
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 1 of 28

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D7.3 – Power and Thermal Modeling and Fault-injection support

Due date of deliverable: 31st December 2011
Actual Submission: 31st December 2011

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: UNISI

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Author Organization Change History
0.1 Antonio Portero UNISI Initial template
0.2 Alberto Scionti UNISI Revision
0.6 Roberto Giorgi UNISI Major rewriting of Section 3

Release Approval
Name Role Date
Antonio Portero Originator 23.11.2011
Roberto Giorgi State of the Art 14.12.2011
Roberto Giorgi WP Leader 15.12.2011
Roberto Giorgi Project Coordinator for formal deliverable 30.12.2011

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 2 of 28

TABLE OF CONTENTS

GLOSSARY ... 4

EXECUTIVE SUMMARY .. 5

1 INTRODUCTION ... 6

1.1 RELATION TO OTHER DELIVERABLES ... 6

1.2 YEAR-2 ACTIVITY REFERRED BY THIS DELIVERABLE ... 7

1.3 SUMMARY OF PREVIOUS WORK (FROM D.7.2, D.7.1) ... 7

2 POWER MODELING (UNISI, HP) .. 9

2.1 IMPLEMENTATION OF POWER MODEL IN THE SIMULATOR .. 9

2.1.1 Definition of the granularity ... 9

2.1.2 Interface to add Power models ... 9

2.2 SIMPLE USE CASE 1 FOR POWER ESTIMATION .. 10

2.2.1 The simulation description .. 11

2.2.2 The result database of the COTSon simulation ... 12

2.2.3 The conversion tool cotson2mcpat ... 13

2.2.4 The McPAT tool ... 13

2.2.5 From simulation to power: sample output for the L2 cache ... 14

3 THERMAL MODELING/MANAGEMENT (UNISI) .. 15

3.1 STATE OF THE ART AND RELATED WORK .. 15

3.2 IMPLEMENTATION OF THERMAL MODEL IN THE SIMULATOR .. 17

3.3 DEFINITION OF THE GRANULARITY .. 18

3.4 MODEL OF NODE ACTIVITY TO ESTIMATE TEMPERATURE .. 18

3.4.1 Temperature Management in TERAFLUX/COTSon ... 18

4 FAULT-INJECTION SUPPORT (UAU) .. 20

4.1 BASELINE MACHINE INTEGRATION ... 21

4.2 CORE FAULTS .. 22

4.2.1 Inter-core Faults ... 22

APPENDIX 1 ... 25

COTSON INPUT FILE (EXAMPLE_POWER. IN) .. 25

MCPAT INPUT FILE .. 25

MCPAT OUTPUT RESULTS ... 26

LIST OF FIGURES

FIGURE 1 – EXTRACTING POWER DATA IN COTSON. ... 10

FIGURE 2 – HIGH LEVEL MODEL IMPLEMENTATION (A DESIGN OPTION FOR THE DTS CONTINUATION). 19

FIGURE 3 - FAULTS IN COTSON/NOXIM 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 3 of 28

Roberto Giorgi, Antonio Portero, Alberto Scionti
University of Siena

Theo Ungerer, Arne Garbade, Sebastian Weis

Universitaet Augsburg

© 2009-13 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site and can be
distributed to the Public.
The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained in
this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or copied in
accordance with the terms of the License. The information in this document is a work in progress, jointly developed by the members of
TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned by or licensed
to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials. Any use of the protected
technology and related material beyond the terms of the License without the prior written consent of TERAFLUX is prohibited. This
document contains material that is confidential to TERAFLUX and its members and licensors. Until publication, the user should assume that
all materials contained and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from the
nature of such materials (for example, references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without the prior written
consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The trademarks, logos, and service
marks displayed in this document are the registered and unregistered trademarks of TERAFLUX, its members and its licensors. The
copyright and trademarks owned by TERAFLUX, whether registered or unregistered, may not be used in connection with any product or
service that is not owned, approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer
confusion or that disparages TERAFLUX. Nothing contained in this document should be construed as granting by implication, estoppel, or
otherwise, any license or right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner
of any such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY TERAFLUX TO
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING
FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH
ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT,
TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 4 of 28

Glossary
Auxiliary Core A core typically used to help the computation (any other core than service

cores) also referred as “TERAFLUX core”
BSD BroadSword Document – In this context, a file that contains the SimNow

machine description for a given Virtual Machine
CLUSTER group of cores (synonymous of NODE)

COTSon Software framework provided under the MIT license by HP-Labs
DDM Data-Driven Multithreading

DF-Thread A TERAFLUX Data-Flow Thread
DF-Frame the Frame memory associated to a Data-Flow thread

DVFS Dynamic Voltage and Frequency Scaling
DTA Decoupled Threaded Architecture
DTS Distributed Thread Scheduler

Emulator Tool capable of reproducing the Functional Behavior; synonymous in this
context of Instruction Set Simulator (ISS)

D-FDU Distributed Fault Detection Unit
L-Thread Legacy Thread: a thread consisting of legacy code

L-FDU Local Fault Detection Unit
L-TSU Local Thread Scheduling Unit
MMS Memory Model Support
NoC Network on Chip

Non-DF-Thread An L-Thread or S-Thread
NODE Group of cores (synonymous of CLUSTER)
OWM Owner Writeable Memory

OS Operating System
Per-Node-Manager A hardware unit including the DTS and the FDU

PK Pico Kernel
Sharable-Memory Memory that respects the FM,OWM,TM semantics of the TERAFLUX

Memory Model
S-Thread System Thread: a thread dealing with OS services or I/O

StarSs A programming model introduced by Barcelona Supercomputing Center
Service Core A core typically used for running the OS, or services, or dedicated I/O or

legacy code
Simulator Emulator that includes timing information; synonymous in this context of

“Timing Simulator”
TAAL TERAFLUX Architecture Abstraction Layer
TBM TERAFLUX Baseline Machine
TLPS Thread-Level-Parallelism Support

TLS Thread Local Storage
TM Transactional Memory

TMS Transactional Memory Support
Virtualizer Synonymous of “Emulator”

VCPU Virtual CPU or Virtual Core

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 5 of 28

Executive Summary
This document provides a report on the current status of the simulation platform in relation with:
power, temperature and fault injection. As of our deliverable and task planning this is NOT a report of
the several other activities that we carried out in this Workpackage (these are reported more
synthetically in the Periodic Progress Report for Year-2). The evidence of most of those activities is
publicly available through the realized software, in particular on the public website
http://cotson.sourceforge.net (branches).

This document also serves, as of our initial intention, to document to the partners and the rest of the
world:

• the availability of some simulation features in the TERAFLUX – COTSon based simulator,
to support the evaluation of Future Teradevice systems consisting of many cores (i.e., 1000+
cores), with respect to not only Performance, but also Temperature, Power, and Faults
within a single toolchain that provides full-system simulation, at a reasonable simulation
speed.

As of our knowledge this is still above the State-of-the-Art when considering all the capabilities that
are provided in the COTSon HP-Labs based tools and the TERAFLUX extensions.

In particular, we present the developments in Year-2 to monitor power consumption, temperature and
the fault injection support model. As overall project goal, is our aim to exploit dataflow principles to
reach power efficiency, reliability, efficient parallel programmability, scalability and data bandwidth.
TERAFLUX project proposes the exploitation of dataflow both at the task level and inside the
threads, in order to: offload and manage accelerated codes, localize the computations, manage the
fault information with appropriate protocols, easily migrate code to the available/working components
and respect the power/performance/temperature/reliability envelope for efficiently handling the
parallelism and having an easy and powerful execution model, to produce a more predictable
behavior. One key component to achieve that goal is the Distributed Thread Scheduler (or DTS)
presented in D6.2, that operates at low-level: here we recall this, as it plays an essential role for the
unified management of temperature, power, resiliency in respect to faults, and – of course –
performance. The modeling in the simulator of DTS features for managing power, temperature, fault
information is also detailed in this document.

IMPORTANT NOTE: This document was not strictly necessary, as the outcome that we wish to
deliver was mainly SOFTWARE (this deliverable is in fact marked as OTHER not as REPORT
in our Annex-1 “EC-Approved”), but we think it’s an yway an useful document for the progress
of the project and therefore we submit it also to point out how to use the actual software, which
is the real deliverable.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 6 of 28

1 Introduction
Our idea for taking under control the load balancing, the consumed power, the reached temperature
and the resiliency to faults is to rely on a distributed resource manager, namely the Distributed Thread
Scheduler (or DTS), which is available as an additional COTSon component since this Year-2 of the
project on the public sourceforce.net website. The first instances are provided by HP-Labs.

An important decision, in the overall picture, regards the granularity of the above parameters that we
want to control through the DTS. While many “local techniques” have been proposed we believe that
future many-cores (or teradevices) will have to manage the complexity of the design by controlling
such parameters at the level of the core and for 1,000 or 10,000 cores simultaneously:

“The core is the new transistor”

as pointed out by many. Therefore, a critical component of the new chips will be a powerful “resource
manager” that can flexibly and rapidly manage the dynamic situation: our TERAFLUX architectural
template embeds this important conclusion (see D6.2) and in the WP7 we are now developing the first
simulative prototypes of this concept.

In the following, we explain how the work on power, temperature, faults in the WP7 is related with
other WPs and previous deliverable. In the next Sections, we present a short summary of the ongoing
work on power, temperature, faults in the common simulation framework.

This document also serves as part of the knowledge transfer task T7.1 and provides some “what-if”
cases (requested by the Year-1 review).

1.1 Relation to other deliverables
Furthermore, WP7 serves to integrate the research contribution from All Partners into a single
simulation platform (while keeping into account of course, any feasibility limitation). Therefore we
refer to activities carried out in all other work packages. In particular:

• Work Package 2 (WP2): some applications like Graph-500 and Linpack have been tested at
the 1000-core scale and we are working to make the platform encompassing also, e.g., power,
temperature estimations. Support from BSC has been important to setup the experiments.

• Workpackage 3 (WP3): in particular support for programming models based on Transactional
Memory has been proposed in the simulator by partner UNIMAN and HP. However, the
integration of that work with power and temperature information has still to be considered.

• Workpackage 4 (WP4): preliminary back-ends form GCC have been tested and served to
setup initial code testing for automatic generation of code that respects dataflow execution
principle so that it will be possible the re-execute threads in presence of faults.

• Work Package 5 (WP5): shows model experiment techniques to detect and recover from
unreliability of the system. More precisely in D5.1- Section 3 is provided the general
specification of the fault detection Unit (FDU), Section 4 presents the FDU interface
specification and section 5 presents the core-internal fault detection mechanism. In D.5.2,
there is a section which explains a refined version of fault detection and recovery
architecture; it reports the way a group of cores are clustered together to form a node and the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 7 of 28

nodes are connected with a 2-D mesh based network-on-chip (NoC). There is also an
explanation in inter-cluster fault detection mechanism, grouping strategies and device
controller.

• Work Package 6 (WP6): provides an execution model, an architecture that uses off-the-shelf
components augmented with some core extensions like the T*-ISA extension and the DTS,
for reaching performance while respecting power/thermal constraints. In the deliverable
D6.1, Sections 3 and 4, the TERAFLUX basic execution model and architecture are proposed.
The newer DTS extensions that also support information about temperature, faultiness
level and power consumption. In the deliverable D6.2, Section 2.2.1, the DTS (Distributed
Thread Scheduling) is introduced: this hardware module ensures that each core remains below
a predefined temperature threshold.

• Work Package 7 (WP7): D7.1 and D7.2 presented a very extensive overview of the features
and the work carried out during the first year in order to enable all partners to simulate a
1000-core platform.

1.2 Year-2 activity referred by this deliverable
This deliverable reports on the research carried out in the context of Task 7.3 (m6 - 40).

An important requirement on the simulation platform for the TERAFLUX project is to provide an interface for
the TERAFLUX partners to be able to support their research activities in the context of energy reduction and
reliability. This involves supporting a mechanism to inject and trace faults as well as connecting the simulation
platform to existing power-modeling tools. In a similar way in how we planned Task 7.2, Task 7.3 includes
different stages:

• A definition phase, where all partners together will contribute to define the requirements and
specifications for the power modeling, fault injection and fault tracking interfaces. This involves
defining the granularity of the power-related events required by WP3 and WP6 and - if needed - the
power-impacting actuations (e.g., processor P-States, idle and sleep modes, etc.) that the research
activities require. The fault-tolerant work package (WP5) will classify the types of faults we want to
model, how to detect them and how to support the fault detection and recovery at the simulation level.

• A simulator-core implementation phase, where UNISI with guidance from HP will implement the
necessary changes in COTSon to support the defined enhancements and expose them in a new version
of the COTSon SDK.

• An application-specific implementation phase, where the interested partners will implement (test and
validate) their specific fault and power models on the new SDK version and document the work to
make it available to the rest of the TERAFLUX consortium.

Hence, we believe, all goals of WP7 for the second year were achieved.

1.3 Summary of previous work (from D.7.2, D.7.1)
Most notably after the first year:

• ALL the partners were able to use COTSon (our common simulation framework) through a
set of shared benchmarks (Project Milestone M7.1) and can commit in a single repository.

• COTSon has been released as open-source simulator, thus providing the reciprocal benefit
for the TERAFLUX project and the international research community since the first month of
the project.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 8 of 28

• We are able to boot a simulated system including Applications, OS (full-system simulation)
for the TERAFLUX Baseline Machine (TBM) as designated in D7.1 consisting of more than
1000 cores. This put us in the world-wide frontline for experimenting with simulated system
of such size and it demonstrates a continued relevance of our objectives.

• We are able to apply modifications (e.g., we can modify the architecture of such 1000-core
system). In general, we can now integrate the proposed research from the partners in a single
platform, thus overcoming the limitation of pursuing separate research goals and rather
achieving a common goal of improving such a large scale system as a whole.

• We aim at an even increased impact of our project using as vehicle the availability of the
TERAFLUX system through the improved COTSon simulation framework. As of our
knowledge, no other simulator provides similar benefits.

• We took some extra effort (exceeding what planned) to provide a more convincing platform
for modeling a Future TERAFLUX Single-Chip/Package through the introduction of a model
of an off-the-shelf network-on-chip (NoC), as we believe will benefit the whole project and
the success of the simulation framework.

Regarding the interface to the FDU, in D7.1 (Section 10.3) and D7.2 (Section 3.6) we started to
describe how the rest of the system reacts to the reported faults. In particular, the TSU-DTA and more
recently (see D6.2) the DTS is interfaced with the Fault Detection Unit (FDU), which is in charge of
reporting about the “health” of each HW component within its group of managed cores, so that the
local management as well as the global resource management will be improved. Here we further
detail the implementation of this interface in the COTSon simulator (in progress).

Power modeling was initially exposed by HP partner in the deliverable D7.2, Section 3.2.2. In order to
show how to collect and manipulate simulation events in such a way that they can be fed to other
analysis tools, such as power consumption estimation tool, HP developed a mechanism that connects
the results of a COTSon simulation to the McPAT [Li09] power and area estimation tool. Here we
report some practical example on how to practically use the tool in the context of TERAFLUX.

In D7.2, Section 3.4.1 is presented an instance of the model of a NoC, based on the Noxim simulator
and integrated in the COTSon (see branches on SourceForge website), and it provides information
about data latencies and throughput. Fault detection (partner UAU) further builds on the availability
of a NoC model in COTSon.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 9 of 28

2 Power Modeling (UNISI, HP)

2.1 Implementation of Power model in the Simulator
In order to show how to collect and manipulate simulation events in such a way that they can be fed to
other analysis tools (e.g., a power estimation tool), HP developed a mechanism that connects the
results of a COTSon simulation to the McPAT [Li09]. McPAT (Multi-core Power, Area, and Timing)
is an integrated power, area, and timing modeling framework for CPU architectures. It simultaneously
models power, area, and timing of a given CPU architecture and it supports comprehensive early stage
design space exploration for processor configurations ranging from 90nm to 22nm and beyond.
McPAT includes models for the components of a complete chip multiprocessor, including in-order
and out-of-order processor cores, networks-on-chip, shared caches, and integrated memory
controllers. It models timing, area, and dynamic, short-circuit, and leakage power for each of the
device types forecast in the International Technology Roadmap for Semiconductors (ITRS) [ITRS-
2009] including bulk CMOS, SOI, and double-gate transistors.

Isci et al. [Isci06] propose to use a global power management layer, which acts on a per-core basis
and in coordination with higher-level scheduling and load-balancing policies set in the system
software. This system is indicated to follow more properly the fast phase changes of a multi-
programmed workload based on several SPEC2000 benchmarks. They consider a POWER4 simulated
CMP with up to 8 cores. The DTS of TERAFLUX acts as a similar resource management and by
interacting hierarchically and following the OS policies as well, but its operation is integrated also
with power, temperature monitoring and detected faults.

Bergamaschi et al. [Bergamaschi08] investigate power management both at core and chip level and
propose non-linear optimization algorithms acting through DVFS to control power. They use
MaxBIPS algorithm (proposed by Isci et al. [Isci06]) as a reference point for their analysis. Their
framework permits the evaluation of performance and power of a system encompassing cores, caches,
buses, memory controller and several type of interconnection paradigms. Similarly, COTSon+McPAT
allows us to evaluate both performance and power for a modular system composed of similar type of
componenents. Currently, COTSon and McPAT are available as open source.

2.1.1 Definition of the granularity
We define the granularity of the minimum subsystem under study, which in our case is equal to a
single core. Therefore, the set of parameters (temperature, power consumption and faultiness level)
will be always considered at the core level. As explained in D6.2, these parameters are constantly
considered by the Distributed Scheduler (DTS). At a smaller granularity, other techniques can of
course be applied, e.g., in the functional units, cache memories and all other units that are part of a
core.

2.1.2 Interface to add Power models
The COTSon simulation platform can be easily interfaced with tools for the estimation of the power
consumption and the thermal behavior of a given architecture. COTSon is now including an interface
to the McPAT tool.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 10 of 28

The architecture, whose power has to be estimated, is described in McPAT through an XML input
file. This input file contains both the detailed description of the simulated architecture and the list of
relevant events used by the tool to generate area, power and timing estimates.

On the other hand, the COTSon is able to export simulation results (i.e., events such as instruction
counts, memory accesses, etc.) in a SQLite database. In order to interface each of the two tools, a
conversion tool (cotson2mcpat) has been implemented by partner HPLabs. The cotson2mcpat is a
conversion tool that queries the COTSon simulation result database and generates the McPAT XML
input file. In particular, the cotson2mcpat tool traverses the simulation database using the SQL API
and queries about the configuration parameters, the simulation sampling scheme, and the individual
events.

Running the McPAT tool periodically results in a detailed description of the power estimation for
each functional unit that is described in the XML file, along with the area and timing estimations. The
overall processing flow is described by Figure 1.

COTSon

simulator

cotson2mcpat

tool

McPAT

tool

Simulation

Configuration

example_power.in

Simulation

results stored

on a DB

example_power.db

XML input file

for the McPAT

Tool

example_power.xml

power,. area…

power_analysis.txt

Figure 1 – Extracting power data in COTSon.

It is worth observing that the McPAT tool is currently designed to operate as post-mortem, but it
would also be possible to invoke it during simulation (or repeatedly for individual simulation interval)
to support generating power profiles over time.

Future work will consider the integration of the McPAT to dump its statistics in the database at every
“heartbeat” (see below) of the COTSon simulator.

2.2 Simple Use Case 1 for power estimation
As a use case, we detail here the steps that are required to generate the power consumption estimation
for a simulation of a simple architecture.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 11 of 28

2.2.1 The simulation description
First, we start considering the input file for the COTSon simulator (in the following example:
example_power.in). The detailed example and full file is reported in the Appendix 1 - Section
Cotson Input File. In such file, we have to modify the following two lines:

[…]
use_bsd('1p-reset.bsd')
use_hdd('karmic64.img')
[…]

in order to correctly reflect the BSD (‘use_bsd ’: the BSD it’s a “snapshot” of the simulated node at a
given time, including the complete list of architectural component in a node) and the virtual disk of
the virtual machine (‘use_hdd ’) that we want to use for that node.

We then set the COTSon simulation parameters in a COTSon simulator (COTSon accepts as input a
simple scripting language called ‘lua’). The following lines in the input file allow the simulator to
store all the relevant events in a SQLite database.

In particular, the heartbeat parameter allows us to set the structure used to store the simulation events.
In this example,

• the parameter type is used to set a Sqlite database (type=”sqlite”),
• the filename is specified by DBFILE (dbfile=DBFILE),
• the database structure is organized per group of experiments, thus experiment_id and

experiment_description respectively set the identifier of the current experiment (i.e., group of
records in the database which store the simulation events) and the associated description
string.

Other general parameters are:

• The fastforward option, which allows us to skip the specified amount of time (expressed in
nanoseconds), thus the simulation events for this period of time are not stored allowing a
faster simulation (i.e. 100M ns).

• The time_feedback sends a time feedback to the functional simulator (e.g., AMD SimNow),
so it can more accurately follow the actual simulation.

• the max_nanos set the maximum simulation time (nanoseconds) for the experiment.

The sampler parameter sets the relevant information for driving the simulation event sampling
process. As the previous parameters, sampler supports several options.

• The type option specifies the sampling method that will be used during simulation. Setting it
to dynamic, allows us to dynamically switching among emulation (i.e., pure functional
simulation), warming phase and simulation of the target system.

• For all these phases, we can specify the amount of nanosecond (nanos) that will be used
during simulation (e.g., functional = 500k allows us to emulate the execution of 500
microseconds). However, the max_nanos parameter specifies the maximum allowed period
for the simulation. Thus both the max_nanos and the sampling intervals represent two
alternative stop conditions for the simulation process.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 12 of 28

• The variable option, within the sampler parameter, contains the list of simulation events that
will be stored in the output log file or in the output database.

• The maxfunctional option allows us to specify the maximum time interval for the functional
simulation. In particular, if the functional simulation exceeds the maximum specified value,
the re-sampling procedure (i.e., the portion of the simulation used to extract the metric values)
is enabled.

• Similarly, the sensitivity option is used to enable the resampling procedure whenever the
normalized differential value of a monitored metric (i.e., the differential value of the metric is
normalized and the difference from the average value of the metric is compared with the
sensitivity) exceed the sensitivity value.

[…]
heartbeat = { type="sqlite", dbfile=DBFILE, experim ent_id=1,
 experiment_description="test run"},
fastforward="100M",
time_feedback = true,
max_nanos="200M",
sampler=
{ type="dynamic", functional="500k", warming="100k" ,
 simulation="100k",
 maxfunctional=1000, sensitivity="500",
 variable={"cpu.*.other_exceptions", "cpu.*.iocoun t"}
},

[…]

2.2.2 The result database of the COTSon simulation
The simulation is typically started by invoking the <cotson_root>/bin/cotson command:

 cotson DBFILE=\"`pwd`/example_power.db\" example_po wer.in

Where example_power.db is the name of the file which will contain the database with the COTSon
simulation results, and example_power.in is the name of the input lua file (see Appendix 1 - Section
Cotson Input File) for the COTSon simulator.

The Sqlite database allows us to store simulation events in a more structured format than compared to
the simple log file. The database consists of 5 tables. Data resulting from the simulations are
organized into experiments; hence:

• The experiments table stores the unique experiment identifier along with a description string.
• For each experiment, a set of rows is used to register the machine configuration (parameters

table). Each row is composed of four fields:
o (i) the experiment identifier,
o (ii) the machine identifier,
o (iii) the name of the parameter used to describe the machine configuration,
o (iv) the value associated to the configuration parameter.

• The simulation events are stored in the database every time a heartbeat is generated (i.e.,
generally whenever a certain amount of time is expired, the heartbeat is generated). The
heartbeats table registers a timestamp of each received heartbeat.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 13 of 28

• The list of all the available target system metrics is contained in the last table, called
metric_names.

• Finally, the metrics table is used by the COTSon simulator to register the simulation events
effectively used among the available ones.

Whenever the heartbeat is generated, a set of rows is used for storing selected information (i.e., target
system metrics) about the simulated target system (see the variable option of the sampler parameter in
the COTSon input file).

2.2.3 The conversion tool cotson2mcpat
At this point it is necessary to run the conversion tool cotson2mcpat . We call this tool with the
following syntax:

 cotson2mcpat file:example_power.db 1 example_power. xml -v

• The input file is indicated by file:example_power.db

• The output of this step is the file example_power.xml
• Since the COTSon simulator platform organizes the database of results as a set of

experiments, with all the important events recorded for each experiment, we indicated the
identifier of our experiment as “1”. The option ‘-v’ is used to generate more information
during the XML file generation process (see Appendix 1 – Section XML input file). The
option ‘-r ’ can eventually be used to directly run the McPAT tool after the XML generation
process finished.

2.2.4 The McPAT tool
McPAT is a tool designed for estimating the power consumption, the area and the timing of a
microprocessor [Li09]. In order to correctly estimate these three metrics, the tool processes a XML
input file containing both the description of the functional units composing the target microprocessor,
and the “events” produced by an external simulator. The events concern the output metrics that the
external simulator can provide during the simulation, such as instruction counting, cache memories
accesses, number of simulated cycles, etc. The events and the description of the functional units are
organized on a per-functional-unit basis.

To run the McPAT tool, we simply launch this command:

 mcpat -infile example_power.xml -print_level 5 -opt _for_clk 0 >power_analysis.txt

• The input file is indicated with ‘ -infile example_power.xml ’ (which is the output from
the previous tool);

• The output of the simulation is sent to standard output (in this example, it is redirected to the
file power_analysis.txt) reported in the Appendix 1 – Section McPAT simulation results.

• The option ‘-print_level 5 ' enables the McPAT tool to generate the highest level of detail
in the output

• The option ‘-opt_for_clk 0 ’ tunes the tool in order to consider only the ED2P product.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 14 of 28

Substantially, after this step we obtain a value (1 point) for the power. If we want to plot a graph of
the power with time, we need to repeat this step for the next group of instructions. As mentioned, we
aim to automatize this step in the future.

Finally, we expect this tool to be the foundation for the future TERAFLUX power and energy
evaluations. Code and examples are available at [COTSon11].

2.2.5 From simulation to power: sample output for the L2 cache
The data from the result database after the previous simulation is converted to the following format.
For example, in the following frame we highlight the data related to the L2 cache (the complete
output is reported for reference in Appendix-1).

<component id="system.L20" name="L20">
 <param name="L2_config" value="524288,16,4,1, 1,20,16,0"/>
 <param name="buffer_sizes" value="16, 16, 16, 16"/>
 <param name="clockrate" value="3200"/>
 <param name="ports" value="1,1,1"/>
 <param name="device_type" value="0"/>
 <stat name="read_accesses" value="1874"/>
 <stat name="read_misses" value="1874"/>
 <stat name="write_accesses" value="1175560"/>
 <stat name="write_misses" value="0"/>
 <stat name="conflicts" value="0"/>

</component>

• The param nodes in the above XML code portion represent the L2 cache description;
• The stat nodes contain the L2 cache statistics after the COTSon simulation.

The McPAT analyzes all the events associated to all the functional units and estimates the power
consumption of the target system. In particular, the result of this process is an estimation of the power
consumption for each functional unit in terms of

• dynamic peak power. This measure reports the peak power consumption during the charging
and discharging of the capacitive load during normal switching activity of the functional unit.

• gate leakage and sub-threshold leakage power. This represents the power consumption due to
the leakage currents in the devices forming the functional unit.

• runtime dynamic power. This measures the average power consumption during the charging
and discharging of the capacitive load during normal switching activity of the functional unit.

The output of the previous example, in particular for the L2 cache is the following:

Total L2s:
 Device Type= ITRS high performance device type
 Area = 0.937911 mm^2
 Peak Dynamic = 0.165416 W
 Subthreshold Leakage = 0.217494 W
 Gate Leakage = 0.000684481 W
 Runtime Dynamic = 0.000249549 W

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 15 of 28

3 Thermal modeling/management (UNISI)
We decided to organize the work related to thermal modeling/management in steps. Initially, we
asked to all the partners their interest in modeling the temperature inside the core: the outcome is that
the TERAFLUX Consortium is more interested in the mechanisms to manage the temperature
information (“respecting the power/performance/temperature/reliability envelope” from the abstract
of our proposal – Annex-1), therefore we focused on those aspects connected to enabling a thread
scheduling on the available cores based also on the additional parameter “temperature”.

An important motivation for considering temperature is also that reliability and sub-threshold leakage
are exponentially related to temperature.

As for the “power” parameter this will be another parameter to be considered at the scheduling time in
the Distributed Thread Scheduler (DTS) (see Figure 2). The initial model that we used is very simple
in order to keep a low complexity when we have many (e.g., 1000) cores: each core has an associated
temperature value and the DTS considers also that value when deciding where to schedule threads
(the precise algorithm will be detailed later on in the project).

3.1 State of the art and related work
In order to have an appropriate view of the state of the art, we analyzed some related work on
Dynamic Thermal Modeling and in particular in multicores and on Temperature-aware thread
scheduling and allocation.

Dynamic Thermal Modeling (DTM)

Dynamic Thermal Modeling has been studied in several works [Dhodapkar00], [Brooks01], [Stan03],
[Skedron04], [Han06], [Murali07], [Kumar08], [Mutapcic09].

One important observation is that optimizing the temperature by adjusting core speeds and using
sophisticated control laws is justified only when the number of cores is greater than tens
[Mutapcic09]. In TERAFLUX, we aim to manage the temperature of a thousand or more cores, so
it’s relevant to spend some resource of the system even at some cost.

Skadron et al. [Stan03], [Skadron04] introduced ‘HotSpot’ a framework, which allows for detailed
thermal modeling that can be included in other simulators. It utilizes an equivalent circuit
comprising thermal characteristics of the package and applies 4th order Runge-Kutta methods, with
some substantial overhead in calculation. Other simulators that used thermal models are TEMPEST
[Dhodapkar00], which is based on SimpleScalar and a Wattch extension that uses power as a proxy to
estimate temperature [Brooks01]. This suggest some basic model for temperature that can be
considered in TERAFLUX too.

Han et al. [Han06] present an algorithm to estimate and make projection on temperature based on
hardware performance counters, but which is much faster than other methods such as the one
available in the HotSpot simulator [Stan03]. The work of Kumar et al. [Kumar08] proposed a
regression- based thermal model that uses hardware performance counters available in the processor
similarly to [Han06]. Both works [Han06], [Kumar08] are only limited to the uniprocessor case, but
indicates an opportunity to establish temperature control even without temperature sensors, which

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 16 of 28

is very useful for the simulation. This gives the option to avoid using the concept of “temperature
sensor” in TERAFLUX.

Murali et al. [Murali07] study an MPSoC consisting of 15 cores (and same number of local memories)
and propose a design-time solution of DVFS scheduling based on convex optimization that optimizes
performance (total instruction executed) while meeting the given power and temperature constraints.
This results in a simple formula that says that the average frequency of operation of each core
should be w/(n+l) where w is the total number of cycles of the workload, n the number of cores and l
the latency to finish the computation in each core. This formula could be considered in TERAFLUX
models for reference.

Temperature-aware threads scheduling on Multi-cores

Temperature-aware thread scheduling is also used in multi-core systems to optimize the resources
performance and to reduce thermal hotspots by distributing heat generation more homogeneously
across the silicon chip layout [Powell04], [Annavaram04], [Choi07], [Coskun08], [Kang11].

Powell et al. [Powell04] is the first work that proposes a combination of thread scheduling on a Chip
Multiprocessor (CMP) and on Simultaneous Multi-Threaded cores (SMT) in order to avoid
overheating cores (and therefore critical temperatures) and try reduce power-density as a
consequence. In TERAFLUX, similarly, the DTS accounts for the temperature and may avoid
overheating cores in the operation of thread assignment.

Annavaram et al. [Annavaram04] used a 4-way multicore to show that code that presents a large level
of thread parallelism can provide an important acceleration when running on a low frequency, lower
performance multi-core than a single high-frequency complex architecture core using exactly the
same amount of power consumption. The approach that we use in our DTS of distributing as many
DF-threads in parallel is exactly moving in the direction of reducing the Energy expended Per
Instruction (EPI) based on the available parallelism: DF-threads are mapped on lower-power
“Auxiliary Cores” (AC) (cf. D7.1, D7.2).

Choi et al. [Choi07] used an OS-level temperature-aware scheduling, which samples the 24 sensors of
a dual-core POWER5 (1.2 GHz) every 4ms (the scheduler tick). Their conclusions are relevant to our
work: i) they confirm that on-chip temperature is closely related to unit utilization and ii) the
changes in temperature are in the order of hundreds of ms, which is about two order of
magnitude larger of the scheduler tick. This will permit us to direct our effort to a proper
consideration of the temperature variations on the scheduling decisions.

Coskun et al. [Coskun08] proposed to use a combination of off-line (based on Integer Linear
Programming) and on-line techniques to minimize temperature hotspots and gradients of the MPSoC
with per-core DVFS capability. Chantem et al. [Chantem08] presented a thread assignment and
scheduling technique for hard real-time applications in MPSoCs, which uses a mixed integer linear
programming solver to minimize the peak temperature of multi-core systems based on the steady-state
thermal analysis. They also proposed two heuristic approaches for thread scheduling based on steady-
state and transient thermal analysis. These techniques could provide indication on how to distribute
computations in order to avoid thermal hotspots. However, all these solutions are design–time
approaches.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 17 of 28

Kang et al. [Kang11] propose to use a thread migration method at runtime to respect power and
temperature constraint. This paper is also the first, as of our knowledge to consider such problem in
the context of 3D multi-core architectures. In TERAFLUX we use DTS to dynamically schedule task;
the migration is unnecessary since the needs are determined before the scheduling of the threads. In
other words, TERAFLUX DTS relies on thread assignment rather than thread scheduling.

Temperature/Thermal management

Ebi et al. [Ebi09] propose an proactive power distribution method (named “TAPE”) based on a per-
core agent implemented in a mixed hardware and software fashion to evenly distribute power and to
reduce the peak temperature while meeting the given deadline constraint. The per-core agent performs
dynamic voltage and frequency scaling (DVFS) and/or power gating according to measured
temperature of the core. Their approach aims to reduce the peak temperature and improves the state-
of-the-art techniques like HRTM [Powell04] and PDTM [Yang09]. They use a 96-core platform using
MiBench.

In [Kumar08], while the DTM is done through performance counters, as explained above, the
temperature management technique (called HybDTM) controls the chip temperature by clock-gating
or limiting tasks’ execution when the estimated temperature reaches a given threshold. In
TERAFLUX, we aim to use a similar interaction between policies set at software level (OS, etc.) and
lower level estimation and control through the DTS.

In [Zhang08], the authors presented the first stochastic temperature-aware DVFS method to keep the
expected latency within the designer specified level, while meeting the condition that the probability
of peak temperature exceeding a given threshold is sufficiently small. Their technique is an off-line
method while in TERAFLUX we aim at an on-line methodology (which is also in the future work of
the same authors).

Donald et al. [Donald06] suggested a two-loop system for an OS based thread migration based on
information provided at core level. In their approach, both hardware fine-grained adjustments to cope
with thermal emergencies and software based migration for heat balancing and optimized
performance is used. A similar approach is supported in the TERAFLUX architecture, but we are also
considering power and faults.

The work from Zhu et al. [Zhu 08] stresses the importance of thermal management in 3-D Chip
Multiprocessors: the power densities of such chips will require frequent invocations of thermal
control. The authors develop a mathematical formulation to balance the workload, the power and the
temperature and implement it on a unified hardware and OS framework (named ThermOS).

3.2 Implementation of Thermal model in the Simulator
The Thermal Model in the simulator is currently work in progress, based on our finding on literature.
We also believe that an interface very similar to that one designed for power should be used.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 18 of 28

3.3 Definition of the granularity
Recent high-performance processors like the Intel Sandy-Bridge contain as many as 12 temperature
sensors [Rotem11] and there is appropriate (local) thermal management inside the processor itself. In
the TERAFLUX project, we investigate the thermal management of a chip encompassing 1000+ core
and therefore focus on what to do at overall level, without necessarily interfering with the per-core
thermal management.

The work by Powell et al. [Powell04] also investigates the spatial and temporal granularity to react to
overheating (hotspots): if the granularity is too coarse, we may lose opportunities to adaptation. In
TERAFLUX, we are targeting system with 1000+ of more cores; therefore the granularity of a core
appears appropriate (more local techniques may be applied as well, if needed). For the temporal
granularity, it has been observed [Powell04] that it is not a relevant choice as long as we have the
ability to stop the computation once a certain threshold value for temperature is reached. Again, this is
perfectly in line with the approach that we use in the DTS.

Therefore we choose a single number per-core to characterize the core (average) temperature and this
is the granularity level we aim to manage. As explained in this document and in other deliverables
(D6.2), our view is that the Distributed Thread Scheduler takes care of an appropriate thread
allocation based on the global information it has, including the temperature.

As explained below, this document introduces the general idea of how this can be done in the
simulator.

3.4 Model of Node activity to estimate Temperature
The temperature estimation and management framework is still in development. We assume that we
can estimate temperature using approaches similar to those found in the literature [Dhodapkar00],
[Brooks01], [Stan03], [Skedron04], [Han06], [Murali07], [Kumar08], [Mutapcic09], i.e., by an
indirect calculation during the simulation. This calculation has not to be done very frequently, in the
order of every hundreds of ms as proposed in other works [Choi07].

3.4.1 Temperature Management in TERAFLUX/COTSon
The Distributed Thread Scheduler (described in D6.2) bookkeeps information about continuations (a
tuple) associated to every thread. This tuple contains at least the following information:

• The Synchronization Count (SC), which specifies the number of producer inputs to that
thread before it becomes ready to execute.

• The Instruction Pointer (IP) is the pointer to the first instruction of the associated thread in the
code memory.

• The Frame Pointer (FP) is the address of the frame in the frame memory allocated for the
associated thread.

• The Core Identifier (CID), which identifies the core where the thread is executed.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 19 of 28

Another table will provide information about the cores, where each core entry will have the following
fields (as shown in Figure 2):

• A POWER indicator, through which the power of the core is known to the DTS;
• A TEMP indicator, through which the temperature of the core is known to the DTS;
• A FAULTS indicator, through which the faultiness of the core is known to the DTS.

For completeness, we recall that other information is stored in the continuation, like the pointers to the
eventually allocated memories like Transactional Memory (TM), Owner Writeable memory (OWM)
and Thread Local Storage (TLS), already discussed in D7.1, D7.2, D6.1, D6.2 (see Figure 2).

DTS CONTINUATION FIELDS:

IP : INSTRUCTION POINTER

FP : FRAME POINTER

SC : SYNCHRONIZATION COUNTER

CID : CORE ID

TLSP : THREAD LOCAL STORAGE POINTER

OWMP : OWNER WRITABLE MEMORY POINTER

TMP : TRANSACTIONAL MEMORY POINTER
3

DTS CONTINUATION

IPFP CIDSC

CODE MEMORY

OWNER WRITABLE

MEMORY

TRANSACTIONAL

MEMORY

THREAD LOCAL

STORAGE

FRAME

MEMORY

CORE RECORD

ID POWER TEMPFAULTS

TMP OWMP TLSP

Figure 2 – High Level Model Implementation (a design option for the DTS continuation).

Essentially in TERAFLUX/COTSon we are interested to model the temperature in such a way that the
number “TEMP” gets periodically updates. Then the DTS can take into account such number and
implement one of the state-of-the-art policies described in Section 3.1, or more sophisticated policies.

The main goal at the moment is to show that we can have a unified management that is able to
manage the information in a distributed manner on the chip.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 20 of 28

4 Fault-injection support (UAU)
This section reports how the information supplied by the FDU may be used by the DTS to decide how
to distribute the threads among the cores, and if possible, also to set the speed of each individual core
(e.g., we may decide to reduce the speed of a core that has many faults or high power consumption or
temperature before deciding to shut it down).

In Section 3.6 of the previous deliverable D7.2 we explained the implementation of the Fault
Detection Unit (FDU) and its interfaces (partner UAU). The main work of UAU with respect to WP7
concerns: (i) the implementation of the FDU and its interfaces (part of Task 7.2), and (ii) the fault
injection and fault tracking (part of Task 7.3).

To model the Fault Detection and Recovery approach developed in WP5, UAU is integrating a fault
model, which has been initially described in Deliverable D5.1, in the TERAFLUX platform.
Therefore, we base the necessary fault injection techniques on the given TERAFLUX architecture,
which is composed of a certain number of nodes, which itself consist of cores, a “Node Manager” (D-
FDU and D-TSU) and an intra-node interconnect. Among the nodes we assume a 2D-mesh structured
interconnection network.

Following WP5’s high level fault model, described in D5.1 and D5.2, we distinguish between core
faults and interconnection faults. For core faults, we further distinguish between total faults, partial
faults, and retarding faults. For interconnect faults, we differentiate between total faults and partial
faults1.

1 Please refer to D5.1 for a detailed description of this fault model.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 21 of 28

Figure 3 - Faults in COTSon/Noxim.

4.1 Baseline Machine Integration
At this stage of the project UAU has modeled all faults within the Network on Chip Simulator Noxim.
Noxim is integrated in the COTSon Mediator for the Network on Chip Timing Model between
COTSon nodes (see D7.2). Within Noxim, we model an abstract TERAFLUX fault detection
architecture, depicted in Figure 3. This means, Noxim reproduces the TERAFLUX architecture
simulated in the COTSon nodes, consisting of nodes, which enclose cores and the D-FDU (see D5.1
and D5.2 for further details). In the next two years UAU will move the current D-FDU
implementation, currently running in Noxim as a processing element, onto the COTSon nodes and
show that the developed fault detection architecture is capable not only to detect the modeled faults in
COTSon but also recover from them.

In the following, we describe how we model faults:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 22 of 28

4.2 Core Faults
Total faults are introduced into a single core by stopping the core from sending heartbeats and
execution of the current thread.

Partial faults are generated by setting a corresponding Machine Check Architecture register within
the core.

Retarding faults are introduced by lowering the IPC of the core (the core runs slower) and by setting
the corresponding Performance Counter Registers of the core.

4.2.1 Inter-core Faults
For faults between cores we differentiate between faults in the intra-node interconnect and faults in
the inter-node interconnect.

For the intra-node interconnect we model total faults by stopping the core from sending heartbeat
messages (the core is no longer reachable by a broken link) and partial faults by deferring heartbeat
messages (the path has become slower by an emulated re-routing).

Since we use the network simulator Noxim for the inter-node network timing we can introduce more
elaborated faults, comprising link and router faults, which finally result either in partial faults or total
faults. Different flags at a certain routers or links in Noxim can be used for modeling these faults.
These flags may be removed later on if the fault is a transient or an intermittent fault.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 23 of 28

References
[Annavaram05] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating Amdahl’s low through EPI throttling,” in Proc.
ISCA, Jun. 2005, pp. 298–30

[Bergamaschi08] R. Bergamaschi, H. Guoling, A. Buyuktosunoglu, H. Patel, I. Nair, G. Dittmann, G. Janssen, N.
Dhanwada, H. Zhigang, P. Bose, and J. Darringer, “Exploring power management in multicore systems,” in Proc. ASPDAC,
Mar. 2008, pp. 708–713.

[Brooks02] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance microprocessors” in Proc.
of High-Performance Computer Architecture, (HPCA), Jan. 2001, pp. 171 -182

[Chantem08] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware scheduling and assignment for hard real-time
applications on MPSoCs,” in Proc. DATE, Mar. 2008, pp. 288–293.

[Chiou09] Derek Chiou, Hari Angepat, Nikhil A. Patil, and Dam Sunwoo, “Accurate Functional-First Multicore
Simulators”, IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 8, NO. 2, JULY-DECEMBER 2009.

[Choi07] J. Choi, C. Chen-Yong, H. Franke, H. Hamann, A. Weger, and P. Bose, “Thermal-aware task scheduling at the
system software level,” in Proc. ISLPED, Aug. 2007, pp. 213–218.

[Coskun09] A. K. Coskun, J. L.Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici, “Dynamic thermal management in 3-D
multicore architectures,” in Proc. DATE, 2009, pp. 1410–1415.

[Coskun08] A. K. Coskun, T. T. Rosing, K. A. Whisnant, and K. C. Gross, “Static and dynamic temperature-aware
scheduling for multiprocessor SoCs,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 9, pp. 1127–1140, Sep. 2008.

[COTSon11] http://cotson.svn.sourceforge.net/viewvc/cotson/trunk/src/mcpat/

[Dhodapkar00] A. Dhodapkar, C.H. Lim, G. Cai, and W. R. Daasch “TEMPEST: A Thermal Enabled Multi- Model
Power/Performance Estimator,” Proc. Workshop on Power-Aware Computer Systems, 2000.

[Donald06] J. Donald and M. Martonosi, “Techniques for multicore thermal management: Classification and new
exploration,” in Proc. ISCA, 2006, pp. 78–88.

[Ebi09] T. Ebi, M. A. A. Farugue, and J. Henkel, “TAPE: Thermal-aware agent-based power economy for multi/many-core
architectures,” in Proc. ICCAD, Nov. 2009, pp. 302–309.

[Han06] Y. Han, I. Koren, and C. M. Krishna, “Temptor: A lightweight runtime temperature monitoring tool using
performance counters,” in Proc. 3rd Workshop TACS, Held Conjunct. ISCA-33, 2006.

[Isci06] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis of efficient multicore global
power management policies: Maximizing performance for a given power budget,” in Proc. Int. Symp. Microarchitect., Dec.
2006, pp. 347–358.

[Kang11] Kyungsu Kang, Jungsoo Kim, Sungjoo Yoo, Member, and Chong-Min Kyung, “Runtime Power Management of
3-D Multi-Core Architectures Under Peak Power and Temperature Constraints ”, IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

[Kumar08] A. Kumar, S. Li, P. Li-Shiuan, and N. K. Jha, “System-level dynamic thermal management for high-performance
microprocessors,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 27, no. 1, pp. 96–108, Jan. 2008.

[Li09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, Norman P. Jouppi , “McPAT: An
Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures”, ACM MICRO 41,
2009.

[Murali07] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. De Micheli, “Temperature-aware processor
frequency assignment for MPSoCs using convex optimization,” in Proc. CODES+ISSS, Sep. 2007, pp. 111–116.

[Mutapcic09] A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. De Micheli, and R. Gupta, “Processor speed control with
thermal constraints,” IEEE Trans. Circuits Syst. Part I: Reg. Papers, vol. 56, no. 9, pp. 1994–2008, Sep. 2009.

[Naveh06] Alon Naveh, Efrain Rotem, Avi Mendelson, Simcha Gochman, Rahshree Chabukswar, Karthik Krishnan, and
Arun Kumar, “Power and Thermal management in the Intel Core Duo Processor”, Intel Technology Journal. Vol. 10, Issue
2, May 2006.

[Oh10] D. Oh, N. S. Kim, C.C.P. Chen, A. Davoodi, Y. H. Hu, “Runtime temperature-based power estimation for
optimizing throughput of thermal-constrained multi-core processors”, Design Automation Conference (ASP-DAC), 2010
15th Asia and South Pacific, Issue Date: 18-21 Jan. 2010.

[Powell04] M. D. Powell, M. Gomaa, and T. N. Vijaykumar, “Heat-and-Run: Leveraging SMT and CMP to manage power
density through the operating system,” in Proc. ASPLOS, Nov. 2004, pp. 260–270.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 24 of 28

[Rotem11] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weissmann “2nd Generation Intel* Core* Processor

Family: Intel Core i7, i5 and i3”, HotChips 2011, Stanford, CA, USA, Aug, 2011.

[Skadron04] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan, “Temperature-aware
microarchitecture: Modeling and implementation,” ACM Trans. Architect. Code Optimization, vol. 1, no. 1, pp. 94–125,
Mar. 2004.

[Stan03] M. R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan, and S. Velusamy. “HotSpot: A Dynamic
Compact Thermal Model at the Processor-Architecture Level.” Microelectronics Journal: Circuits and Systems, Elsevier,
34(12):1153-65, Dec. 2003.

[Sun07] C. Sun, L. Shang, and R. P. Dick, “3-D multiprocessor system-on-chip thermal optimization,” in Proc. Int. Conf.
Hardware/Software Codes. Syst. Synthesis, Oct. 2007, pp. 117–122.

[Yang09] Jun Yang, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lingling Jin. 2008. Dynamic Thermal Management
through Task Scheduling. In Proceedings of the ISPASS 2008 - IEEE International Symposium on Performance Analysis of
Systems and software (ISPASS '08). IEEE Computer Society, Washington, DC, USA, 191-201.

[Zhang08] S. Zhang and K. S. Chatha, “System-level thermal aware design of applications with uncertain execution times,”
in Proc. ICCAD, Nov. 2008, pp. 242–249.

[Zhao08] G. Zhao, H.-K. Kwan, C.-U. Lei, and N. Wong, “Processor frequency assignment in 3-D MPSoCs under thermal
constraints by polynomial programming,” in Proc. APCCAS, Nov.–Dec. 2008, pp. 1668–1671.

[Zhou10] X. Zhou, J.Yang,Y. Xu,Y. Zhang, and J. Zhao, “Thermal-aware task scheduling for 3-D multicore processors,”
IEEE Trans. Parallel Distributed Syst., vol. 21, no. 1, pp. 60–71, Jan. 2010.

[Zhu08] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph, “3-D chip-multiprocessor runtime thermal management,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27, no. 8, pp. 1479–1492, Aug. 2008.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 25 of 28

Appendix 1

COTSon input file (example_power.in)
options = {
 fastforward="100M",
 time_feedback = true,
 heartbeat = { type="sqlite", dbfile=DBFILE, experi ment_id=1,
 experiment_description="test run"},

max_nanos="200M",
sampler={ type="dynamic", functional="500k", warmin g="100k",
 simulation="100k",
maxfunctional=1000, sensitivity="500",

 variable={"cpu.*.other_exceptions", "cpu.*.iocount "}},
}

one_node_script="run_interactive"
-- display=os.getenv("DISPLAY")

simnow.commands=function()
 use_bsd('1p-reset.bsd')
 use_hdd('karmic64.img')
 set_journal()
 send_keyboard('gcc -S -o - -O3 -c -w /home/user/te st.i')
end

function build()
 i=0
 while i < disks() do
 disk=get_disk(i)
 disk:timer{ name='disk'..i, type="simple_disk" }
 i=i+1
 end

 i=0
 while i < nics() do
 nic=get_nic(i)
 nic:timer{ name='nic'..i, type="simple_nic" }
 i=i+1
 end

 mem=Memory{ name="main", latency=150 }

 l2=Cache{ name="l2cache", size="512kB",
 line_size=16, latency=20, num_sets=4, next=mem,
 write_policy="WB", write_allocate="true" }
 t2=TLB{ name="l2tlb", page_size="4kB",
 entries=512, latency=80, num_sets=4, next=mem,
 write_policy="WB", write_allocate="true" }

 i=0
 while i < cpus() do
 cpu=get_cpu(i)
 -- cpu:timer{ name='cpu'..i, type="timer_dep" }
 cpu:timer{ name='cpu'..i, type="timer1" }
 ic=Cache{ name="icache"..i, size="16kB", li ne_size=16,
 latency=0, num_sets=2, next=l2,
 write_policy="WT", write_allocate="false" }
 dc=Cache{ name="dcache"..i, size="16kB", li ne_size=16,
 latency=0, num_sets=2, next=l2,
 write_policy="WT", write_allocate="false" }
 it=TLB{ name="itlb"..i, page_size="4kB", en tries=40,
 latency=0, num_sets=40, next=t2,
 write_policy="WT", write_allocate="false" }
 dt=TLB{ name="dtlb"..i, page_size="4kB", en tries=40,
 latency=0, num_sets=40, next=t2,
 write_policy="WT", write_allocate="false" }

 cpu:instruction_cache(ic)
 cpu:data_cache(dc)
 cpu:instruction_tlb(it)
 cpu:data_tlb(dt)
 i=i+1
 end
end
-- vim:ft=lua

McPAT input file
<?xml version="1.0" ?>
<!-- experiment test run , cpumodel x86a -->
<component id="root" name="root">
 <component id="system" name="system">
 <param name="homogeneous_cores" value="1"/>
 <param name="homogeneous_L2s" value="1"/>
 <param name="number_of_cores" value="1"/>
 <param name="number_cache_levels" value="2"/>
 <param name="number_of_L2s" value="1"/>
 <param name="Private_L2" value="0"/>
 <param name="number_of_L3s" value="0"/>
 <param name="longer_channel_device" value="1"/>
 <param name="number_of_NoCs" value="1"/>
 <param name="number_of_L2Directories" value="0" />
 <param name="device_type" value="0"/>
 <param name="number_of_L1Directories" value="0" />
 <param name="virtual_memory_page_size" value="4 096"/>
 <param name="interconnect_projection_type" valu e="0"/>
 <param name="homogeneous_L2Directorys" value="1 "/>
 <param name="homogeneous_L1Directorys" value="1 "/>
 <param name="temperature" value="380"/>
 <param name="machine_bits" value="64"/>
 <param name="homogeneous_ccs" value="1"/>
 <param name="virtual_address_width" value="64"/ >
 <param name="core_tech_node" value="22"/>
 <param name="homogeneous_L3s" value="1"/>
 <param name="homogeneous_NoCs" value="1"/>
 <param name="physical_address_width" value="52" />
 <param name="target_core_clockrate" value="3200 "/>
 <stat name="total_cycles" value="640300000"/>
 <stat name="idle_cycles" value="636532731"/>
 <stat name="busy_cycles" value="3767269"/>
 <component id="system.core0" name="core0">
 <param name="clock_rate" value="3200"/>
 <param name="phy_Regs_IRF_size" value="256"/>
 <param name="instruction_window_scheme" value ="0"/>
 <param name="instruction_length" value="32"/>
 <param name="archi_Regs_FRF_size" value="32"/ >
 <param name="pipelines_per_core" value="1"/>
 <param name="number_hardware_threads" value=" 2"/>
 <param name="number_of_BTB" value="2"/>
 <param name="archi_Regs_IRF_size" value="16"/ >
 <param name="machine_type" value="0"/>
 <param name="RAS_size" value="64"/>
 <param name="number_instruction_fetch_ports" value="1"/>
 <param name="1" value="pipeline_depth"/>
 <param name="phy_Regs_FRF_size" value="256"/>
 <param name="x86" value="1"/>
 <param name="opcode_width" value="16"/>
 <param name="FPU_per_core" value="2"/>
 <param name="decoded_stream_buffer_size" valu e="16"/>
 <param name="MUL_per_core" value="1"/>
 <param name="opt_local" value="0"/>
 <param name="number_of_BPT" value="2"/>
 <param name="instruction_window_size" value=" 64"/>
 <param name="micro_opcode_width" value="8"/>
 <param name="ROB_size" value="80"/>
 <param name="fp_instruction_window_size" valu e="64"/>
 <param name="31" value="31"/>
 <param name="instruction_buffer_size" value=" 32"/>
 <param name="fetch_width" value="1"/>
 <param name="decode_width" value="1"/>
 <param name="issue_width" value="1"/>

 <param name="peak_issue_width" value="1"/>
 <param name="commit_width" value="1"/>
 <param name="fp_issue_width" value="1"/>
 <param name="ALU_per_core" value="1"/>
 <stat name="total_instructions" value="628331 0"/>
 <stat name="int_instructions" value="4097794" />
 <stat name="fp_instructions" value="0"/>
 <stat name="branch_instructions" value="21855 16"/>
 <stat name="branch_mispredictions" value="116 0432"/>
 <stat name="load_instructions" value="1181316 "/>
 <stat name="store_instructions" value="118131 6"/>
 <stat name="committed_instructions" value="62 83310"/>
 <stat name="committed_int_instructions" value ="4097794"/>
 <stat name="committed_fp_instructions" value= "0"/>
 <stat name="pipeline_duty_cycle" value="1.619 30720397461"/>
 <stat name="ROB_reads" value="6283310"/>
 <stat name="ROB_writes" value="6283310"/>
 <stat name="rename_reads" value="0"/>
 <stat name="rename_writes" value="0"/>
 <stat name="fp_rename_reads" value="0"/>
 <stat name="fp_rename_writes" value="0"/>
 <stat name="inst_window_reads" value="6283310 "/>
 <stat name="inst_window_writes" value="628331 0"/>
 <stat name="inst_window_wakeup_accesses" valu e="0"/>
 <stat name="fp_inst_window_reads" value="0"/>
 <stat name="fp_inst_window_writes" value="0"/ >
 <stat name="fp_inst_window_wakeup_accesses" v alue="0"/>
 <stat name="int_regfile_reads" value="0"/>
 <stat name="int_regfile_writes" value="0"/>
 <stat name="float_regfile_reads" value="0"/>
 <stat name="float_regfile_writes" value="0"/>
 <stat name="ialu_accesses" value="4097794"/>
 <stat name="fpu_accesses" value="0"/>
 <stat name="cdb_alu_accesses" value="0"/>
 <stat name="cdb_fpu_accesses" value="0"/>
 <stat name="MemManU_D_duty_cycle" value="0.5" />
 <stat name="FPU_cdb_duty_cycle" value="0.3"/>
 <stat name="MUL_duty_cycle" value="0.3"/>
 <stat name="MUL_cdb_duty_cycle" value="0.3"/>
 <stat name="LSU_duty_cycle" value="0.5"/>
 <stat name="IFU_duty_cycle" value="1"/>
 <stat name="MemManU_I_duty_cycle" value="1"/>
 <stat name="ALU_cdb_duty_cycle" value="1"/>
 <stat name="ALU_duty_cycle" value="1"/>
 <stat name="FPU_duty_cycle" value="0.3"/>
 <component id="system.core0.predictor" name=" PBT">
 <param name="local_predictor_size" value="1 4,1"/>
 <param name="local_predictor_entries" value ="16384"/>
 <param name="global_predictor_entries" valu e="16384"/>
 <param name="global_predictor_bits" value=" 1"/>
 <param name="chooser_predictor_entries" val ue="16384"/>
 <param name="chooser_predictor_bits" value= "1"/>
 <param name="load_predictor" value="14,1,16 384"/>
 <param name="global_predictor" value="16384 ,1"/>
 <param name="predictor_chooser" value="1638 4,1"/>
 </component> <!-- PBT -->
 <component id="system.core0.itlb" name="itlb" >
 <param name="number_entries" value="40"/>
 <stat name="total_accesses" value="3552384" />
 <stat name="total_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- itlb -->
 <component id="system.core0.icache" name="ica che">

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 26 of 28

 <param name="icache_config" value="16384,16 ,2,1,1,0,16,1"/>
 <param name="buffer_sizes" value="16, 16, 1 6, 0"/>
 <stat name="read_accesses" value="3552384"/ >
 <stat name="read_misses" value="1874"/>
 <stat name="write_accesses" value="0"/>
 <stat name="write_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- icache -->
 <component id="system.core0.dtlb" name="dtlb" >
 <param name="number_entries" value="40"/>
 <stat name="total_accesses" value="2356877" />
 <stat name="total_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- dtlb -->
 <component id="system.core0.dcache" name="dca che">
 <param name="dcache_config" value="16384,16 ,2,1,1,0,16,0"/>
 <param name="buffer_sizes" value="16, 16, 1 6, 1"/>
 <stat name="read_accesses" value="1181316"/ >
 <stat name="read_misses" value="0"/>
 <stat name="write_accesses" value="1175560" />
 <stat name="write_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- dcache -->
 <component id="system.core0.BTB" name="BTB">
 <param name="BTB_config" value="5120,4,2,1, 1,3"/>
 <stat name="read_accesses" value="2185516"/ >
 <stat name="write_accesses" value="0"/>
 </component> <!-- BTB -->
 </component> <!-- cpu0 -->
 <component id="system.L1Directory0" name="L1Dir ectory0">
 <param name="ports" value="1,1,1"/>
 <param name="device_type" value="0"/>
 <param name="buffer_sizes" value="8,8,8,8"/>
 <param name="Dir_config" value="4096,2,0,1,10 0,100,8"/>
 <param name="Directory_type" value="0"/>
 <stat name="read_accesses" value="0"/>
 <stat name="write_accesses" value="0"/>
 <stat name="read_misses" value="0"/>
 <stat name="write_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- L1Directory0 -->
 <component id="system.L2Directory0" name="L2Dir ectory0">
 <param name="ports" value="1,1,1"/>
 <param name="device_type" value="0"/>
 <param name="buffer_sizes" value="8,8,8,8"/>
 <param name="Dir_config" value="4096,2,0,1,10 0,100,8"/>
 <param name="Directory_type" value="0"/>
 <stat name="read_accesses" value="0"/>
 <stat name="write_accesses" value="0"/>
 <stat name="read_misses" value="0"/>
 <stat name="write_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- L2Directory0 -->
 <component id="system.L20" name="L20">
 <param name="L2_config" value="524288,16,4,1, 1,20,16,0"/>
 <param name="buffer_sizes" value="16, 16, 16, 16"/>
 <param name="clockrate" value="3200"/>
 <param name="ports" value="1,1,1"/>
 <param name="device_type" value="0"/>
 <stat name="read_accesses" value="1874"/>
 <stat name="read_misses" value="1874"/>
 <stat name="write_accesses" value="1175560"/>
 <stat name="write_misses" value="0"/>
 <stat name="conflicts" value="0"/>
 </component> <!-- L20 -->
 <component id="system.L30" name="L30">
 <param name="L3_config" value=",,,1,1,,,0"/>
 <param name="buffer_sizes" value="16, 16, 16, 1"/>
 <stat name="read_accesses" value="0"/>
 <stat name="read_misses" value="0"/>
 <stat name="write_accesses" value="0"/>
 <stat name="write_misses" value="0"/>

 <stat name="conflicts" value="0"/>
 </component> <!-- L30 -->
 <component id="system.Noc0" name="noc0">
 <param name="flit_bits" value="256"/>
 <param name="horizontal_nodes" value="1"/>
 <param name="has_global_link" value="0"/>
 <param name="link_throughput" value="1"/>
 <param name="link_routing_over_percentage" va lue="0.5"/>
 <param name="chip_coverage" value="1"/>
 <param name="vertical_nodes" value="1"/>
 <param name="input_ports" value="1"/>
 <param name="type" value="0"/>
 <param name="output_ports" value="1"/>
 <param name="clockrate" value="3200"/>
 <stat name="total_accesses" value="0"/>
 <stat name="duty_cycle" value="1"/>
 </component> <!-- noc0 -->
 <component id="system.mem" name="mem">
 <param name="mem_tech_node" value="32"/>
 <param name="capacity_per_channel" value="409 6"/>
 <param name="burstlength_of_DRAM_chip" value= "8"/>
 <param name="page_size_of_DRAM_chip" value="8 "/>
 <param name="number_ranks" value="2"/>
 <param name="output_width_of_DRAM_chip" value ="8"/>
 <param name="internal_prefetch_of_DRAM_chip" value="4"/>
 <param name="Block_width_of_DRAM_chip" value= "64"/>
 <param name="device_clock" value="200"/>
 <param name="num_banks_of_DRAM_chip" value="8 "/>
 <param name="peak_transfer_rate" value="6400" />
 <stat name="memory_accesses" value="1874"/>
 </component> <!-- mem -->
 <component id="system.mc" name="mc">
 <param name="IO_buffer_size_per_channel" valu e="32"/>
 <param name="req_window_size_per_channel" val ue="32"/>
 <param name="llc_line_length" value="64"/>
 <param name="mc_clock" value="400"/>
 <param name="number_ranks" value="2"/>
 <param name="addressbus_width" value="51"/>
 <param name="memory_channels_per_mc" value="1 "/>
 <param name="number_mcs" value="0"/>
 <param name="peak_transfer_rate" value="6400" />
 <param name="databus_width" value="128"/>
 <stat name="memory_accesses" value="1874"/>
 <stat name="memory_reads" value="1874"/>
 <stat name="memory_writes" value="0"/>
 </component> <!-- mc -->
 <component id="system.niu" name="niu">
 <param name="number_units" value="1"/>
 <param name="clockrate" value="350"/>
 <param name="type" value="0"/>
 <stat name="duty_cycle" value="1.0"/>
 <stat name="total_load_perc" value="0"/>
 </component> <!-- niu -->
 <component id="system.pcie" name="pcie">
 <param name="number_units" value="1"/>
 <param name="withPHY" value="1"/>
 <param name="num_channels" value="8"/>
 <param name="clockrate" value="350"/>
 <param name="type" value="0"/>
 <stat name="duty_cycle" value="1.0"/>
 <stat name="total_load_perc" value="0"/>
 </component> <!-- pcie -->
 <component id="system.flashc" name="flashc">
 <param name="number_flashcs" value="4"/>
 <param name="withPHY" value="1"/>
 <param name="type" value="1"/>
 <param name="peak_transfer_rate" value="200"/ >
 <stat name="duty_cycle" value="1.0"/>
 <stat name="total_load_perc" value="0"/>
 </component> <!-- flashc -->
 </component> <!-- system -->
</component> <!-- root -->

McPAT output results
McPAT (version 0.8 of Aug, 2010) is computing the t arget processor...
McPAT (version 0.8 of Aug, 2010) results (current print level is 5)
*** ******************
Technology 22 nm
 Using Long Channel Devices When Appropriate
 Interconnect metal projection= aggressive interco nnect technology
projection
 Core clock Rate(MHz) 3200

*** ******************
Processor:
 Area = 5.71035 mm^2
 Peak Power = 3.26812 W
 Total Leakage = 1.07086 W
 Peak Dynamic = 2.19727 W
 Subthreshold Leakage = 1.06684 W
 Gate Leakage = 0.00401736 W
 Runtime Dynamic = 0.26991 W

 Total Cores: 1 cores
 Device Type= ITRS high performance device type
 Area = 1.80503 mm^2
 Peak Dynamic = 0.84629 W
 Subthreshold Leakage = 0.593165 W
 Gate Leakage = 0.00126014 W
 Runtime Dynamic = 0.26966 W

 Total L2s:
 Device Type= ITRS high performance device type
 Area = 0.937911 mm^2
 Peak Dynamic = 0.165416 W
 Subthreshold Leakage = 0.217494 W
 Gate Leakage = 0.000684481 W
 Runtime Dynamic = 0.000249549 W

 Total NoCs (Network/Bus):
 Device Type= ITRS high performance device type

 Area = 0.0611096 mm^2
 Peak Dynamic = 0.643255 W
 Subthreshold Leakage = 0.0179458 W
 Gate Leakage = 5.82246e-05 W
 Runtime Dynamic = 0 W

 Total Flash/SSD Controllers: 4 Flash/SSD Controll ers
 Device Type= ITRS high performance device type
 Area = 0.131969 mm^2
 Peak Dynamic = 0.0964636 W
 Subthreshold Leakage = 0.0165631 W
 Gate Leakage = 0.000140058 W
 Runtime Dynamic = 0 W

 Total NIUs: 1 Network Interface Units
 Device Type= ITRS high performance device type
 Area = 1.30046 mm^2
 Peak Dynamic = 0.176111 W
 Subthreshold Leakage = 0.100884 W
 Gate Leakage = 0.000853082 W
 Runtime Dynamic = 0 W

 Total PCIes: 1 PCIe Controllers
 Device Type= ITRS high performance device type
 Area = 1.47387 mm^2
 Peak Dynamic = 0.26973 W
 Subthreshold Leakage = 0.120787 W
 Gate Leakage = 0.00102138 W
 Runtime Dynamic = 0 W

*** ******************
Core:
 Area = 1.80503 mm^2
 Peak Dynamic = 0.84629 W
 Subthreshold Leakage = 0.593165 W
 Gate Leakage = 0.00126014 W
 Runtime Dynamic = 0.26966 W

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 27 of 28

 Instruction Fetch Unit:
 Area = 0.195882 mm^2
 Peak Dynamic = 0.110828 W
 Subthreshold Leakage = 0.204435 W
 Gate Leakage = 0.000361928 W
 Runtime Dynamic = 0.000602019 W

 Instruction Cache:
 Area = 0.085274 mm^2
 Peak Dynamic = 0.0492197 W
 Subthreshold Leakage = 0.0165821 W
 Gate Leakage = 2.46382e-05 W
 Runtime Dynamic = 0.000134032 W

 Instruction Buffer:
 Area = 0.000754971 mm^2
 Peak Dynamic = 0.00217751 W
 Subthreshold Leakage = 0.000209095 W
 Gate Leakage = 3.27157e-07 W
 Runtime Dynamic = 2.13681e-05 W

 Instruction Decoder:
 Area = 0.106826 mm^2
 Peak Dynamic = 0.0455126 W
 Subthreshold Leakage = 0.184982 W
 Gate Leakage = 0.000321652 W
 Runtime Dynamic = 0.000446619 W

 Renaming Unit:
 Area = 0.0469804 mm^2
 Peak Dynamic = 0.0306179 W
 Subthreshold Leakage = 0.00835367 W
 Gate Leakage = 2.32158e-05 W
 Runtime Dynamic = 2.17373e-11 W

 Int Front End RAT:
 Area = 0.0143549 mm^2
 Peak Dynamic = 0.00515925 W
 Subthreshold Leakage = 0.00151142 W
 Gate Leakage = 2.10606e-06 W
 Runtime Dynamic = 0 W

 FP Front End RAT:
 Area = 0.0199486 mm^2
 Peak Dynamic = 0.00673318 W
 Subthreshold Leakage = 0.00273252 W
 Gate Leakage = 3.84272e-06 W
 Runtime Dynamic = 0 W

 Free List:
 Area = 0.00417332 mm^2
 Peak Dynamic = 0.00167418 W
 Subthreshold Leakage = 0.000603379 W
 Gate Leakage = 7.82638e-07 W
 Runtime Dynamic = 0 W

 Int Retire RAT:
 Area = 0.000651412 mm^2
 Peak Dynamic = 0.000729371 W
 Subthreshold Leakage = 0.000120592 W
 Gate Leakage = 1.9569e-07 W
 Runtime Dynamic = 0 W

 FP Retire RAT:
 Area = 0.000651412 mm^2
 Peak Dynamic = 0.000729371 W
 Subthreshold Leakage = 0.000120592 W
 Gate Leakage = 1.9569e-07 W
 Runtime Dynamic = 0 W

 FP Free List:
 Area = 0.00417332 mm^2
 Peak Dynamic = 0.00167418 W
 Subthreshold Leakage = 0.000603379 W
 Gate Leakage = 7.82638e-07 W
 Runtime Dynamic = 0 W

 Load Store Unit:
 Area = 0.140683 mm^2
 Peak Dynamic = 0.0516465 W
 Subthreshold Leakage = 0.0205757 W
 Gate Leakage = 4.31955e-05 W
 Runtime Dynamic = 0.00017223 W

 Data Cache:
 Area = 0.085274 mm^2
 Peak Dynamic = 0.0372062 W
 Subthreshold Leakage = 0.0165821 W
 Gate Leakage = 2.46382e-05 W
 Runtime Dynamic = 8.94167e-05 W

 LoadQ:
 Area = 0.014924 mm^2
 Peak Dynamic = 0.00374056 W
 Subthreshold Leakage = 0.000665865 W
 Gate Leakage = 1.62348e-06 W
 Runtime Dynamic = 2.76045e-05 W

 StoreQ:
 Area = 0.014924 mm^2
 Peak Dynamic = 0.00374056 W
 Subthreshold Leakage = 0.000665865 W
 Gate Leakage = 1.62348e-06 W
 Runtime Dynamic = 5.52089e-05 W

 Memory Management Unit:
 Area = 0.0215983 mm^2
 Peak Dynamic = 0.0220847 W
 Subthreshold Leakage = 0.00526948 W
 Gate Leakage = 2.10997e-05 W
 Runtime Dynamic = 7.16525e-05 W

 Itlb:
 Area = 0.00928538 mm^2
 Peak Dynamic = 0.00776393 W
 Subthreshold Leakage = 0.00130384 W

 Gate Leakage = 2.89467e-06 W
 Runtime Dynamic = 4.30743e-05 W

 Dtlb:
 Area = 0.00928538 mm^2
 Peak Dynamic = 0.00388197 W
 Subthreshold Leakage = 0.00130384 W
 Gate Leakage = 2.89467e-06 W
 Runtime Dynamic = 2.85782e-05 W

 Execution Unit:
 Area = 1.39989 mm^2
 Peak Dynamic = 0.631113 W
 Subthreshold Leakage = 0.354532 W
 Gate Leakage = 0.000810696 W
 Runtime Dynamic = 0.268814 W

 Register Files:
 Area = 0.111148 mm^2
 Peak Dynamic = 0.0343728 W
 Subthreshold Leakage = 0.0095046 W
 Gate Leakage = 1.34297e-05 W
 Runtime Dynamic = 0 W

 Integer RF:
 Area = 0.0555739 mm^2
 Peak Dynamic = 0.0280595 W
 Subthreshold Leakage = 0.0047523 W
 Gate Leakage = 6.71487e-06 W
 Runtime Dynamic = 0 W

 Floating Point RF:
 Area = 0.0555739 mm^2
 Peak Dynamic = 0.00631338 W
 Subthreshold Leakage = 0.0047523 W
 Gate Leakage = 6.71487e-06 W
 Runtime Dynamic = 0 W

 Instruction Scheduler:
 Area = 0.0127407 mm^2
 Peak Dynamic = 0.0257902 W
 Subthreshold Leakage = 0.00247094 W
 Gate Leakage = 5.09262e-06 W
 Runtime Dynamic = 0.000106882 W

 Instruction Window:
 Area = 0.00226786 mm^2
 Peak Dynamic = 0.00712748 W
 Subthreshold Leakage = 0.000612285 W
 Gate Leakage = 1.53483e-06 W
 Runtime Dynamic = 3.61554e-05 W

 FP Instruction Window:
 Area = 0.00509946 mm^2
 Peak Dynamic = 0.0114554 W
 Subthreshold Leakage = 0.00110068 W
 Gate Leakage = 2.44905e-06 W
 Runtime Dynamic = 0 W

 ROB:
 Area = 0.00537336 mm^2
 Peak Dynamic = 0.00720734 W
 Subthreshold Leakage = 0.000757978 W
 Gate Leakage = 1.10874e-06 W
 Runtime Dynamic = 7.07262e-05 W

 Integer ALUs (Count: 1):
 Area = 0.0384544 mm^2
 Peak Dynamic = 0.140884 W
 Subthreshold Leakage = 0.0279667 W
 Gate Leakage = 6.39207e-05 W
 Runtime Dynamic = 0.0452976 W

 Floating Point Units (FPUs) (Count: 2):
 Area = 1.11344 mm^2
 Peak Dynamic = 0.213378 W
 Subthreshold Leakage = 0.202442 W
 Gate Leakage = 0.000462702 W
 Runtime Dynamic = 0.134046 W

 Complex ALUs (Mul/Div) (Count: 1):
 Area = 0.115363 mm^2
 Peak Dynamic = 0.0845306 W
 Subthreshold Leakage = 0.0839 W
 Gate Leakage = 0.000191762 W
 Runtime Dynamic = 0.0893639 W

 Results Broadcast Bus:
 Area Overhead = 0.00571706 mm^2
 Peak Dynamic = 0.118238 W
 Subthreshold Leakage = 0.0255858 W
 Gate Leakage = 5.84789e-05 W
 Runtime Dynamic = 8.9801e-11 W

*** ******************
L2
 Area = 0.937911 mm^2
 Peak Dynamic = 0.165416 W
 Subthreshold Leakage = 0.217494 W
 Gate Leakage = 0.000684481 W
 Runtime Dynamic = 0.000249549 W

*** ******************
Flash Controller:
 Area = 0.0329922 mm^2
 Peak Dynamic = 0.0241159 W
 Subthreshold Leakage = 0.00414076 W
 Gate Leakage = 3.50146e-05 W
 Runtime Dynamic = 0 W

*** ******************
NIU:
 Area = 1.30046 mm^2
 Peak Dynamic = 0.176111 W
 Subthreshold Leakage = 0.100884 W
 Gate Leakage = 0.000853082 W
 Runtime Dynamic = 0 W

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D7.3
Deliverable name: Power and Thermal modeling and Fault injection support
File name: TERAFLUX-D73-v7.docx Page 28 of 28

*** ******************
PCIe:
 Area = 1.47387 mm^2
 Peak Dynamic = 0.26973 W
 Subthreshold Leakage = 0.120787 W
 Gate Leakage = 0.00102138 W
 Runtime Dynamic = 0 W

*** ******************
BUSES
 Area = 0.0611096 mm^2
 Peak Dynamic = 0.643255 W
 Subthreshold Leakage = 0.0179458 W
 Gate Leakage = 5.82246e-05 W
 Runtime Dynamic = 0 W

 Bus:
 Area = 0.0611096 mm^2
 Peak Dynamic = 0.643255 W
 Subthreshold Leakage = 0.0179458 W
 Gate Leakage = 5.82246e-05 W
 Runtime Dynamic = 0 W

**

