevance of our objectives. 

• We are able to apply modifications (e.g., we can modify the architecture of such 1000-core 
system). In general, we can now integrate the proposed research from the partners in a single 
platform, thus overcoming the limitation of pursuing separate research goals and rather 
achieving a common goal of improving such a large scale system as a whole. 

• We aim at an even increased impact of our project using as vehicle the availability of the 
TERAFLUX system through the improved COTSon simulation framework. As of our 
knowledge, no other simulator provides similar benefits. 

• We took some extra effort (exceeding what planned) to provide a more convincing platform 
for modeling a Future TERAFLUX Single-Chip/Package through the introduction of a model 
of an off-the-shelf  network-on-chip (NoC), as we believe will benefit the whole project and 
the success of the simulation framework. 

 

Regarding the interface to the FDU, in D7.1 (Section 10.3) and D7.2 (Section 3.6) we started to 
describe how the rest of the system reacts to the reported faults. In particular, the TSU-DTA and more 
recently (see D6.2) the DTS is interfaced with the Fault Detection Unit (FDU), which is in charge of 
reporting about the “health” of each HW component within its group of managed cores, so that the 
local management as well as the global resource management will be improved. Here we further 
detail the implementation of this interface in the COTSon simulator (in progress). 

Power modeling was initially exposed by HP partner in the deliverable D7.2, Section 3.2.2. In order to 
show how to collect and manipulate simulation events in such a way that they can be fed to other 
analysis tools, such as power consumption estimation tool, HP developed a mechanism that connects 
the results of a COTSon simulation to the McPAT [Li09] power and area estimation tool. Here we 
report some practical example on how to practically use the tool in the context of TERAFLUX. 

In D7.2, Section 3.4.1 is presented an instance of the model of a NoC, based on the Noxim simulator 
and integrated in the COTSon (see branches on SourceForge website), and it provides information 
about data latencies and throughput. Fault detection (partner UAU) further builds on the availability 
of a NoC model in COTSon.  
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2 Power Modeling (UNISI, HP) 

2.1 Implementation of Power model in the Simulator 
In order to show how to collect and manipulate simulation events in such a way that they can be fed to 
other analysis tools (e.g., a power estimation tool), HP developed a mechanism that connects the 
results of a COTSon simulation to the McPAT [Li09]. McPAT (Multi-core Power, Area, and Timing) 
is an integrated power, area, and timing modeling framework for CPU architectures. It simultaneously 
models power, area, and timing of a given CPU architecture and it supports comprehensive early stage 
design space exploration for processor configurations ranging from 90nm to 22nm and beyond. 
McPAT includes models for the components of a complete chip multiprocessor, including in-order 
and out-of-order processor cores, networks-on-chip, shared caches, and integrated memory 
controllers. It models timing, area, and dynamic, short-circuit, and leakage power for each of the 
device types forecast in the International Technology Roadmap for Semiconductors (ITRS) [ITRS-
2009] including bulk CMOS, SOI, and double-gate transistors.  

Isci et al. [Isci06] propose to use a global power management layer, which acts on a per-core basis 
and in coordination with higher-level scheduling and load-balancing policies set in the system 
software. This system is indicated to follow more properly the fast phase changes of a multi-
programmed workload based on several SPEC2000 benchmarks. They consider a POWER4 simulated 
CMP with up to 8 cores. The DTS of TERAFLUX acts as a similar resource management and by 
interacting hierarchically and following the OS policies as well, but its operation is integrated also 
with power, temperature monitoring and detected faults. 

Bergamaschi et al. [Bergamaschi08] investigate power management both at core and chip level and 
propose non-linear optimization algorithms acting through DVFS to control power. They use 
MaxBIPS algorithm (proposed by Isci et al. [Isci06]) as a reference point for their analysis. Their 
framework permits the evaluation of performance and power of a system encompassing cores, caches, 
buses, memory controller and several type of interconnection paradigms. Similarly, COTSon+McPAT 
allows us to evaluate both performance and power for a modular system composed of similar type of 
componenents. Currently, COTSon and McPAT are available as open source. 

2.1.1 Definition of the granularity  
We define the granularity of the minimum subsystem under study, which in our case is equal to a 
single core. Therefore, the set of parameters (temperature, power consumption and faultiness level) 
will be always considered at the core level. As explained in D6.2, these parameters are constantly 
considered by the Distributed Scheduler (DTS). At a smaller granularity, other techniques can of 
course be applied, e.g., in the functional units, cache memories and all other units that are part of a 
core. 

2.1.2 Interface to add Power models 
The COTSon simulation platform can be easily interfaced with tools for the estimation of the power 
consumption and the thermal behavior of a given architecture. COTSon is now including an interface 
to the McPAT tool.  
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The architecture, whose power has to be estimated, is described in McPAT through an XML input 
file. This input file contains both the detailed description of the simulated architecture and the list of 
relevant events used by the tool to generate area, power and timing estimates.  

On the other hand, the COTSon is able to export simulation results (i.e., events such as instruction 
counts, memory accesses, etc.) in a SQLite database. In order to interface each of the two tools, a 
conversion tool (cotson2mcpat) has been implemented by partner HPLabs.  The cotson2mcpat is a 
conversion tool that queries the COTSon simulation result database and generates the McPAT XML 
input file. In particular, the cotson2mcpat tool traverses the simulation database using the SQL API 
and queries about the configuration parameters, the simulation sampling scheme, and the individual 
events.  

Running the McPAT tool periodically results in a detailed description of the power estimation for 
each functional unit that is described in the XML file, along with the area and timing estimations. The 
overall processing flow is described by Figure 1. 

COTSon

simulator

cotson2mcpat

tool

McPAT

tool

Simulation 

Configuration

example_power.in

Simulation

results stored 

on a DB

example_power.db

XML input file

for the McPAT

Tool

example_power.xml

power,. area… 

power_analysis.txt

 

Figure 1 – Extracting power data in COTSon. 

It is worth observing that the McPAT tool is currently designed to operate as post-mortem, but it 
would also be possible to invoke it during simulation (or repeatedly for individual simulation interval) 
to support generating power profiles over time.  

Future work will consider the integration of the McPAT to dump its statistics in the database at every 
“heartbeat” (see below) of the COTSon simulator. 

 

2.2 Simple Use Case 1 for power estimation 
As a use case, we detail here the steps that are required to generate the power consumption estimation 
for a simulation of a simple architecture.  
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2.2.1 The simulation description 
First, we start considering the input file for the COTSon simulator (in the following example: 
example_power.in  ). The detailed example and full file is reported in the Appendix 1 - Section 
Cotson Input File.  In such file, we have to modify the following two lines: 

[…]  
use_bsd('1p-reset.bsd') 
use_hdd('karmic64.img') 
[…] 

 
in order to correctly reflect the BSD (‘use_bsd ’: the BSD it’s a “snapshot” of the simulated node at a 
given time, including the complete list of architectural component in a node) and the virtual disk of 
the virtual machine (‘use_hdd ’) that we want to use for that node. 

We then set the COTSon simulation parameters in a COTSon simulator (COTSon accepts as input a 
simple scripting language called ‘lua’). The following lines in the input file allow the simulator to 
store all the relevant events in a SQLite database.  

In particular, the heartbeat parameter allows us to set the structure used to store the simulation events. 
In this example,  

• the parameter type is used to set a Sqlite database (type=”sqlite” ), 
• the filename is specified by DBFILE (dbfile=DBFILE), 
• the database structure is organized per group of experiments, thus experiment_id and 

experiment_description respectively set the identifier of the current experiment (i.e., group of 
records in the database which store the simulation events) and the associated description 
string.  

Other general parameters are: 

• The fastforward option, which allows us to skip the specified amount of time (expressed in 
nanoseconds), thus the simulation events for this period of time are not stored allowing a 
faster simulation (i.e. 100M ns). 

• The time_feedback sends a time feedback to the functional simulator (e.g., AMD SimNow), 
so it can more accurately follow the actual simulation. 

• the max_nanos set the maximum simulation time (nanoseconds) for the experiment.  

The sampler parameter sets the relevant information for driving the simulation event sampling 
process. As the previous parameters, sampler supports several options.  

• The type option specifies the sampling method that will be used during simulation. Setting it 
to dynamic, allows us to dynamically switching among emulation (i.e., pure functional 
simulation), warming phase and simulation of the target system.  

• For all these phases, we can specify the amount of nanosecond (nanos) that will be used 
during simulation (e.g., functional = 500k allows us to emulate the execution of 500 
microseconds). However, the max_nanos parameter specifies the maximum allowed period 
for the simulation. Thus both the max_nanos and the sampling intervals represent two 
alternative stop conditions for the simulation process.  
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• The variable option, within the sampler parameter, contains the list of simulation events that 
will be stored in the output log file or in the output database. 

• The maxfunctional option allows us to specify the maximum time interval for the functional 
simulation. In particular, if the functional simulation exceeds the maximum specified value, 
the re-sampling procedure (i.e., the portion of the simulation used to extract the metric values) 
is enabled.  

• Similarly, the sensitivity option is used to enable the resampling procedure whenever the 
normalized differential value of a monitored metric (i.e., the differential value of the metric is 
normalized and the difference from the average value of the metric is compared with the 
sensitivity) exceed the sensitivity value. 

[…] 
heartbeat = { type="sqlite", dbfile=DBFILE, experim ent_id=1, 
   experiment_description="test run"}, 
fastforward="100M", 
time_feedback = true, 
max_nanos="200M", 
sampler= 
{ type="dynamic", functional="500k", warming="100k" ,  
  simulation="100k",  
  maxfunctional=1000, sensitivity="500", 
  variable={"cpu.*.other_exceptions", "cpu.*.iocoun t"} 
}, 

[…] 

 
 

2.2.2 The result database of the COTSon simulation 
The simulation is typically started by invoking the <cotson_root>/bin/cotson  command: 

   cotson DBFILE=\"`pwd`/example_power.db\" example_po wer.in  

Where example_power.db  is the name of the file which will contain the database with the COTSon 
simulation results, and example_power.in  is the name of the input lua file (see Appendix 1 - Section 
Cotson Input File) for the COTSon simulator. 

The Sqlite database allows us to store simulation events in a more structured format than compared to 
the simple log file. The database consists of 5 tables. Data resulting from the simulations are 
organized into experiments; hence: 

• The experiments table stores the unique experiment identifier along with a description string.  
• For each experiment, a set of rows is used to register the machine configuration (parameters 

table). Each row is composed of four fields:  
o (i) the experiment identifier,  
o (ii) the machine identifier,  
o (iii) the name of the parameter used to describe the machine configuration, 
o (iv) the value associated to the configuration parameter.  

• The simulation events are stored in the database every time a heartbeat is generated (i.e., 
generally whenever a certain amount of time is expired, the heartbeat is generated). The 
heartbeats table registers a timestamp of each received heartbeat.  
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• The list of all the available target system metrics is contained in the last table, called 
metric_names. 

• Finally, the metrics table is used by the COTSon simulator to register the simulation events 
effectively used among the available ones. 

Whenever the heartbeat is generated, a set of rows is used for storing selected information (i.e., target 
system metrics) about the simulated target system (see the variable option of the sampler parameter in 
the COTSon input file). 

  

2.2.3 The conversion tool cotson2mcpat 
At this point it is necessary to run the conversion tool cotson2mcpat . We call this tool with the 
following syntax: 

   cotson2mcpat file:example_power.db 1 example_power. xml -v 

• The input file is indicated by file:example_power.db  

• The output of this step is the file example_power.xml  
• Since the COTSon simulator platform organizes the database of results as a set of 

experiments, with all the important events recorded for each experiment, we indicated the 
identifier of our experiment as “1”. The option ‘-v’ is used to generate more information 
during the XML file generation process (see Appendix 1 – Section XML input file). The 
option ‘-r ’ can eventually be used to directly run the McPAT tool after the XML generation 
process finished.  

2.2.4 The McPAT tool 
McPAT is a tool designed for estimating the power consumption, the area and the timing of a 
microprocessor [Li09]. In order to correctly estimate these three metrics, the tool processes a XML 
input file containing both the description of the functional units composing the target microprocessor, 
and the “events” produced by an external simulator. The events concern the output metrics that the 
external simulator can provide during the simulation, such as instruction counting, cache memories 
accesses, number of simulated cycles, etc. The events and the description of the functional units are 
organized on a per-functional-unit basis. 

To run the McPAT tool, we simply launch this command: 

   mcpat -infile example_power.xml -print_level 5 -opt _for_clk 0 >power_analysis.txt 

• The input file is indicated with ‘ -infile  example_power.xml ’ (which is the output from 
the previous tool); 

• The output of the simulation is sent to standard output (in this example, it is redirected to the 
file power_analysis.txt ) reported in the Appendix 1 – Section McPAT simulation results. 

• The option ‘-print_level 5 ' enables the McPAT tool to generate the highest level of detail 
in the output 

• The option ‘-opt_for_clk 0 ’  tunes the tool in order to consider only the ED2P product.  
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Substantially, after this step we obtain a value (1 point) for the power. If we want to plot a graph of 
the power with time, we need to repeat this step for the next group of instructions. As mentioned, we 
aim to automatize this step in the future. 

Finally, we expect this tool to be the foundation for the future TERAFLUX power and energy 
evaluations. Code and examples are available at [COTSon11].  

2.2.5 From simulation to power: sample output for the L2 cache 
The data from the result database after the previous simulation is converted to the following format. 
For example, in the following frame we highlight the data related to the L2 cache (the complete 
output is reported for reference in Appendix-1).  

<component id="system.L20" name="L20"> 
      <param name="L2_config" value="524288,16,4,1, 1,20,16,0"/> 
      <param name="buffer_sizes" value="16, 16, 16,  16"/> 
      <param name="clockrate" value="3200"/> 
      <param name="ports" value="1,1,1"/> 
      <param name="device_type" value="0"/> 
      <stat name="read_accesses" value="1874"/> 
      <stat name="read_misses" value="1874"/> 
      <stat name="write_accesses" value="1175560"/>  
      <stat name="write_misses" value="0"/> 
      <stat name="conflicts" value="0"/> 

</component> 

 

• The param nodes in the above XML code portion represent the L2 cache description; 
• The stat nodes contain the L2 cache statistics after the COTSon simulation. 

The McPAT analyzes all the events associated to all the functional units and estimates the power 
consumption of the target system. In particular, the result of this process is an estimation of the power 
consumption for each functional unit in terms of  

• dynamic peak power. This measure reports the peak power consumption during the charging 
and discharging of the capacitive load during normal switching activity of the functional unit. 

• gate leakage and sub-threshold leakage power. This represents the power consumption due to 
the leakage currents in the devices forming the functional unit. 

• runtime dynamic power. This measures the average power consumption during the charging 
and discharging of the capacitive load during normal switching activity of the functional unit.  

The output of the previous example, in particular for the L2 cache is the following: 

Total L2s:  
  Device Type= ITRS high performance device type 
    Area = 0.937911 mm^2 
    Peak Dynamic = 0.165416 W 
    Subthreshold Leakage = 0.217494 W 
    Gate Leakage = 0.000684481 W 
    Runtime Dynamic = 0.000249549 W 
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3 Thermal modeling/management (UNISI) 
We decided to organize the work related to thermal modeling/management in steps. Initially, we 
asked to all the partners their interest in modeling the temperature inside the core: the outcome is that 
the TERAFLUX Consortium is more interested in the mechanisms to manage the temperature 
information (“respecting the power/performance/temperature/reliability envelope” from the abstract 
of our proposal – Annex-1), therefore we focused on those aspects connected to enabling a thread 
scheduling on the available cores based also on the additional parameter “temperature”.  

An important motivation for considering temperature is also that reliability and sub-threshold leakage 
are exponentially related to temperature. 

As for the “power” parameter this will be another parameter to be considered at the scheduling time in 
the Distributed Thread Scheduler (DTS) (see Figure 2). The initial model that we used is very simple 
in order to keep a low complexity when we have many (e.g., 1000) cores: each core has an associated 
temperature value and the DTS considers also that value when deciding where to schedule threads 
(the precise algorithm will be detailed later on in the project). 

3.1 State of the art and related work 
In order to have an appropriate view of the state of the art, we analyzed some related work on 
Dynamic Thermal Modeling and in particular in multicores and on Temperature-aware thread 
scheduling and allocation. 

Dynamic Thermal Modeling (DTM) 

Dynamic Thermal Modeling has been studied in several works [Dhodapkar00], [Brooks01], [Stan03], 
[Skedron04], [Han06], [Murali07], [Kumar08], [Mutapcic09].  

One important observation is that optimizing the temperature by adjusting core speeds and using 
sophisticated control laws is justified only when the number of cores is greater than tens 
[Mutapcic09]. In TERAFLUX, we aim to manage the temperature of a thousand or more cores, so 
it’s relevant to spend some resource of the system even at some cost. 

Skadron et al. [Stan03], [Skadron04] introduced ‘HotSpot’ a framework, which allows for detailed 
thermal modeling that can be included in other simulators. It utilizes an equivalent circuit 
comprising thermal characteristics of the package and applies 4th order Runge-Kutta methods, with 
some substantial overhead in calculation. Other simulators that used thermal models are TEMPEST 
[Dhodapkar00], which is based on SimpleScalar and a Wattch extension that uses power as a proxy to 
estimate temperature [Brooks01]. This suggest some basic model for temperature that can be 
considered in TERAFLUX too. 

Han et al. [Han06] present an algorithm to estimate and make projection on temperature based on 
hardware performance counters, but which is much faster than other methods such as the one 
available in the HotSpot simulator [Stan03]. The work of Kumar et al. [Kumar08] proposed a 
regression- based thermal model that uses hardware performance counters available in the processor 
similarly to [Han06]. Both works [Han06], [Kumar08] are only limited to the uniprocessor case, but 
indicates an opportunity to establish temperature control even without temperature sensors, which 
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is very useful for the simulation. This gives the option to avoid using the concept of “temperature 
sensor” in TERAFLUX. 

Murali et al. [Murali07] study an MPSoC consisting of 15 cores (and same number of local memories) 
and propose a design-time solution of DVFS scheduling based on convex optimization that optimizes 
performance (total instruction executed) while meeting the given power and temperature constraints. 
This results in a simple formula that says that the average frequency of operation of each core 
should be w/(n+l) where w is the total number of cycles of the workload, n the number of cores and l 
the latency to finish the computation in each core. This formula could be considered in TERAFLUX 
models for reference. 

Temperature-aware threads scheduling on Multi-cores 

Temperature-aware thread scheduling is also used in multi-core systems to optimize the resources 
performance and to reduce thermal hotspots by distributing heat generation more homogeneously 
across the silicon chip layout  [Powell04], [Annavaram04], [Choi07], [Coskun08], [Kang11]. 

Powell et al. [Powell04] is the first work that proposes a combination of thread scheduling on a Chip 
Multiprocessor (CMP) and on Simultaneous Multi-Threaded cores (SMT) in order to avoid 
overheating cores (and therefore critical temperatures) and try reduce power-density as a 
consequence. In TERAFLUX, similarly, the DTS accounts for the temperature and may avoid 
overheating cores in the operation of thread assignment. 

Annavaram et al. [Annavaram04] used a 4-way multicore to show that code that presents a large level 
of thread parallelism can provide an important acceleration when running on a low frequency, lower 
performance multi-core than a single high-frequency complex architecture core using exactly the 
same amount of power consumption. The approach that we use in our DTS of distributing as many 
DF-threads in parallel is exactly moving in the direction of reducing the Energy expended Per 
Instruction (EPI) based on the available parallelism: DF-threads are mapped on lower-power 
“Auxiliary Cores” (AC) (cf. D7.1, D7.2). 

Choi et al. [Choi07] used an OS-level temperature-aware scheduling, which samples the 24 sensors of 
a dual-core POWER5 (1.2 GHz) every 4ms (the scheduler tick). Their conclusions are relevant to our 
work: i) they confirm that on-chip temperature is closely related to unit utilization and ii) the 
changes in temperature are in the order of hundreds of ms, which is about two order of 
magnitude larger of the scheduler tick. This will permit us to direct our effort to a proper 
consideration of the temperature variations on the scheduling decisions. 

Coskun et al. [Coskun08] proposed to use a combination of off-line (based on Integer Linear 
Programming) and on-line techniques to minimize temperature hotspots and gradients of the MPSoC 
with per-core DVFS capability. Chantem et al. [Chantem08] presented a thread assignment and 
scheduling technique for hard real-time applications in MPSoCs, which uses a mixed integer linear 
programming solver to minimize the peak temperature of multi-core systems based on the steady-state 
thermal analysis. They also proposed two heuristic approaches for thread scheduling based on steady-
state and transient thermal analysis. These techniques could provide indication on how to distribute 
computations in order to avoid thermal hotspots. However, all these solutions are design–time 
approaches. 
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Kang et al. [Kang11] propose to use a thread migration method at runtime to respect power and 
temperature constraint. This paper is also the first, as of our knowledge to consider such problem in 
the context of 3D multi-core architectures. In TERAFLUX we use DTS to dynamically schedule task; 
the migration is unnecessary since the needs are determined before the scheduling of the threads. In 
other words, TERAFLUX DTS relies on thread assignment rather than thread scheduling.  

Temperature/Thermal management 

Ebi et al. [Ebi09] propose an proactive power distribution method (named “TAPE”) based on a per-
core agent implemented in a mixed hardware and software fashion to evenly distribute power and to 
reduce the peak temperature while meeting the given deadline constraint. The per-core agent performs 
dynamic voltage and frequency scaling (DVFS) and/or power gating according to measured 
temperature of the core.  Their approach aims to reduce the peak temperature and improves the state-
of-the-art techniques like HRTM [Powell04] and PDTM [Yang09]. They use a 96-core platform using 
MiBench. 

In [Kumar08], while the DTM is done through performance counters, as explained above, the 
temperature management technique (called HybDTM) controls the chip temperature by clock-gating 
or limiting tasks’ execution when the estimated temperature reaches a given threshold. In 
TERAFLUX, we aim to use a similar interaction between policies set at software level (OS, etc.) and 
lower level estimation and control through the DTS. 

In [Zhang08], the authors presented the first stochastic temperature-aware DVFS method to keep the 
expected latency within the designer specified level, while meeting the condition that the probability 
of peak temperature exceeding a given threshold is sufficiently small. Their technique is an off-line 
method while in TERAFLUX we aim at an on-line methodology (which is also in the future work of 
the same authors). 

Donald et al. [Donald06] suggested a two-loop system for an OS based thread migration based on 
information provided at core level. In their approach, both hardware fine-grained adjustments to cope 
with thermal emergencies and software based migration for heat balancing and optimized 
performance is used. A similar approach is supported in the TERAFLUX architecture, but we are also 
considering power and faults. 

The work from Zhu et al. [Zhu 08] stresses the importance of thermal management in 3-D Chip 
Multiprocessors: the power densities of such chips will require frequent invocations of thermal 
control. The authors develop a mathematical formulation to balance the workload, the power and the 
temperature and implement it on a unified hardware and OS framework (named ThermOS). 

 

3.2 Implementation of Thermal model in the Simulator 
The Thermal Model in the simulator is currently work in progress, based on our finding on literature. 
We also believe that an interface very similar to that one designed for power should be used. 
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3.3 Definition of the granularity 
Recent high-performance processors like the Intel Sandy-Bridge contain as many as 12 temperature 
sensors [Rotem11] and there is appropriate (local) thermal management inside the processor itself. In 
the TERAFLUX project, we investigate the thermal management of a chip encompassing 1000+ core 
and therefore focus on what to do at overall level, without necessarily interfering with the per-core 
thermal management.  

The work by Powell et al. [Powell04] also investigates the spatial and temporal granularity to react to 
overheating (hotspots): if the granularity is too coarse, we may lose opportunities to adaptation. In 
TERAFLUX, we are targeting system with 1000+ of more cores; therefore the granularity of a core 
appears appropriate (more local techniques may be applied as well, if needed). For the temporal 
granularity, it has been observed [Powell04] that it is not a relevant choice as long as we have the 
ability to stop the computation once a certain threshold value for temperature is reached. Again, this is 
perfectly in line with the approach that we use in the DTS. 

Therefore we choose a single number per-core to characterize the core (average) temperature and this 
is the granularity level we aim to manage. As explained in this document and in other deliverables 
(D6.2), our view is that the Distributed Thread Scheduler takes care of an appropriate thread 
allocation based on the global information it has, including the temperature. 

As explained below, this document introduces the general idea of how this can be done in the 
simulator. 

 

3.4 Model of Node activity to estimate Temperature 
The temperature estimation and management framework is still in development. We assume that we 
can estimate temperature using approaches similar to those found in the literature [Dhodapkar00], 
[Brooks01], [Stan03], [Skedron04], [Han06], [Murali07], [Kumar08], [Mutapcic09], i.e., by an 
indirect calculation during the simulation. This calculation has not to be done very frequently, in the 
order of every hundreds of ms as proposed in other works [Choi07]. 

 

3.4.1 Temperature Management in TERAFLUX/COTSon 
The Distributed Thread Scheduler (described in D6.2) bookkeeps information about continuations (a 
tuple) associated to every thread. This tuple contains at least the following information: 

• The Synchronization Count (SC), which specifies the number of producer inputs to that 
thread before it becomes ready to execute. 

• The Instruction Pointer (IP) is the pointer to the first instruction of the associated thread in the 
code memory. 

• The Frame Pointer (FP) is the address of the frame in the frame memory allocated for the 
associated thread.  

• The Core Identifier (CID), which identifies the core where the thread is executed.  
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Another table will provide information about the cores, where each core entry will have the following 
fields (as shown in Figure 2): 

• A POWER indicator, through which the power of the core is known to the DTS; 
• A TEMP indicator, through which the temperature of the core is known to the DTS; 
• A FAULTS indicator,  through which the faultiness of the core is known to the DTS. 

For completeness, we recall that other information is stored in the continuation, like the pointers to the 
eventually allocated memories like Transactional Memory (TM), Owner Writeable memory (OWM) 
and Thread Local Storage (TLS), already discussed in D7.1, D7.2, D6.1, D6.2 (see Figure 2). 

DTS CONTINUATION FIELDS:

IP : INSTRUCTION POINTER

FP : FRAME POINTER

SC : SYNCHRONIZATION COUNTER

CID : CORE ID

TLSP : THREAD LOCAL STORAGE POINTER

OWMP : OWNER WRITABLE MEMORY POINTER

TMP : TRANSACTIONAL MEMORY POINTER
3

DTS CONTINUATION

IPFP CIDSC

CODE MEMORY

OWNER WRITABLE

MEMORY

TRANSACTIONAL

MEMORY

THREAD LOCAL

STORAGE

FRAME 

MEMORY

CORE RECORD

ID POWER TEMPFAULTS

TMP OWMP TLSP

 

Figure 2 – High Level Model Implementation (a design option for the DTS continuation).  

 

Essentially in TERAFLUX/COTSon we are interested to model the temperature in such a way that the 
number “TEMP” gets periodically updates. Then the DTS can take into account such number and 
implement one of the state-of-the-art policies described in Section 3.1, or more sophisticated policies. 

The main goal at the moment is to show that we can have a unified management that is able to 
manage the information in a distributed manner on the chip. 
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4 Fault-injection support (UAU) 
This section reports how the information supplied by the FDU may be used by the DTS to decide how 
to distribute the threads among the cores, and if possible, also to set the speed of each individual core 
(e.g., we may decide to reduce the speed of a core that has many faults or high power consumption or 
temperature before deciding to shut it down).  

In Section 3.6 of the previous deliverable D7.2 we explained the implementation of the Fault 
Detection Unit (FDU) and its interfaces (partner UAU). The main work of UAU with respect to WP7 
concerns:  (i) the implementation of the FDU and its interfaces (part of Task 7.2), and (ii) the fault 
injection and fault tracking (part of Task 7.3). 

To model the Fault Detection and Recovery approach developed in WP5, UAU is integrating a fault 
model, which has been initially described in Deliverable D5.1, in the TERAFLUX platform. 
Therefore, we base the necessary fault injection techniques on the given TERAFLUX architecture, 
which is composed of a certain number of nodes, which itself consist of cores, a “Node Manager” (D-
FDU and D-TSU) and an intra-node interconnect. Among the nodes we assume a 2D-mesh structured 
interconnection network. 

Following WP5’s high level fault model, described in D5.1 and D5.2, we distinguish between core 
faults and interconnection faults. For core faults, we further distinguish between total faults, partial 
faults, and retarding faults. For interconnect faults, we differentiate between total faults and partial 
faults1. 

                                                      
1 Please refer to D5.1 for a detailed description of this fault model. 
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Figure 3 - Faults in COTSon/Noxim. 

4.1 Baseline Machine Integration 
At this stage of the project UAU has modeled all faults within the Network on Chip Simulator Noxim. 
Noxim is integrated in the COTSon Mediator for the Network on Chip Timing Model between 
COTSon nodes (see D7.2). Within Noxim, we model an abstract TERAFLUX fault detection 
architecture, depicted in Figure 3. This means, Noxim reproduces the TERAFLUX architecture 
simulated in the COTSon nodes, consisting of nodes, which enclose cores and the D-FDU (see D5.1 
and D5.2 for further details).  In the next two years UAU will move the current D-FDU 
implementation, currently running in Noxim as a processing element, onto the COTSon nodes and 
show that the developed fault detection architecture is capable not only to detect the modeled faults in 
COTSon but also recover from them. 

In the following, we describe how we model faults: 
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4.2 Core Faults 
Total faults are introduced into a single core by stopping the core from sending heartbeats and 
execution of the current thread.  

Partial faults are generated by setting a corresponding Machine Check Architecture register within 
the core. 

Retarding faults are introduced by lowering the IPC of the core (the core runs slower) and by setting 
the corresponding Performance Counter Registers of the core. 

4.2.1 Inter-core Faults 
For faults between cores we differentiate between faults in the intra-node interconnect and faults in 
the inter-node interconnect. 

For the intra-node interconnect we model total faults by stopping the core from sending heartbeat 
messages (the core is no longer reachable by a broken link) and partial faults  by deferring heartbeat 
messages (the path has become slower by an emulated re-routing). 

Since we use the network simulator Noxim for the inter-node network timing we can introduce more 
elaborated faults, comprising link and router faults, which finally result either in partial faults or total 
faults. Different flags at a certain routers or links in Noxim can be used for modeling these faults. 
These flags may be removed later on if the fault is a transient or an intermittent fault.  
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Appendix 1  

COTSon input file (example_power.in ) 
options = { 
 fastforward="100M", 
 time_feedback = true, 
 heartbeat = { type="sqlite", dbfile=DBFILE, experi ment_id=1, 
               experiment_description="test run"}, 

max_nanos="200M", 
sampler={ type="dynamic", functional="500k", warmin g="100k", 
   simulation="100k",  
maxfunctional=1000, sensitivity="500", 

 variable={"cpu.*.other_exceptions", "cpu.*.iocount "}}, 
} 
 
one_node_script="run_interactive" 
-- display=os.getenv("DISPLAY") 
 
simnow.commands=function() 
 use_bsd('1p-reset.bsd') 
 use_hdd('karmic64.img') 
 set_journal() 
 send_keyboard('gcc -S -o - -O3 -c -w /home/user/te st.i') 
end 
 
function build() 
 i=0 
 while i < disks() do 
  disk=get_disk(i) 
  disk:timer{ name='disk'..i, type="simple_disk" } 
  i=i+1 
 end 
 
 i=0 
 while i < nics() do 
  nic=get_nic(i) 
  nic:timer{ name='nic'..i, type="simple_nic" } 
  i=i+1 
 end 

 
 mem=Memory{ name="main", latency=150  }  
 
    l2=Cache{ name="l2cache", size="512kB",  
  line_size=16, latency=20, num_sets=4, next=mem,  
  write_policy="WB", write_allocate="true" } 
    t2=TLB{ name="l2tlb", page_size="4kB",  
  entries=512, latency=80, num_sets=4, next=mem,  
  write_policy="WB", write_allocate="true" } 
 
 i=0 
 while i < cpus() do 
     cpu=get_cpu(i) 
     -- cpu:timer{ name='cpu'..i, type="timer_dep" } 
     cpu:timer{ name='cpu'..i, type="timer1" } 
        ic=Cache{ name="icache"..i, size="16kB", li ne_size=16,  
      latency=0, num_sets=2, next=l2,  
      write_policy="WT", write_allocate="false" } 
        dc=Cache{ name="dcache"..i, size="16kB", li ne_size=16,  
      latency=0, num_sets=2, next=l2,  
      write_policy="WT", write_allocate="false" } 
        it=TLB{ name="itlb"..i, page_size="4kB", en tries=40,  
      latency=0, num_sets=40, next=t2,  
      write_policy="WT", write_allocate="false" } 
        dt=TLB{ name="dtlb"..i, page_size="4kB", en tries=40,  
      latency=0, num_sets=40, next=t2,  
      write_policy="WT", write_allocate="false" } 
     
     cpu:instruction_cache(ic) 
     cpu:data_cache(dc) 
     cpu:instruction_tlb(it) 
     cpu:data_tlb(dt) 
  i=i+1 
    end 
end 
-- vim:ft=lua  

McPAT input file 
<?xml version="1.0" ?> 
<!-- experiment test run , cpumodel x86a --> 
<component id="root" name="root"> 
  <component id="system" name="system"> 
    <param name="homogeneous_cores" value="1"/> 
    <param name="homogeneous_L2s" value="1"/> 
    <param name="number_of_cores" value="1"/> 
    <param name="number_cache_levels" value="2"/> 
    <param name="number_of_L2s" value="1"/> 
    <param name="Private_L2" value="0"/> 
    <param name="number_of_L3s" value="0"/> 
    <param name="longer_channel_device" value="1"/>  
    <param name="number_of_NoCs" value="1"/> 
    <param name="number_of_L2Directories" value="0" /> 
    <param name="device_type" value="0"/> 
    <param name="number_of_L1Directories" value="0" /> 
    <param name="virtual_memory_page_size" value="4 096"/> 
    <param name="interconnect_projection_type" valu e="0"/> 
    <param name="homogeneous_L2Directorys" value="1 "/> 
    <param name="homogeneous_L1Directorys" value="1 "/> 
    <param name="temperature" value="380"/> 
    <param name="machine_bits" value="64"/> 
    <param name="homogeneous_ccs" value="1"/> 
    <param name="virtual_address_width" value="64"/ > 
    <param name="core_tech_node" value="22"/> 
    <param name="homogeneous_L3s" value="1"/> 
    <param name="homogeneous_NoCs" value="1"/> 
    <param name="physical_address_width" value="52" /> 
    <param name="target_core_clockrate" value="3200 "/> 
    <stat name="total_cycles" value="640300000"/> 
    <stat name="idle_cycles" value="636532731"/> 
    <stat name="busy_cycles" value="3767269"/> 
    <component id="system.core0" name="core0"> 
      <param name="clock_rate" value="3200"/> 
      <param name="phy_Regs_IRF_size" value="256"/>  
      <param name="instruction_window_scheme" value ="0"/> 
      <param name="instruction_length" value="32"/>  
      <param name="archi_Regs_FRF_size" value="32"/ > 
      <param name="pipelines_per_core" value="1"/> 
      <param name="number_hardware_threads" value=" 2"/> 
      <param name="number_of_BTB" value="2"/> 
      <param name="archi_Regs_IRF_size" value="16"/ > 
      <param name="machine_type" value="0"/> 
      <param name="RAS_size" value="64"/> 
      <param name="number_instruction_fetch_ports" value="1"/> 
      <param name="1" value="pipeline_depth"/> 
      <param name="phy_Regs_FRF_size" value="256"/>  
      <param name="x86" value="1"/> 
      <param name="opcode_width" value="16"/> 
      <param name="FPU_per_core" value="2"/> 
      <param name="decoded_stream_buffer_size" valu e="16"/> 
      <param name="MUL_per_core" value="1"/> 
      <param name="opt_local" value="0"/> 
      <param name="number_of_BPT" value="2"/> 
      <param name="instruction_window_size" value=" 64"/> 
      <param name="micro_opcode_width" value="8"/> 
      <param name="ROB_size" value="80"/> 
      <param name="fp_instruction_window_size" valu e="64"/> 
      <param name="31" value="31"/> 
      <param name="instruction_buffer_size" value=" 32"/> 
      <param name="fetch_width" value="1"/> 
      <param name="decode_width" value="1"/> 
      <param name="issue_width" value="1"/> 

      <param name="peak_issue_width" value="1"/> 
      <param name="commit_width" value="1"/> 
      <param name="fp_issue_width" value="1"/> 
      <param name="ALU_per_core" value="1"/> 
      <stat name="total_instructions" value="628331 0"/> 
      <stat name="int_instructions" value="4097794" /> 
      <stat name="fp_instructions" value="0"/> 
      <stat name="branch_instructions" value="21855 16"/> 
      <stat name="branch_mispredictions" value="116 0432"/> 
      <stat name="load_instructions" value="1181316 "/> 
      <stat name="store_instructions" value="118131 6"/> 
      <stat name="committed_instructions" value="62 83310"/> 
      <stat name="committed_int_instructions" value ="4097794"/> 
      <stat name="committed_fp_instructions" value= "0"/> 
      <stat name="pipeline_duty_cycle" value="1.619 30720397461"/> 
      <stat name="ROB_reads" value="6283310"/> 
      <stat name="ROB_writes" value="6283310"/> 
      <stat name="rename_reads" value="0"/> 
      <stat name="rename_writes" value="0"/> 
      <stat name="fp_rename_reads" value="0"/> 
      <stat name="fp_rename_writes" value="0"/> 
      <stat name="inst_window_reads" value="6283310 "/> 
      <stat name="inst_window_writes" value="628331 0"/> 
      <stat name="inst_window_wakeup_accesses" valu e="0"/> 
      <stat name="fp_inst_window_reads" value="0"/>  
      <stat name="fp_inst_window_writes" value="0"/ > 
      <stat name="fp_inst_window_wakeup_accesses" v alue="0"/> 
      <stat name="int_regfile_reads" value="0"/> 
      <stat name="int_regfile_writes" value="0"/> 
      <stat name="float_regfile_reads" value="0"/> 
      <stat name="float_regfile_writes" value="0"/>  
      <stat name="ialu_accesses" value="4097794"/> 
      <stat name="fpu_accesses" value="0"/> 
      <stat name="cdb_alu_accesses" value="0"/> 
      <stat name="cdb_fpu_accesses" value="0"/> 
      <stat name="MemManU_D_duty_cycle" value="0.5" /> 
      <stat name="FPU_cdb_duty_cycle" value="0.3"/>  
      <stat name="MUL_duty_cycle" value="0.3"/> 
      <stat name="MUL_cdb_duty_cycle" value="0.3"/>  
      <stat name="LSU_duty_cycle" value="0.5"/> 
      <stat name="IFU_duty_cycle" value="1"/> 
      <stat name="MemManU_I_duty_cycle" value="1"/>  
      <stat name="ALU_cdb_duty_cycle" value="1"/> 
      <stat name="ALU_duty_cycle" value="1"/> 
      <stat name="FPU_duty_cycle" value="0.3"/> 
      <component id="system.core0.predictor" name=" PBT"> 
        <param name="local_predictor_size" value="1 4,1"/> 
        <param name="local_predictor_entries" value ="16384"/> 
        <param name="global_predictor_entries" valu e="16384"/> 
        <param name="global_predictor_bits" value=" 1"/> 
        <param name="chooser_predictor_entries" val ue="16384"/> 
        <param name="chooser_predictor_bits" value= "1"/> 
        <param name="load_predictor" value="14,1,16 384"/> 
        <param name="global_predictor" value="16384 ,1"/> 
        <param name="predictor_chooser" value="1638 4,1"/> 
      </component> <!-- PBT --> 
      <component id="system.core0.itlb" name="itlb" > 
        <param name="number_entries" value="40"/> 
        <stat name="total_accesses" value="3552384" /> 
        <stat name="total_misses" value="0"/> 
        <stat name="conflicts" value="0"/> 
      </component> <!-- itlb --> 
      <component id="system.core0.icache" name="ica che"> 
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        <param name="icache_config" value="16384,16 ,2,1,1,0,16,1"/> 
        <param name="buffer_sizes" value="16, 16, 1 6, 0"/> 
        <stat name="read_accesses" value="3552384"/ > 
        <stat name="read_misses" value="1874"/> 
        <stat name="write_accesses" value="0"/> 
        <stat name="write_misses" value="0"/> 
        <stat name="conflicts" value="0"/> 
      </component> <!-- icache --> 
      <component id="system.core0.dtlb" name="dtlb" > 
        <param name="number_entries" value="40"/> 
        <stat name="total_accesses" value="2356877" /> 
        <stat name="total_misses" value="0"/> 
        <stat name="conflicts" value="0"/> 
      </component> <!-- dtlb --> 
      <component id="system.core0.dcache" name="dca che"> 
        <param name="dcache_config" value="16384,16 ,2,1,1,0,16,0"/> 
        <param name="buffer_sizes" value="16, 16, 1 6, 1"/> 
        <stat name="read_accesses" value="1181316"/ > 
        <stat name="read_misses" value="0"/> 
        <stat name="write_accesses" value="1175560" /> 
        <stat name="write_misses" value="0"/> 
        <stat name="conflicts" value="0"/> 
      </component> <!-- dcache --> 
      <component id="system.core0.BTB" name="BTB"> 
        <param name="BTB_config" value="5120,4,2,1,  1,3"/> 
        <stat name="read_accesses" value="2185516"/ > 
        <stat name="write_accesses" value="0"/> 
      </component> <!-- BTB --> 
    </component> <!-- cpu0 --> 
    <component id="system.L1Directory0" name="L1Dir ectory0"> 
      <param name="ports" value="1,1,1"/> 
      <param name="device_type" value="0"/> 
      <param name="buffer_sizes" value="8,8,8,8"/> 
      <param name="Dir_config" value="4096,2,0,1,10 0,100,8"/> 
      <param name="Directory_type" value="0"/> 
      <stat name="read_accesses" value="0"/> 
      <stat name="write_accesses" value="0"/> 
      <stat name="read_misses" value="0"/> 
      <stat name="write_misses" value="0"/> 
      <stat name="conflicts" value="0"/> 
    </component> <!-- L1Directory0 --> 
    <component id="system.L2Directory0" name="L2Dir ectory0"> 
      <param name="ports" value="1,1,1"/> 
      <param name="device_type" value="0"/> 
      <param name="buffer_sizes" value="8,8,8,8"/> 
      <param name="Dir_config" value="4096,2,0,1,10 0,100,8"/> 
      <param name="Directory_type" value="0"/> 
      <stat name="read_accesses" value="0"/> 
      <stat name="write_accesses" value="0"/> 
      <stat name="read_misses" value="0"/> 
      <stat name="write_misses" value="0"/> 
      <stat name="conflicts" value="0"/> 
    </component> <!-- L2Directory0 --> 
    <component id="system.L20" name="L20"> 
      <param name="L2_config" value="524288,16,4,1, 1,20,16,0"/> 
      <param name="buffer_sizes" value="16, 16, 16,  16"/> 
      <param name="clockrate" value="3200"/> 
      <param name="ports" value="1,1,1"/> 
      <param name="device_type" value="0"/> 
      <stat name="read_accesses" value="1874"/> 
      <stat name="read_misses" value="1874"/> 
      <stat name="write_accesses" value="1175560"/>  
      <stat name="write_misses" value="0"/> 
      <stat name="conflicts" value="0"/> 
    </component> <!-- L20 --> 
    <component id="system.L30" name="L30"> 
      <param name="L3_config" value=",,,1,1,,,0"/> 
      <param name="buffer_sizes" value="16, 16, 16,  1"/> 
      <stat name="read_accesses" value="0"/> 
      <stat name="read_misses" value="0"/> 
      <stat name="write_accesses" value="0"/> 
      <stat name="write_misses" value="0"/> 

      <stat name="conflicts" value="0"/> 
    </component> <!-- L30 --> 
    <component id="system.Noc0" name="noc0"> 
      <param name="flit_bits" value="256"/> 
      <param name="horizontal_nodes" value="1"/> 
      <param name="has_global_link" value="0"/> 
      <param name="link_throughput" value="1"/> 
      <param name="link_routing_over_percentage" va lue="0.5"/> 
      <param name="chip_coverage" value="1"/> 
      <param name="vertical_nodes" value="1"/> 
      <param name="input_ports" value="1"/> 
      <param name="type" value="0"/> 
      <param name="output_ports" value="1"/> 
      <param name="clockrate" value="3200"/> 
      <stat name="total_accesses" value="0"/> 
      <stat name="duty_cycle" value="1"/> 
    </component> <!-- noc0 --> 
    <component id="system.mem" name="mem"> 
      <param name="mem_tech_node" value="32"/> 
      <param name="capacity_per_channel" value="409 6"/> 
      <param name="burstlength_of_DRAM_chip" value= "8"/> 
      <param name="page_size_of_DRAM_chip" value="8 "/> 
      <param name="number_ranks" value="2"/> 
      <param name="output_width_of_DRAM_chip" value ="8"/> 
      <param name="internal_prefetch_of_DRAM_chip" value="4"/> 
      <param name="Block_width_of_DRAM_chip" value= "64"/> 
      <param name="device_clock" value="200"/> 
      <param name="num_banks_of_DRAM_chip" value="8 "/> 
      <param name="peak_transfer_rate" value="6400" /> 
      <stat name="memory_accesses" value="1874"/> 
    </component> <!-- mem --> 
    <component id="system.mc" name="mc"> 
      <param name="IO_buffer_size_per_channel" valu e="32"/> 
      <param name="req_window_size_per_channel" val ue="32"/> 
      <param name="llc_line_length" value="64"/> 
      <param name="mc_clock" value="400"/> 
      <param name="number_ranks" value="2"/> 
      <param name="addressbus_width" value="51"/> 
      <param name="memory_channels_per_mc" value="1 "/> 
      <param name="number_mcs" value="0"/> 
      <param name="peak_transfer_rate" value="6400" /> 
      <param name="databus_width" value="128"/> 
      <stat name="memory_accesses" value="1874"/> 
      <stat name="memory_reads" value="1874"/> 
      <stat name="memory_writes" value="0"/> 
    </component> <!-- mc --> 
    <component id="system.niu" name="niu"> 
      <param name="number_units" value="1"/> 
      <param name="clockrate" value="350"/> 
      <param name="type" value="0"/> 
      <stat name="duty_cycle" value="1.0"/> 
      <stat name="total_load_perc" value="0"/> 
    </component> <!-- niu --> 
    <component id="system.pcie" name="pcie"> 
      <param name="number_units" value="1"/> 
      <param name="withPHY" value="1"/> 
      <param name="num_channels" value="8"/> 
      <param name="clockrate" value="350"/> 
      <param name="type" value="0"/> 
      <stat name="duty_cycle" value="1.0"/> 
      <stat name="total_load_perc" value="0"/> 
    </component> <!-- pcie --> 
    <component id="system.flashc" name="flashc"> 
      <param name="number_flashcs" value="4"/> 
      <param name="withPHY" value="1"/> 
      <param name="type" value="1"/> 
      <param name="peak_transfer_rate" value="200"/ > 
      <stat name="duty_cycle" value="1.0"/> 
      <stat name="total_load_perc" value="0"/> 
    </component> <!-- flashc --> 
  </component> <!-- system --> 
</component> <!-- root --> 

 

McPAT output results 
McPAT (version 0.8 of Aug, 2010) is computing the t arget processor... 
McPAT (version 0.8 of Aug, 2010) results  (current print level is 5) 
*************************************************** ******************  
Technology 22 nm 
  Using Long Channel Devices When Appropriate 
  Interconnect metal projection= aggressive interco nnect technology 
projection 
  Core clock Rate(MHz) 3200 
 
*************************************************** ******************
Processor:  
  Area = 5.71035 mm^2 
  Peak Power = 3.26812 W 
  Total Leakage = 1.07086 W 
  Peak Dynamic = 2.19727 W 
  Subthreshold Leakage = 1.06684 W 
  Gate Leakage = 0.00401736 W 
  Runtime Dynamic = 0.26991 W 
 
  Total Cores: 1 cores  
  Device Type= ITRS high performance device type 
    Area = 1.80503 mm^2 
    Peak Dynamic = 0.84629 W 
    Subthreshold Leakage = 0.593165 W 
    Gate Leakage = 0.00126014 W 
    Runtime Dynamic = 0.26966 W 
 
  Total L2s:  
  Device Type= ITRS high performance device type 
    Area = 0.937911 mm^2 
    Peak Dynamic = 0.165416 W 
    Subthreshold Leakage = 0.217494 W 
    Gate Leakage = 0.000684481 W 
    Runtime Dynamic = 0.000249549 W 
 
  Total NoCs (Network/Bus):  
  Device Type= ITRS high performance device type 

    Area = 0.0611096 mm^2 
    Peak Dynamic = 0.643255 W 
    Subthreshold Leakage = 0.0179458 W 
    Gate Leakage = 5.82246e-05 W 
    Runtime Dynamic = 0 W 
 
  Total Flash/SSD Controllers: 4 Flash/SSD Controll ers  
  Device Type= ITRS high performance device type 
    Area = 0.131969 mm^2 
    Peak Dynamic = 0.0964636 W 
    Subthreshold Leakage = 0.0165631 W 
    Gate Leakage = 0.000140058 W 
    Runtime Dynamic = 0 W 
 
  Total NIUs: 1 Network Interface Units  
  Device Type= ITRS high performance device type 
    Area = 1.30046 mm^2 
    Peak Dynamic = 0.176111 W 
    Subthreshold Leakage = 0.100884 W 
    Gate Leakage = 0.000853082 W 
    Runtime Dynamic = 0 W 
 
  Total PCIes: 1 PCIe Controllers  
  Device Type= ITRS high performance device type 
    Area = 1.47387 mm^2 
    Peak Dynamic = 0.26973 W 
    Subthreshold Leakage = 0.120787 W 
    Gate Leakage = 0.00102138 W 
    Runtime Dynamic = 0 W 
 
*************************************************** ******************
Core: 
      Area = 1.80503 mm^2 
      Peak Dynamic = 0.84629 W 
      Subthreshold Leakage = 0.593165 W 
      Gate Leakage = 0.00126014 W 
      Runtime Dynamic = 0.26966 W 
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      Instruction Fetch Unit: 
        Area = 0.195882 mm^2 
        Peak Dynamic = 0.110828 W 
        Subthreshold Leakage = 0.204435 W 
        Gate Leakage = 0.000361928 W 
        Runtime Dynamic = 0.000602019 W 
 
          Instruction Cache: 
            Area = 0.085274 mm^2 
            Peak Dynamic = 0.0492197 W 
            Subthreshold Leakage = 0.0165821 W 
            Gate Leakage = 2.46382e-05 W 
            Runtime Dynamic = 0.000134032 W 
 
          Instruction Buffer: 
            Area = 0.000754971 mm^2 
            Peak Dynamic = 0.00217751 W 
            Subthreshold Leakage = 0.000209095 W 
            Gate Leakage = 3.27157e-07 W 
            Runtime Dynamic = 2.13681e-05 W 
 
          Instruction Decoder: 
            Area = 0.106826 mm^2 
            Peak Dynamic = 0.0455126 W 
            Subthreshold Leakage = 0.184982 W 
            Gate Leakage = 0.000321652 W 
            Runtime Dynamic = 0.000446619 W 
 
      Renaming Unit: 
        Area = 0.0469804 mm^2 
        Peak Dynamic = 0.0306179 W 
        Subthreshold Leakage = 0.00835367 W 
        Gate Leakage = 2.32158e-05 W 
        Runtime Dynamic = 2.17373e-11 W 
 
          Int Front End RAT: 
            Area = 0.0143549 mm^2 
            Peak Dynamic = 0.00515925 W 
            Subthreshold Leakage = 0.00151142 W 
            Gate Leakage = 2.10606e-06 W 
            Runtime Dynamic = 0 W 
 
          FP Front End RAT: 
            Area = 0.0199486 mm^2 
            Peak Dynamic = 0.00673318 W 
            Subthreshold Leakage = 0.00273252 W 
            Gate Leakage = 3.84272e-06 W 
            Runtime Dynamic = 0 W 
 
          Free List: 
            Area = 0.00417332 mm^2 
            Peak Dynamic = 0.00167418 W 
            Subthreshold Leakage = 0.000603379 W 
            Gate Leakage = 7.82638e-07 W 
            Runtime Dynamic = 0 W 
 
          Int Retire RAT:  
            Area = 0.000651412 mm^2 
            Peak Dynamic = 0.000729371 W 
            Subthreshold Leakage = 0.000120592 W 
            Gate Leakage = 1.9569e-07 W 
            Runtime Dynamic = 0 W 
 
          FP Retire RAT: 
            Area = 0.000651412 mm^2 
            Peak Dynamic = 0.000729371 W 
            Subthreshold Leakage = 0.000120592 W 
            Gate Leakage = 1.9569e-07 W 
            Runtime Dynamic = 0 W 
 
          FP Free List: 
            Area = 0.00417332 mm^2 
            Peak Dynamic = 0.00167418 W 
            Subthreshold Leakage = 0.000603379 W 
            Gate Leakage = 7.82638e-07 W 
            Runtime Dynamic = 0 W 
 
      Load Store Unit: 
        Area = 0.140683 mm^2 
        Peak Dynamic = 0.0516465 W 
        Subthreshold Leakage = 0.0205757 W 
        Gate Leakage = 4.31955e-05 W 
        Runtime Dynamic = 0.00017223 W 
 
          Data Cache: 
            Area = 0.085274 mm^2 
            Peak Dynamic = 0.0372062 W 
            Subthreshold Leakage = 0.0165821 W 
            Gate Leakage = 2.46382e-05 W 
            Runtime Dynamic = 8.94167e-05 W 
 
          LoadQ: 
            Area = 0.014924 mm^2 
            Peak Dynamic = 0.00374056 W 
            Subthreshold Leakage = 0.000665865 W 
            Gate Leakage = 1.62348e-06 W 
            Runtime Dynamic = 2.76045e-05 W 
 
          StoreQ: 
            Area = 0.014924 mm^2 
            Peak Dynamic = 0.00374056 W 
            Subthreshold Leakage = 0.000665865 W 
            Gate Leakage = 1.62348e-06 W 
            Runtime Dynamic = 5.52089e-05 W 
 
      Memory Management Unit: 
        Area = 0.0215983 mm^2 
        Peak Dynamic = 0.0220847 W 
        Subthreshold Leakage = 0.00526948 W 
        Gate Leakage = 2.10997e-05 W 
        Runtime Dynamic = 7.16525e-05 W 
 
          Itlb: 
            Area = 0.00928538 mm^2 
            Peak Dynamic = 0.00776393 W 
            Subthreshold Leakage = 0.00130384 W 

            Gate Leakage = 2.89467e-06 W 
            Runtime Dynamic = 4.30743e-05 W 
 
          Dtlb: 
            Area = 0.00928538 mm^2 
            Peak Dynamic = 0.00388197 W 
            Subthreshold Leakage = 0.00130384 W 
            Gate Leakage = 2.89467e-06 W 
            Runtime Dynamic = 2.85782e-05 W 
 
      Execution Unit: 
        Area = 1.39989 mm^2 
        Peak Dynamic = 0.631113 W 
        Subthreshold Leakage = 0.354532 W 
        Gate Leakage = 0.000810696 W 
        Runtime Dynamic = 0.268814 W 
 
          Register Files: 
            Area = 0.111148 mm^2 
            Peak Dynamic = 0.0343728 W 
            Subthreshold Leakage = 0.0095046 W 
            Gate Leakage = 1.34297e-05 W 
            Runtime Dynamic = 0 W 
 
              Integer RF: 
                Area = 0.0555739 mm^2 
                Peak Dynamic = 0.0280595 W 
                Subthreshold Leakage = 0.0047523 W 
                Gate Leakage = 6.71487e-06 W 
                Runtime Dynamic = 0 W 
 
              Floating Point RF: 
                Area = 0.0555739 mm^2 
                Peak Dynamic = 0.00631338 W 
                Subthreshold Leakage = 0.0047523 W 
                Gate Leakage = 6.71487e-06 W 
                Runtime Dynamic = 0 W 
 
          Instruction Scheduler: 
            Area = 0.0127407 mm^2 
            Peak Dynamic = 0.0257902 W 
            Subthreshold Leakage = 0.00247094 W 
            Gate Leakage = 5.09262e-06 W 
            Runtime Dynamic = 0.000106882 W 
 
              Instruction Window: 
                Area = 0.00226786 mm^2 
                Peak Dynamic = 0.00712748 W 
                Subthreshold Leakage = 0.000612285 W 
                Gate Leakage = 1.53483e-06 W 
                Runtime Dynamic = 3.61554e-05 W 
 
              FP Instruction Window: 
                Area = 0.00509946 mm^2 
                Peak Dynamic = 0.0114554 W 
                Subthreshold Leakage = 0.00110068 W  
                Gate Leakage = 2.44905e-06 W 
                Runtime Dynamic = 0 W 
 
              ROB: 
                Area = 0.00537336 mm^2 
                Peak Dynamic = 0.00720734 W 
                Subthreshold Leakage = 0.000757978 W 
                Gate Leakage = 1.10874e-06 W 
                Runtime Dynamic = 7.07262e-05 W 
 
          Integer ALUs (Count: 1 ): 
            Area = 0.0384544 mm^2 
            Peak Dynamic = 0.140884 W 
            Subthreshold Leakage = 0.0279667 W 
            Gate Leakage = 6.39207e-05 W 
            Runtime Dynamic = 0.0452976 W 
 
          Floating Point Units (FPUs) (Count: 2 ): 
            Area = 1.11344 mm^2 
            Peak Dynamic = 0.213378 W 
            Subthreshold Leakage = 0.202442 W 
            Gate Leakage = 0.000462702 W 
            Runtime Dynamic = 0.134046 W 
 
          Complex ALUs (Mul/Div) (Count: 1 ): 
            Area = 0.115363 mm^2 
            Peak Dynamic = 0.0845306 W 
            Subthreshold Leakage = 0.0839 W 
            Gate Leakage = 0.000191762 W 
            Runtime Dynamic = 0.0893639 W 
 
          Results Broadcast Bus: 
            Area Overhead = 0.00571706 mm^2 
            Peak Dynamic = 0.118238 W 
            Subthreshold Leakage = 0.0255858 W 
            Gate Leakage = 5.84789e-05 W 
            Runtime Dynamic = 8.9801e-11 W 
 
*************************************************** ****************** 
L2 
      Area = 0.937911 mm^2 
      Peak Dynamic = 0.165416 W 
      Subthreshold Leakage = 0.217494 W 
      Gate Leakage = 0.000684481 W 
      Runtime Dynamic = 0.000249549 W 
 
*************************************************** ****************** 
Flash Controller: 
      Area = 0.0329922 mm^2 
      Peak Dynamic = 0.0241159 W 
      Subthreshold Leakage = 0.00414076 W 
      Gate Leakage = 3.50146e-05 W 
      Runtime Dynamic = 0 W 
 
*************************************************** ****************** 
NIU: 
      Area = 1.30046 mm^2 
      Peak Dynamic = 0.176111 W 
      Subthreshold Leakage = 0.100884 W 
      Gate Leakage = 0.000853082 W 
      Runtime Dynamic = 0 W 
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*************************************************** ****************** 
PCIe: 
      Area = 1.47387 mm^2 
      Peak Dynamic = 0.26973 W 
      Subthreshold Leakage = 0.120787 W 
      Gate Leakage = 0.00102138 W 
      Runtime Dynamic = 0 W 
 
*************************************************** ****************** 
BUSES 
      Area = 0.0611096 mm^2 
      Peak Dynamic = 0.643255 W 
      Subthreshold Leakage = 0.0179458 W 
      Gate Leakage = 5.82246e-05 W 
      Runtime Dynamic = 0 W 
 
      Bus:  
        Area = 0.0611096 mm^2 
        Peak Dynamic = 0.643255 W 
        Subthreshold Leakage = 0.0179458 W 
        Gate Leakage = 5.82246e-05 W 
        Runtime Dynamic = 0 W 
 
**********************************************  


