Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME B
THEME '
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Tera-device Computing

D7.2— Definition of ISA extensions, custom devicesd External COTSon
API extensions (M1-M12)

Due date of deliverable: 31 December 2010
Actual Submission: 31 December 2010

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: University of Siena (UNISI)

Revision : See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntiding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 1 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Author Organization | Change History
0.1 Antoni Portero UNISI Initial template
0.2 Albert Cohen, YoayINRIA, BSC, | Add information provided by INRIA, BSC
Etsion, Lluis Vilanova, HP and HP.
Paolo Faraboschi
0.3 Yoav Etsion BSC Added sections 3.1.5 and 3.1.6
0.4 Arne Garbade UAU Added section 4.1.5
0.5 Yoav Etsion BSC Mod. sections 3.1.5 and 3.1.6
0.6 Salman Khan UNIMAN Section 4.1.7
0.7 Antoni Portero, Cargl UNISI Section 3.1.2 (NoC)
Concatto
0.8 Roberto Giorgi, PaolpUNISI, HP Intro. Section 2.2
Faraboschi
0.9 Antoni Portero UNISI Section 2.1, 2.3
1.0 Rania Mameesh UNISI Section 3.1.2
1.1 Pedro Trancoso UcCy Section 3.1.10
1.2 Avi Mendelson MSFT Section 3.1.12
1.3 Roberto Giorgi UNISI Section 2.1
1.4 Roberto Giorgi, Zhibin UNISI Section 3.1.5-4.0
Yu, Rania Mameesh,
Antoni Portero
15 Roberto Giorgi, UNISI Rewritten Section 2.1-2.5
1.6 Roberto Giorgi UNISI Rewritten Section 3.1-38erall review,
1.7 Zhibin Yu, Ranig UNISI Proofreading
Mameesh, Anton
Portero
1.8 Roberto Giorgi UNISI Added Executive Summary, Introductig
Conclusions
1.9 ALL PARTNERS ALL Comments and proofreading
2.0 Roberto Giorgi UNISI Final check

Release Approval

Name Role Date

Antoni, Portero Originator 23.11.2010
Roberto, Giorgi WP Leader 31.12.2010
Roberto, Giorgi Project Coordinator for formal deliable 31.12.2010

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 2 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

(K0 3 LV PP PN 7
EXECUTIVE SUMMARYcoiiitiiiintttiiittiiisnntssisnsessssssssssssssssssssssessssssssssssssessssssssssssssssssssssessssssssssssssssssssnssssns 8
L. INTRODUCTIONoeiiiittiecttteenntttsesnee e st e esssane s e s s ae e e s s sane s s s s sae e s s s sane e s s s sneessssanasesssneassssnnasasssnaassssnnenanns 9
11 RELATION TO OTHER DELIVERABLES ... ueiiuiiiiitiiitecti ettt sttt et et eae ettt eaeesbe st st eae e b et e enaesaae s saeenneeas 9
1.2 ACTIVITIES REFERRED BY THIS DELIVERABLE AND DOCUMENT STRUCTURE ...ccuvieuiiiiieitienieeie ettt 9
2. OVERVIEW OF THE TERAFLUX SIMULATION PLATFORM.........cttiiiinrininnninncsnnenssnnnesssnsssssssnssnssssssensnes 11

2.1 TERMINOLOGY RECALL AND BRIEF OVERVIEW OF COTSON ADVANTAGES OVER OTHER MANY-CORE SIMULATOR (PARTNER

UNISI) 11

2.2 COTSON FRAMEWORK ORGANIZATION AND POSSIBLE SETUPS....veeuvererereeeeeeneesseesseesseessesseesseesssnssessessseessesssennes 15

2.3 TARGETING A 1000-CORE SIMULATION ...ctteeeeeiuuteteeeseaaauseeteeessaausreteeeasaessaaaunseeeeesssaansseaeesssasansseesesesannnnnnes 17
2.3.1 Comparison among platforms to evaluate novel 1000-core architectures..............cccevcvveescvennnn. 18

2.3.2 Experiments 0N PhYSICOl MACRINGSouueeieeeeeeieeieeeeecteeee ettt e e ettt e e e e e e sstsaaaaaeeeaans

2.3.3 How to simulate 1K cores: setup to simulate 1K cores
2.3.4 The search for “efficient benchmarks/applications”
2.4 KNOWLEDGE TRANSFER AND SUPPORT MODEL TO THE PARTNERS (PARTNERS HP LABS, UNISI)
2.5 FIRST COTSON SIMULATIONS (PARTNERS UNISI, HP) oottt e e
2.5.1 Running examples on SiIMNow: 1 NOde With 32 COIeSccouumivureeevereeciieeesiieeesiiseeeiiseassisenenns
2.5.1 Running examples on SimNow+COTSon: 2 nodes connected by the simulated Ethernet (Mediator)

35
2.5.2 Booting 1000 thousand cores with SIMNow+COTSon — an instance of the TERAFLUX TBM (32
JLo Lo (X Qe ¥ ol -] OSSRt 35
3. STATUS OF EXPERIMENTS AND INTEGRATION BASED ON THE COTSON SIMULATION PLATFORM......... 37

31 RUNNING BENCHMARKS OVER THE PLATFORMS UNDER STUDY (PARTNERS BSC, UNISI) ..ocvveeiviieieeieeieeeeseeeneens
3.2 SIMULATION EXTENSIONS AND ENHANCEMENTS (PARTNERS HP, UNISI) ...coiiiiiiiieiiiceieee et
3.2.1 Mechanism to add Custom Instructions in SimNow and COTSon (Partner HP)
3.2.2 PoOWEr MOAEIING (PAITNEE HP)c...ueeeeeeeeeeeeee ettt e et e et a e et et seeetsaaessanaeasssaens
3.2.3 x86-64 ISA Extension in QEMU Emulator (Partner UNISI)...........coooueevcuvenieeseieiieesieesieeesieesieenaes

3.3 ISA EXTENSIONS AND BINARY SPECIFICATION (PARTNERS UCY, BSC, INRIA, UNISI) ..c.oveiiiiiiiieieeeceeeeeeee e,
3.3.1 DTA-Transitional Instructions and Implications on Binaries that Are Targeted by the Compiler
(POIENEE UNISI) ...ttt e e ettt e et e e et e e e ettt s e e aataaeeetteaeeaaseseeaassaeeaassseeastsseenasssnas 42
3.3.2 Preparing the way to compile from C to DTA-x86-64 instruction extensionscccoeeeeeevvennn. 46
3.3.3 An example of output obtained with the QEMU-DTA Example Fibonacci of N = 4 (UNISI)............. 47

3.4 CusToM DEVICES (PARTNERS UNISI, UCY)
3.4.1 Network on Chip (Partners UNISI).............
3.4.2 Thread Scheduling Unit - TSU (Partners UNISI, UCY)
3.5 EXTERNAL COTSON API EXTENSIONS (PARTNERS BSC, HP, UNIMAN)ooiiiiiiieciiiie ettt e 54
3.5.1 Communication among simulation instances (Partners BSC, HP)

3.5.2 Release consistency experiments (PArtners BSC, HP).........ccoueeuoeeeeciueeeeeeieeeseeeeeieeeeeeeieeeeeivenens

3.5.3 A communication mechanism among separated COTSon/SimNow instances (Partner BSC)......... 56
CRCI S 1Y/ =T To YVl s ¢ Lo o [=d B 14 1 (=T o [-2 SRR 56
3.6 IMPLEMENTATION OF FAULT DETECTION UNIT (FDU) AND ITS INTERFACES (PARTNER UAU)....cccviiieiiieeciiee e, 59

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 3 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.7 DATA-DRIVEN MULTITHREADING (DDM) (PARTNER UCY) ..eeiiurieeiiiiieceiiee ettt ettt ettt eetee e e ve e eeaae e e e 60
3.8 TRANSACTIONAL MEMORY (PARTNER UNIIMAN)oiiiiiiiieciiee e eitee et et ee e et e e s eae e e saaeeeenreeeeneaeesnnneas 61
3.8.1 Transactional Memory IMPIEMENTALIONc.c..uueeeeeeeeeeiieeeeeeeeecieee e e e estcteee e e e e e e e ssssaraaaeeeans 61

3.9 OS SUPPORT FOR TERAFLUX (PARTNER IMICROSOFT) ..uvveeeiuvieeeeereeesnreeessseeessnsesessssesssessssesessssssessssssesssseeeans
3.9.1 Fast Simulation Exploration through Emulation Techniques (MSFT)....

L 0 1[0 I U [0 Y 69
L 1 =1 =1 1 = 00 o 70
APPENDIX 1 - QEMU-DTA OUTPUT N 74
APPENDIX 2 - IMPLEMENTATION OF THE FUNCTIONAL SIMULATIVE MODEL “SHARABLE MEMORY”........... 77

LIST OF FIGURES

FIGURE 1 - COTSON OVERVIEW.....ceeeutteruteesueeesteesseesuseessseesuseessessesusesssesessesssesssssessseesssesssssesssessseessnssesssesssseessessssessnses 16

FIGURE 2 - A) BLADE CENTER JS21 SCHEMA WITH JS21 970MP PROCESSOR, B) OVERALL SCHEMA OF THE MARENOSTRUM
(COMPUTATION BASED ON BLADE CENTERS AND CONNECTION IS BASED ON MYRINET SWITCHES) ..ccuveeeuveerireesieenireesieeennes 19

FIGURE 3 - A) AMD OPTERON 6168 (12 CORES), B) BOARD LEVEL SCHEMA (HT=HYPER TRANSPORT)......0tteeecrrreeerieeeerreeeennns 20

FIGURE 4 - TWO PHYSICAL MACHINES RUNNING MPI APPLICATIONS
FIGURE 5 - TWO PHYSICAL MACHINES EACH ONE RUNNING A VIRTUAL MACHINE.
FIGURE 6 - ONE PHYSICAL MACHINE RUNNING TWO VIRTUAL MACHINE INSTANCES THAT COMMUNICATE THROUGH THE VIRTUAL
NETWORK (IMEDIATOR). .uuvteeeiteieeeitreeeeitteeeeiteeeeeetteeeeessssaeeetseeeasseeeaasssasansseseaassaseasseaeesssseseanssesesnsseeeasseseasenas 25
FIGURE 7 - VM INSTANCES GOVERNED BY A SINGLE SOURCE IMAGE (SSI) OS. ...eeiiiiiiieeiieiieeniee ettt 26
FIGURE 8 - ONE CORE AWARE OF ALL THE OTHER CORES (SEE ALSO D7.1)
FIGURE 9 - THE “SIMULATOR ILLUSION” ALREADY PROPOSED IN D7.1 (THIS IS THE SAME AS SETUP #5)
FIGURE 10 - ONE HOST CPU RUNS A VM WITH, E.G., 255 CORES (COREMU), EMULATING SHARED MEMORY COMMUNICATION.. 29

FIGURE 11 — THE PARALLELISM DETECTED IN A SIMPLE MATRIX MULTIPLY BENCHMARK FOR DIFFERENT MATRIX SIZES.vveeuveennne 31
FIGURE 12 - COTSON EXPERIMENT DISTRIBUTION AMONG PARTNERS.cetettiauurtttetessaauerteeresesaaunreeeeesaesesassssseeeesesannnnseeeens 33
FIGURE 13 - DENSE MATRIX MULTIPLIER (DMM) RUNNING ON A SIMNOW INSTANCE WITH 32 CORES. INPUT DATA ARE 2 SQUARE
MATRIX OF SIZE 1024 CSS_NUM_CPUS (=NUMBER OF “WORKERS” IN STARSS) IS EQUALTO 32.....eeeecerrrerrreeesnreeennnns 34
FIGURE 14 — TWO NODES “PING-ING EACH OTHER” . .eeiiuuttieiiiieeeiiteeesiteessiteessbteeesssbaeessaseeeesabaeessssteesssseessasseessnssenessnnns 35

FIGURE 15 - SNAPSHOT OF THE SIMULATION OF BOOTING UP 1024 CORES. (1) COTSON EXECUTION OF 32 SIMNOW INSTANCES.
COMMAND “TOP” SHOWS THE 32INSTANCES OF SIMNOW. (2) EXAMPLE OF ONE VNC INSTANCE SHOWING A SIMNOW
INSTANCE WITH AN AMD ARCHITECTURE X86-64 (BSD) OF 32 CORES (PROCESSORS). EXECUTION OF THE COMMAND CAT
/PROC/CPUINFO | GREP PROCESSOR IN THE SIMNOW PROMPT (3) THIRTY TWO VNC INSTANCES OF SIMNOW. IN TOTAL THERE

ARE 32 INSTANCES OF 32 CORES, WHICH SUMS TO 1024 CORES AVAILABLE. «...eeeuveerureerieesieeenieessseeesseessseessseeessseessseesns 36
FIGURE 16 - SAMPLE GUEST CODE USING A CUSTOM INSTRUCTION.uetttetesesauunrreeeeeesaaiereeesesesaunseeseeeeeesesanssseeeesessansnnseeeens 38
FIGURE 17 - SAMPLE "ANALYZER" CODE INTERCEPTING A CUSTOM INSTRUCTION IN COTSON. ...evvuvirruierrienieenieeseeenireeseeesneas 38
FIGURE 18 - EXAMPLE "MONITOR" CODE FOR IMPLEMENTING THE BEHAVIOR OF AN INSTRUCTION. ..eeuvveevereeeesreesreesereessnesnnnns 39
FIGURE 19 — EXTRACTING POWER DATA IN COTSON. ..ceuttiiutteiteeiteesieesteesteesuteesiaeessuseesseesseesseesaseessseessseesusesssessnseesnsnns 40

FIGURE 20 - EXAMPLE 1: “THREE-TREADS”

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 4 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

FIGURE 23 - LAST LINE OF THE FIBONACCI(4) PROGRAM RUNNING ON THE QEMU DTA-X86-64 (THE FULL OUTPUT IS REPORTED IN

THE APPENDIX). +vvteevtteeesureeesasreessussesasusseesasseessasssesasssssesasssssssssssesssssssanssssssnssssssesnsssssanssssesssssssssssessansssessnnsnees 47
FIGURE 24 — COTSON’S “FUNCTIONAL-DIRECTED” APPROACH: THE TIME-FEEDBACK. . ..ceeuuvtterrurreeerureeeesiureessneeessaneeessesssenesnnns 48
FIGURE 25 - BLOCK DIAGRAM OF SIMULATION WITH COTSON AND NOC MODEL. «..vveuvieeuteeeieeniteesieesireesieeesseesnseesesseesnseesanes 48
FIGURE 26 - BLOCK DIAGRAM OF NOC IMODEL. ...tttetttaiuutttteeseaaiutetteeeesaaausteeeeeseeeesaaaunseeeeeesaaanseeteeessasannseeeeesssasansnnnseeees 49
FIGURE 27 - BLOCK DIAGRAM OF: (A) NOC AND ROUTER, (B) NETWORK INTERFACE AND (C) ROUTER PIPELINE.vvvevvreeeaereeennnns 50
FIGURE 28 - FLOWCHART OF THE NOC MODEL INTEGRATION WITH COTSON.uutitiiereeiiiieteeeeeeeiieeee e e e e seieee e e e e e s eaeeeeeeas 52
FIGURE 29 - COTSON COMMUNICATIONS EXPERIMENT USING SIMULATION-SIDE CHANNELS (I.E., WITHOUT USING SIMULATED

TCP/IP). ettt ettt ettt ettt et et e et et e e e et et e et et et eee et ea e et ee e e e et et et eae et et eeaat et ete et et erene et eaeen et e enanenas 55
FIGURE 30 - MULTI-CORE REPRESENTATION WITH LINUX AND L.....vviiiieiiiieiienieesieesiteesiteesiee s esatessbeessaeesabeessseesateesasesnnnas 66
FIGURE 31 - QEMU INSTANCES WITH LINUX CONNECTED THROUGH IVSHIMEM ...cccoiiiiiiiiiiiiiiiicee et 66
FIGURE 32 - QEMU MAPS A SHARED-MEMORY AREA INTO RAM WHILE IT IS EXPOSED TO THE USER ASA PCI BAR......cccevruvenee. 67
FIGURE 33 - MIEMORY REPRESENTATION. 1. tuuuuttttteseaaauusteeeeessaaunteteeeesaaaaaaaunseteeeeesaaunsteeeeeesaaaunseeeeeessaannnbaaeeaeeeeesannnseaeens 68
FIGURE 34 - THINKING AT THE SIMULATION OF A FUTURE TERA-DEVICE SYSTEM. .e.uvvtiruterteeeteesreesreesueeesseessseesnsneesssessnseesanes 69
FIGURE 35 - CENTRAL ABSTRACTION OF THE FUNCTIONAL SIMULATION MODEL OF THE SHAREABLE MEMORY.....ccceevveerrereveenenes 77

LIST OF TABLES

TABLE 1 - COMPARISON AMONG DIFFERENT APPROACHES FOR DOING RESEARCH RELATED TO 1000-CORE COMPUTING SYSTEM
(INFORMATION REVISED FROM DATA OF THE RAMP PROJECT). GPA (GRADE POINT AVERAGE, A=5 POINTS, B=4 POINTS, C=3

POINTS, D=2 POINTS, E=1 POINTS, FZ0 POINTS). .uvieeeetiieeeiiieeeiteeeeeteeeeeteeeeeteeeeeeeaseeeeetseeaessreseeassseseasseeaeaseseeannns 18
TABLE 2 - OUTPUT OF THE “TOP” COMMAND UNDER THE LINUX SIMULATION HOST FOR THE 1024 CORE EXPERIMENT.......cccvenee. 36
TABLE 3 - DTA-TRANSITIONAL ISA EXTENSION. (THE SIZE OF THE OPERANDS IS BY DEFAULT 1 MACHINE WORD (E.G. 64 BITS FOR X64

PLATFORMS)). ¢ tuttteeeuteeeeauseeessuseesasusseesassaeeas sasseaeassasesasssesassseseanssssesasssseassesesanssssesnsssseasnsesssnsssssssnssseesnseeennnnes 43

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 5 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdfleet the list of contributors to the writing ofdeh
document.

Roberto Giorgi, Antonio Portero, Caroline Concatto,Rania Mameesh, Zhibin Yu
University of Siena (WP leader)

Yoav Etsion, Lluis Villanova, Nacho Navarro, Rosa Bdia, Mateo Valero
Barcelona Supercomputing Center

Paolo Faraboschi
Hewlett Packard Espanola

Albert Cohen
INRIA

Doron Shamia, Avi Mendelson
Microsoft Research and Development

Arne Garbade, Sebastian Weiss, Theo Ungerer
Universitaet Augsburg

Pedro Trancoso, Skevos Evripidou
University of Cyprus

Behram Khan, Salman Khan, Mikel Lujan, Chris Kirkha m, lan Watson
The University of Manchester

© 2009-11 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published inyjt&r the TERAFLUX Consortium, on theww.teraflux.euweb site and can be
distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis ocument.

The authors and the publishers make no expressidptied warranty of any kind and assume no resipdites for errors or omissions.
No liability is assumed for incidental or consedisrdamages in connection with or arising outtaf tise of the information contained in
this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and mayydoe used or copied in
accordance with the terms of the License. The imé#&tion in this document is a work in progress, tigideveloped by the members of
TERAFLUX Consortium ("TERAFLUX") and is provided finformational use only.

The technology disclosed herein may be protecteohieyor more patents, copyrights, trademarks aridide secrets owned by or licensed
to TERAFLUX Partners. The partners reserve all tdghith respect to such technology and related madde Any use of the protected
technology and related material beyond the termthefLicense without the prior written consent &RAFLUX is prohibited. This
document contains material that is confidential EGRAFLUX and its members and licensors. Until padtion, the user should assume that
all materials contained and/or referenced in tiesudnent are confidential and proprietary unlesemifse indicated or apparent from the
nature of such materials (for example, referencgmiblicly available forms or documents).

Disclosure or use of this document or any matenatained herein, other than as expressly permiggatohibited without the prior written
consent of TERAFLUX or such other party that magngrpermission to use its proprietary material. Tademarks, logos, and service
marks displayed in this document are the registemed unregistered trademarks of TERAFLUX, its mematend its licensors. The
copyright and trademarks owned by TERAFLUX, whettegjistered or unregistered, may not be used inexion with any product or
service that is not owned, approved or distribligdTERAFLUX, and may not be used in any manner thdikely to cause customer
confusion or that disparages TERAFLUX. Nothing @méd in this document should be construed asigphy implication, estoppel, or
otherwise, any license or right to use any copyngithout the express written consent of TERAFLLUX, licensors or a third party owner
of any such trademark.

Printed in Sena, Italy, Europe.

Part numberplease refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFKUSPECIFICATION IS PROVIDED BY TERAFLUX TO
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING WITHOUT LIMITATION, ANY DAMAGES ARISING
FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFIDATA OR GOODWILL) ARISING IN CONNECTION WITH
ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPEIFICATION, WHETHER IN AN ACTION IN CONTRACT,
TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 6 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

Auxiliary Core

A core typically used to help the computation (arlyer core than service cores)
also referred as “TERAFLUX core”

BSD

BroadSword Document — In this context, a file tbattains the SimNow machine
description for a given Virtual Machine

CLUSTER

group of cores (synonymous of NODE)

COTSon

Software framework provided under the MIT licengeH®-Labs

DDM

Data-Driven Multithreading

DTA

Decoupled Threaded Architecture

DF-Thread

a Data-Flow Thread

DF-Frame

the Frame memory associated to a Data-Flow thread

Emulator

Tool capable of reproducing the Functional Behawgnonymous in this context
of Instruction Set Emulator (ISS)

FDU

Fault Detection Unit

L-Thread

Legacy Thread: a thread consisting of legacy code

MMS

Memory Model Support

Non-DF-
Thread

An L-Thread or S-Thread

NODE

Group of cores (synonymous of CLUSTER)

OWM

Owner Writeable Memory

0S

Operating System

Per-Node-
Manager

A hardware unit including the TSU and the FDU

PK

Pico Kernel

Sharable-
Memory

Memory that respects the FM,OWM,TM semantics of TTlERAFLUX Memory
Model

S-Thread

System Thread: a thread dealing with OS servicé&or

StarSS

A programming model introduced by Barcelona Supaquating Center

Service Core

A core typically used for running the OS, or seegicor dedicated I/O or legacy
code

Simulator

Emulator that includes timing information; synonymsan this context of “Timing
Simulator”

TAAL

TERAFLUX Architecture Abstraction Layer

TBM

TERAFLUX Baseline Machine

TLPS

Thread-Level-Parallelism Support

TLS

Thread Local Storage

™

Transactional Memory

TMS

Transactional Memory Support

TSU

Thread Scheduling Unit

Virtualizer

Synonymous of “Emulator”

VCPU

Virtual CPU or Virtual Core

Deliverable number: D7.2
Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 7 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This document provides a report of the researchities performed during the first year (reporting
period) towards the objectives of the TERAFLUX woakkage WP7. In order to measure the success
of this Workpackage, we set two measurable objest{ef. Annex-1, Description of Work):

1) Producing an open-source simulator capable of simulating the future tera-device systems;
2) Integrate the main results fromthe all workpackagesin this platform

We believe that those objectives are fully achieiredhe reporting period, despite the “start-up
transient”, as we try to illustrate in this documérhis first year of activities forms the basis fouch
more productive interactions for the rest of thejgut.

WP7 is also an “integration” workpackage for theject, and therefore requires a constant attention
and support: Task 7.1 started at month 1. Afteroditims, we reached the first Milestone M7.1 and
Deliverable D7.1. Then, we started other two taSlesk7.2 and Task 7.3. All these three tasks will
continue in the next year: hence, this deliverabpmrts many initiated and in-progress activities.

Most noticeably:

e ALL the partners are able to use COTSor{our common simulation framework) through a
set of shared benchmarks (Project Milestone Mh#l)aan commit in a single repository.

* COTSon has beereleased as open-sourceimulator, thus providing the reciprocal benefit
for the TERAFLUX project and the international ras#n community.

* We are able to boot a simulated system includinglidations, OS (full-system simulation)
for the TERAFLUX Baseline Machine (TBM) as desigrthin D7.1 consisting of more than
1000 cores. This put us in the world-wide frontlfioe experimenting with simulated system
of such size and demonstratesoatinued relevanceof our objectives.

* We are now able to modify, e.g., the architectdreugh 1000-core system. In general we can
now integrate the proposed research from the Partners in aesprigtform, thus overcoming
the limitation of pursuing separate research gaals rather achieving a common goal of
improving such a large scale system as a whole.

* We aim at an even increasedpact of our project using as vehicle the availabilitytioe
TERAFLUX system through the improved COTSon simalatframework. As of our
knowledge, no other simulator provides similar fgnéSection 2).

» We took someextra effort (exceeding what planned) to provide a more comvinplatform
for modeling a Future Single-Chip/Package TERAFLth¥ough the modeling of an off-the-
shelf Network-on-Chip, as we believe will benefietwhole project and the success of the
simulation framework.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 8 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. Introduction

The activities in this Workpackage are centeredatolw the use and development of the common
simulation infrastructure based on COTSon simulaidie recall the terminology and briefly
introduce COTSon (Sections 2) then we describeegploration of different COTSon setups (Section
2.2).

As the TERAFLUX Consortium decided to target a éasgale simulation of 1000-cores, this posed
us many practical challenges towards efficientlypsarting this kind of simulation (Section 2.3).

We describe some activities related to the knowdetignsfer (Section 2.4) and provide a practical
reference also for the TERAFLUX partners, or toeothxternal readers of this Public document in
Section 2.

In Section 3, we provide a more detailed reporttiom status of the experiment and the new
possibilities explored in the TERAFLUX project byeams of the COTSon platform.

1.1 Relation to other deliverables

As this is an integration workpackage, we consyaméfer to activities carried out in other
workpackages. In particular:

* WHP2 Algorithms examples

* WP3 Synchronization mechanism and Memory Modeln3aational Memory support

* WHP4 Binary Format specification, Compilation Tools

* WHP5 FDU, Fault injection.

* WP6 TSU support
1.2 Activities referred by this deliverable and document structure
The original structure of tasks was:

Task 7.1 - A definition phase: where all partners together will contribute to define the requirements
and specifications for the desired I1SA extension interfaces. For each new device, we currently
envision a simplified interface where devel opers can quickly assert the benefits of a new idea, as well
as a more detailed interface for the ideas that reach a more mature stage and want to be tested within
the context of complete OS support

Task 7.2 - A simulator-core implementation phase: where UNIS with the guidance HP will implement
the necessary changes in COTSon to support the defined 1SA extensions and expose them in a new
version of the COTSon SDK.

Task 7.3 - An application-specific implementation phase: where the interested partners will
implement (test and validate) their specific models on the new SDK version and document the work to
make it available to the rest of the consortium

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 9 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting

Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

This deliverable reports the status of the acésifrom the above three tasks organized as follows:

* Overview of the TERAFLUX Simulation Platform

» Status of experiments and integration based on theOTSon simulation platform

Besides this organization of the deliverable wevigl® here a “quick-reference” to locate specific

topics that were part of the WP7 objectives.

WP7 Objective from Annex-1

Where it is explained

The capabilities to extend the ISA so that funditke thread-level
speculation, transactional memory and atomic sestan be faithfully
simulated (for WP3, WP4 and WP2).

Section 3.2.1, 3.2.3,

The interface for new custom devices like cohemnattached hardwar
accelerators (WP6 and WP3).

eSection 3.4.1, 3.4.2, 3.b

The interface for fault injection and fault tracggito support the Reliability Section 3.6
and Fault-Tolerance activities (WP5)

The interface to add power models (for WP3 and WP6) Section 3.2.2
Disseminate the COTSon platform and the knowledgthe tool. Section 2.4

Add QEMU as another optional functional engine (patible with open-
source development and multiple ISAs

Sections 3.2.3, 3.3.2,
3.3.3

Define the extensions, devices and interfaces neegéhe WP3 Section 3
(programming model), WP4 (compilation tool), WPé&ligbility and fault

tolerance) and WP6 (architecture).

Design and implement the appropriate extensionscele and interfaces in Section 3

the simulator to satisfy the requirements: as I1S#esmsions or architecture
modifications, as ASM extensions or as fully fuaotil devices and

interfaces (fault injection and power) in the COM$@mework.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions
File name: TERAFLUX-D72_v20final.doc

Page 10 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2. Overview of the TERAFLUX Simulation Platform

In the TERAFLUX project, we decided to rely on 8®TSon simulator from our Partner HP Labs.
In this Section we aim to highlight its continuedlevance towards the Research goals of the project.
We recall and briefly explain the terminology the use and we contrast the benefits of COTSon in
comparison to other simulators (Section 2). We show we carried out reference experiments to
extract both reference numbers and to setup aroppgate simulator host for COTSon (Section 2.2).
We describe different COTSon-based optional setng,highlight advantages and disadvantages that
motivate our efforts for an efficient large-scal®@0 cores target) simulation (Section 2.3).

2.1 Terminology recall and brief overview of COTSon advantages
over other many-core simulator (Partner UNISI)

In this Section, we recall and briefly explain teeminology that we use and we contrast the benefit
of COTSon [Argollo09] in comparison to other simolas.

Future architectures will expose a massive numibgracallel simple processors (besides some
bigger ILP focused processor) and on-chip memar@mected through a network-on-chip, whose
speed is more than hundred times faster than gif{ésanovic09]. The number of cores in a single
die is increasing and postulated to reach1000 agdrinl. How to simulate a many-core processor in
such a scale is an interesting challenge, whicnedully taking in the TERAFLUX project.

In the computer architects’ and researcher’s toal-la cycle-accurate software simulator is one of
the most important tools. Simulators allow us teryaut platform exploration of the different
architectural options under several types of remménts (e.g., performance, reliability, power
consumption, temperature). This also means thasithalator has to be able to estimate or measure
the achievement of the needed requirement. Howeaveycle-accurate simulator is extremely slow.
Chiou reports that the simulators for single-corecpssors used at Intel and AMD often operates at
1KIPS (kilo instructions per second) to 10KIPS,dieg one year to ten years to simulate a 3GHz
target for 2 minutes [Chiou09]. Even worse, sinmiatare getting slower and more complicated
under multi-core or many-core scenarios.

In the TERAFLUX project, the simulator (based onT&0n) is also a major output of the project:
our aim is to constantly improve this tool (and Il release updates) in order to impact the
community and increase the possibility of addresgioblems at the Tera-device scale. Moreover the
simulator serves as an integration platform asviblives a close participation from all partners.

It is worthwhile to recall some terminologies abauthitecture and micro-architecture simulation.
In this section, we will review the concept, cléisation, and detail challenges of simulators.

When we talk about simulation, another concept, latimn, is often mentioned. Sometimes,
emulation and simulation are used interchangeably in the computing systeErature. To make it
easy for discussion, we distinguish these two gomisceEmulation means that the function of a
platform is repeated on another platform. The nwincern of emulation is the correctness of the
function. Simulation is an extension of emulatidesides ensuring the functional correctness,
simulation must provide accurate time informatidnich is related to performance. In this document,
if there is no explicit specification, an emulaterrelated to the bare functional behavior, while a

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 11 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

simulator is related to performance. Other two Widesed concepts arinctional simulator and
performance simulator.

To clean up a bit the terminology, in this contexe use just “simulator” to mean “timing
simulator (cycle-accurate)”, we use just “emulattw”mean “functional simulator” (in case of an
emulated processor we also use Instruction Set I&iamuor ISS [Knuth97]. Also we use “power
simulator” when we have a power model or “powerinignsimulator” when we use both a power
model and a timing model [Li09].

Since simulation is so important, there are marffeidint kinds of simulators or simulation
methodologies have been developed over the yegainAthere are different classification methods
for simulators and some of them are possibly oppea. According to whether the modeled
processor is a single core or a multi-core, we tsngte-core simulators andmulti-core simulators.
SlackSim [Chen09] and SimpleScalar [Austin02] araneples of single-core simulator, while
COTSon is a typical multi-core simulator [Argolld09

Based on whether the OS behavior is included oy thete arauser-level simulators and full-
system simulators. SimpleScalar is also an example of user-levelkitor. SimOS [Rosenblum95],
Simics [Magnusson02] + GEMES [Martin05], SimNow ®©TSon [Argollo09] are examples of full-
system simulators.

According to whether the simulator can executedralbel or not, we havparallel simulators
andsequential smulators. Sequential simulators are quite accurate [Bi@i&rt{fRenau05] but as the
complexity of the simulated platform increases simulation time gets unreasonably long. Parallel
simulation [Argollo09], [Reinhardt93], [Dickens93][Prakash98], [Das94] requires multiple
processing cores to increase the simulation rate.

A (timing) simulator can also use different apptoes depending on the relationship between the
“functional model” (fm) and the “timing model” (tm)Mauer02]: i) ‘functional-first” or “trace-
driven”, the fm is run first and separately and the trruis later on in a completely decoupled fashion
(the all fm is run before the tm is run); ifithing directed” or “execution driven”, the fm and tm are
closely coupled (no decoupling); iiititning-first”, the tm drives the fm, both are completely
decoupled, but the functional execution has to becked later on and eventually undone; iv)
“functional-directed”, the fm drives the tm, both are completely dededpthe functional model is
always the right one but we need a timing feedbemk tm to correct the timing behavior so that it
becomes visible to the applications being simuld#idollo09].

Nowadays, power consumption, vulnerability, andrrired dissipation of processors are
becoming more and more important. Therefore, begi@eformance simulators, there are simulators
for the above issues as well. Some simulators cwrdeveral above aspects. For example, MCPAT
is a power simulator for multi-core processors tlgwed at HP Labs. It can also be used as a power
and performance model [Li09]. In the TERAFLUX prcjeve use the McPAT tool to estimate power
consumption (discussed in a subsequent sectidmnsidcument).

Since the cycle-accurate simulation takes extrenogly time, there is a large body of literature
about how to accelerate the cycle-accurate sinaulaffThe most popular simulation acceleration
technique issampling. This technique selects some instructions foresgdcurate simulation while

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 12 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

other instructions are simulated in functional meodded fast-forwarding. According to the diffeten
sampling strategies, a lot of simulation samplieghnhiques are developed. T. M. Conte et al.
employed simple random sampling strategy to speesimulation [Conte 96]. R. E. Wunderlich et al.
used systematic sampling in acceleration of micobigecture simulation [WunderlichO3]
[Wenisch06]. They also tried to use stratified skmgpscheme for acceleration [Wunderlich0O4]. E.
Perelman et al. applied representative samplingpg®dup micro-architecture simulation [Perelman
03]. zZhibin Yu employed a more flexible samplindieme, two-stage sampling, to accelerate micro-
architecture simulations [Zhibin09].

Although sampling can accelerate simulation sigaiftly with relatively high accuracy, it is
complicated to prepare the sampling parametergddfie real simulation. Therefore, simplifying the
acceleration of micro-architecture is becoming intgpat. A few of researchers have tried to simplify
this procedure. UNISIM is one example becauseravigdes transparent techniques for speed up
[UNISIM10]. Another example is the CantorSim apmioavhich employs fractals to simplify the
parameter preparation for simulation accelerati@mtin10].

The simulation rate of software simulation by samptechniques is limited by the speed of the
functional simulator. Although the speed of thedtimnal simulator is much faster compared to a
performance simulator, it is still too slow for cputer architects. Researchers have tried to aateler
performance simulator by using FPGAs. Penry efPenry06] provide a much more detailed, low-
level simulation and are targeting hardware desigitis FPGA support. Their simulator, while fast
for a cycle-accurate hardware model, does not geowhe performance necessary for rapid
exploration of different ideas or software develgmin Other examples are ProtoFlex [Chung09],
FAST [Chiou07], and HASIim [Dave06]. In these sinata, they use FPGA to accelerate the timing
models. However, FPGA based simulation is lessilflexthan software based simulation. For
instance, implementing a new model in an FPGA sashRAMP project is more difficult than
software (typically requiring an RTL-level descrgpt), making it harder to quickly experiment with
different designs [Gibeling06],[Krasnov07].

For functional simulator or emulators, there aoadeveral existing systems. One of the most
popular ones is QEMU [Bellard05]. QEMU (Quick Entalg is Open Source software for creating
emulation and virtual machine environments, devadopy Fabrice Bellard. As an emulator, it is used
to run operating systems and applications writtgrahother hardware platform; for example, running
ARM software on an x86-based PC. For virtualizat@&EMU is used to emulate devices and certain
privileged instructions and requires the KQEMU/KMdrnel module and the host operating system
to provide a virtual machine environment. An exten®f QEMU for emulating multi-/many-cores is
COREMU [Wang11]. SimNow and SIMICS are other exaspif functional simulators.

COTSon is a full-system simulator that uses thencfional-directed” approach; it can take
advantage of sampling techniques; it uses AMD SimMds emulator engine to functionally process
the workload; it can run several emulator instanoesparallel; in TERAFLUX, we are also
developing support for using QEMU as an alternatipen-source emulator engine.

In the rest of this section, we describe some reolte simulators and contrast them with COTSon.

There are tons of multi-core simulators developadng the past 10 years. The typical examples
are COTSon[Monchiero09], Trace-Factory [Giorgi9%jmFlex [Wenisch06], MPTLsim[Zeng09],

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 13 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

GEMS [Martin05], Graphite[Miller10], BigSim [Zhend(], FastMP [Kanaujia06], SlackSim
[Chen09], Wisconsin Wind Tunnel(WWT) [ReinhardtyB]ukherjee00], the simulator developed by
Chidester and George [Chidester02], MPTLsim[ZengG@8id LIBERTY [Penry06].

SimFlex and GEMS both use an off-the-shelf seqaksthulator (Intel's Simics) for functional
modeling plus their own models for memory systemd eore interactions. GEMS uses the timing-
first simulation approach: their timing model disvBimics one instruction at a time which results in
much lower performance than COTSon. SimFlex usaistital sampling of the application to speed
up the simulation but therefore does not obsesverntire behavior.

MPTLsim is a cycle-accurate, full-system x86 an®-6& multicore simulator. MPTLsIim uses
the hardware abstraction provided by the Xen hyperyXen99] to fast-forward execution and reach
a given point where simulation can start. MPTLsinovides a significant faster simulation rate
compared to versions of GEMS. MPTLsim make use of@e accurate out-of-order core design
implementing the x86-64 ISA. However, the fast-farding using Xen is completely opaque to the
simulator and during the Xen execution nothing loamnferred about memory, instructions or I/O.

However, among the above multi-core simulatorsofi®ur knowledge, only COTSon and
Graphite currently claim they target for 1000 cor@saphite is a simulator developed by MIT and
still being developed, based on the PIN binaryrumentation package. We evaluated its initial
version and found it lacking several usability teat to be used in the TERAFLUX context at current
stage. On the contrary, COTSon is relatively magunme allows simulating complete systems ranging
from multicore nodes up to full clusters of multies with complete network simulation. It is
composed of a pluggable architecture, in which nieatures can be substituted for proprietary
development, thus allowing researchers to use tiheis simulation platform. For example, COTSon
has been used for modeling 1000-core shared-memaitiprocessor [Monchiero09], or for the
CORONA studies [Vantrease08].

COTSon [Argollo09], [Monchiero09] is a node-levedrpllel simulator (i.e., several SimNow
instances can run in parallel, while each SimNowcekion is sequential). COTSon uses AMD’s
SimNow for functional modeling. The sequential iastion stream coming out of each SimNow
functional core is interleaved to account for cortene ordering before timing simulation. Currgntl
COTSon can perform multi-(guest-) machine simutaidut only if the applications are written
assuming a distributed memory machine (for exarapleg a messaging library like MPI). Previous
COTSon experiments were used with a slightly d#féermethodology — a hybrid between trace-
driven and feedback-driven simulation. It did ndteess specifically an “evolving machine” like the
TERAFLUX one and the full-system functional-direttapproach was limited to specific scenarios
(e.g., datacenters).

Another possibility that we considered is to takeantage of the large parallelism of GPGPUs
to emulate a guest core on the host GPU core [Ra§haCompared to COTSon, this is not yet fully
developed (only part of the x86 ISA is emulated) #nis not a full-system simulator (it is only an
emulator).

TERAFLUX uses and develops the COTSon platform.B&leeve that our choice is still a valid
option to target a many-core machine of the size080-cores, with the full potential of includirget
research in the EU FET TERACOMP objectives.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 14 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.2 COTSon framework organization and possible setups

In this Section, we provide some further informatiabout the COTSon framework. HP Labs’

COTSon [Argollo09] simulator is a full system siratibn infrastructure, based on AMD’s SimNow.

It allows simulating complete systems ranging fnomuti-core nodes up to full clusters of multicores
with complete network simulation. It is composedptiggable architecture, in which most features
can be substitute for your own development, thisvithg researchers to use it as their simulation
platform.

SimNow [SIMNow09] models the functional behaviorlohode containing multiple cores (tested up
to 32 cores as of version 4.6.2 used in 2010)s based on dynamic binary translation principles
along the lines of what is used in some is a vintgchine hypervisors (like e.g. Oracle’s Virtuaigo
VMware, MS Virtual-PC ([VirtualBox10], [VMWarel0JMVMPC10])) with additional capabilities
for timing simulation, but also many other possiigis for external extensions that we used in some
experiments (see e.g. BSC’s experiments on shamadateory support).

More specifically, SimNow is a configurable x86-Gfynamically-translating instruction-level
platform simulator. However, note that in the COmS8imNow is essentially used as a full-system
emulator.

In order to flexibly model a variety of architeclifeatures, in the “Timing Models” (see Figure 1)
we can provide the necessary timing behavior. kample, if we want to test different L1 cache
sizes, we can provide a timing model for L1 caclmed change cache size in such models. This is a
good example to show that in this case, we discetig internal timing information of the SimNow:
therefore in such case, the SimNow then acts amranator or ISS (cf. Section 2). A very similar
situation is for other architectural components reh&e introduced our custom timing models (e.g.
the NoC — see Section 3.4.1).

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 15 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Time Synchronization, Simulation Parallelization,
Network Instrumentation, Network Statistics, ...

\/
Mediator instance L l:etw?rk | Model

o) ﬁ (Inter-node Network/Switch Model) unctlor?a 0dess,
9| Congestion, ...
g &
o
=
(@) SimNlowinctanco I
o
s K> owsins
S SimNow instance
=5 (Node Functional-Model)
o
> Disk, NIC, ...
o Core Core Core

1 2 N

Functional Simulation

N

CPU,
Trace Collection, Timine Interface Memory,
Profiling, Hooks, ... J Interconnects

Timing-Models

Sampling,
Interleaving, ...

Sampling driver

Timing Simulation

Figure 1 - COTSon Overview.

The interconnection network among the nodes (sgar€&il) is provided by the “Mediator”. HP
provided a reference implementation of the netwbfkdiator (also known as “Q Mediator”
[Lugones09]) that essentially models an Ethernatchw

The Mediator provides (simulated) Ethernet funaiaronnectivity among simulators and works with
simulations distributed across multiple hosts. ¢énages the timing models (not shown in Figure 1,
for the sake of clarity) for a networked groupnafdes and is responsible for networking modeling
(topologies, switches, cards, etc.), queuing ugimgnnetwork packets and computing the delays due
to network congestion.

UNISI and the other participating Partners extegigivexperimented with the COTSon platform.
Many of the Partners were new to this framework.eXtensive documentation and shared knowledge
on the experiment and possible setups were docechemmn the internal wiki website
(wiki.teraflux.eu). The necessary steps involved:

* Getting background on SimNow and COTSon. Gettingkgaound on QEMU: this has been
identified, in Annex-1, as an open-source engine ificreased flexibility alternative to
SimNow

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 16 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

* Understanding the COTSon control interface, timmgdels, synchronization and multiple
parallel simulators coordination required basic dealge of additional languages such as
Ruby [Cooper09], [Flanagan08] and Lua [lerusaling®élj, [lerusalimschy06b].

* Analyzing the software application set that perfermetworking functionality, such as
Mediator.

* Providing BIOS images for 8, 16, 32 cores in eagtles. This step was carried out by HP
labs and became very useful to test more complexagios.

* Modifying and managing a number of “Virtual Machidescriptions”: the SimNow can store
a node configuration in so called “BSD files” (sgessary), including saving the state of the
machine at a given point of the execution.

The TERAFLUX wiki site provides extensive suppodr fPartners, including the possibility of
keeping track of discussion, documents, refereanddinks.

2.3 Targeting a 1000-core simulation

The main reason to consider a 1000-core system frothe very beginning is to have a platform
more similar to what we expect to be a 1-TERA dev&chip/package.

There have been proposed several approaches toastddesearch a computing system of the size of
1000-cores. There are also prototype chips thatetly work with 48 cores (Intel SCC [Mattson10])
that could eventually scale to a 1000-core procefdattson10b]. In the market also there exist
1000-core CC-NUMA machines (like the SGI Altix UNQf course, many supercomputers reach that
size: one can “just build” the machine.

The ambition of TERAFLUX is however to be able ofchanging such machine in a flexible way,
while tackling research challenges on programmabily, architectural design and reliability.
Therefore, we have the need to stress the COTSomafbrm, in order to being able to simulate
1000 cores.

This Section includes four subsections. In subsec8.3.1, we report some comparison done in
competitive project like RAMP [Gibeling06],[Krasn@¥], comparing physical SMP, physical
Cluster, FPGA, Emulator and Simulator approachestds 1000-core platforms. In subsection 0, we
present some real hardware platforms architectoa¢ we used in TERAFLUX (MareNostrum,
“TEX2") or that we considered to use (i.e., Altid/) Then in subsection 2.3.3 we discuss several
setups that use COTSon to target a 1000-core dimulgpresenting advantages and disadvantages.
Finally, in subsection 2.3.4, we briefly report sonesults to find applications that: i) do not jgras
“algorithmic bottleneck” when scaling to 1000 or mcores; ii) reasonably load interconnects and
memory (without an “exponential explosion” of thatakset). This is very important to adequately
stress the 1000-core simulation.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 17 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.3.1 Comparison among platforms to evaluate novel 1000-c ore

architectures

Table 1 reports a comparison between differenfqias that allow us to evaluate and experiment
with 1000-cores.

The main drawback of SMP is due to the high cost@fi0-core machines and the fact that it's not
possible to modify the architecture. Another prablis the difficulty to observe the results and the
inability to reconfigure the hardware to extend t8A. Building a cluster of computers to get 1K
cores is feasible but it has similar disadvantagesSMP. A major FPGA disadvantage is the
complexity to build these kinds of systems sincedWware and software must be set up. Available
soft-processors such as NIOS Il for Altera and oildaze for Xilinx do not support x86-64 ISA.
They are currently restricted to 32bits.

An emulator (see previous Section) has the maihleno that it does not provide timing, which draws
us to the use of simulators. The main problem ofutators is the credibility but as much as the
simulators evolve the credibility of these solusancrease. Performance is another problem, while
we currently obtain a 1/10 to 1/1000 down speedsiaulating a cluster of computers that it is still
feasible.

Table 1 - Comparison among different approaches fodoing research related to 1000-core computing
system (Information revised from data of the RAMP poject). GPA (Grade point average, A=5 points,
B=4 points, C=3 points, D=2 points, E=1 points, F=points).

SMP Cluster FPGA Emulator Simulator
Scalability C A A A A
(1K cores)
Cost (1K cores) F(€40M) C B(€0.1-0.2M) A+ (€0.01M) | A+(€£0.01M)
Power/Space(Kw, D (120 kw, | D (120 kw, | A (1.5 kw, A+ (0.1 kw, | A+ (0.1 kw,
racks) 12 racks) | 12 racks) 0.3 racks) 0.1racks) 0.1 racks)
Observability D C A+ A+ A+
Reproducibility B D A+ A+ A+
Reconfigurability D C A+ A+ A+
Credibility A+ A+ B+/A- F/ID C
Development time B B C A+ A+
Performance (clock) A (2GHz) A(3GHz) C (0.1 GHz) B(0.9 of C(1/10to
original) 1/1000
SMP)
x86-64 ISA A+ A+ F A+ A+
Modifiable F F B A A
GPA D D B+/A- B A

Deliverable number: D7.2
Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 18 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.3.2 Experiments on Physical Machines
The use of real platforms is needed for two maasoes:

1. In order to get some preliminary numbers for sgttip the COTSon simulation environment;
those numbers serve also as reference to tunesigintiulation environment;

2. In order to provide and setup an adequate simuldtist (to support the COTSon simulation
itself).

It is not always possible to get the “perfect” getthere are several reasons for that. Sometirhes, t
programming model cannot be changed, sometimemé#éuohine cannot be changed, and sometimes
we do not have all the necessary flexibility. Ha®econsider some of the options.

2.3.2.1 A Message-Passing Machine (BSC’s MareNostrum)

We used the MPI library (Message Passing Interfaog)il0] and BSC Partner’'s supercomputer
(MareNostrum) to run some initial tests on a 1006ecsystem. MareNostrum is one of the top 500
most powerful computers in the worldHere we briefly describe the structure of the hirae. Later
we show some results from some benchmarks: a thbranalysis of benchmarks is in D2.1.

The computer at number 118/500 in the “top-500MereNostrum. MareNostrum is based on 2560
Blade JS21, each with 2 dual-core IBM 64 bits P&@&r970MP, 2.3GHz with 10240 Cores,
Rmax=63,83 (number identifying the maximum LINPAQ@Krformance), Rpeak=94,21 TeraFLOPS
(peak performance) [bscl10], [kimble06] . In Figw2a, we show a schema of the blade JS21
[kimble06, Bunting06]. In Figure 2b we show am @aleschema of MareNostrum.

Computation Communication

50 L1D [EY] 1D [EY] LLD [EN] 11D 128 Links
cache cache cache cache | cache F per Clos, SPINE
Clos ’ 1280
Up to 14 blades

switches
970 MP CPU 970 MP CPU

[Blade JS21) SPINE

CORE CORE CORE CORE
UNIT UNIT UNIT UNIT

Blade Chassis 1280

BladeJS21 Northbridge + DDR2
* Graphics

Up to 6 chassis

Southbridge * Peripheral
devices

connector

Blade Center

a) b)
Figure 2 - a) Blade Center JS21 schema with JS21@WVP processor, b) Overall schema of the
MareNostrum (computation based on blade centers andonnection is based on Myrinet switches)

! Ranks and details of the top 500 non-distributestrpowerful computer systems in the world are diesd in
[top500]. The update list is published and updatede a year. The top500 aims at providing a bésis
tracking and detecting the trends in high-perforceacomputing. It bases its ranking on a portablghHi
Performance LINPACK (HLP) benchmark written in FORAN for distributed-memory computers [top500].

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 19 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.3.2.2 Shared-Memory Machines

2.3.2.2.1 The UNISI “TFX2” CC-NUMA on a board (48-cores an@56GB shared memory)

The current COTSon simulation host at UNISI is acé8s (AMD x86-64) on a single board and
256GB of shared memory (NUMA single Board SymmeMiualti-Processor) named “TFX2". We
will describe shortly the organization of this maxeh Some partners (UAU, INRIA ...) also used a
similar machine, but with less memory and/or cdtess limiting the simulation capabilities). In the
next period (year 2), we plan to use a larger nmaclis soon as the hardware we need will be
available within our planned budget. This machiae heen provided as part of the existing facilities
at UNISI.

This board has four processors (sockets) and gackegsor has 12 cores (Opteron 6168 1.9 GHz with
512KB L2 cache). It also has 32 quad-channel stofgporting up to 512GB of DDR3-1333
registered ECC. The BIOS is 16 Mb AMIBIOS SPI R&0OM [Spm10].

HT fink

8xDIMM SOCKET #4 SOCKET #3 8xDIMM

Core 11

[y ez

8xDIMM SOCKET #2 SOCKET #1 8xDIMM

HT link

o
=
=
T
=
£
=
a=

X
=
=
T
=
=
=
=

HT link | HT link

HT link HT link

HT link

Memory Controller
Memory Controller

1/ Bridges 1/0 Bridges Peripherals
#2 #1

Peripherals

Two channel (128 bit) memory interface Two channel (128 bit) memory interface

a) b)
Figure 3 - a) AMD Opteron 6168 (12 cores), b) Boartlevel schema (HT=Hyper Transport).

2.3.2.2.2 SGI Altix UV

Another possible solution for the simulation hdgitthas been considered (but not used currently) is
using machines like SGI Altix. We investigated thjgtion but we decided that, for the currents needs
machine like the one already presented (“TFX2” BallyCotson”, cf. 2.4) suffices. Some computer
center like the Spanish CESCA (Centre de Superctanjoude Catalunya)http://www.cesca.es/
offers access to this kind of system. Howeverhat thoment, we favor to extend a system like the
one in 2.3.2.2.1 as this could fit our COTSon satioh needs for the rest of the project.

The Altix UV has more than 1K cores and 16 TB ofmoey. Altix UV scales up to 2,048 cores (256
sockets). It supports up to 16 TB of global sharesmory through in a single system image OS (cf.
2.3.3.4), i.e. relies on a Distributed Operatingtsgn.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 20 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.3.3 How to simulate 1K cores: setup to simulate 1K core s

All the TERAFLUX Partners agreed that in order tiwgess the challenges of a Tera-device system
we should be able to simulate a platform encompgssi

i) A full-system (including OS and devices)
i) Using “efficient applications” able to load the s® and stress its limits

iii) Able to scale at the State-of-the-Art (about 100€es or 1K cores) as many work are
addressing (see for example [Monchiero09], [Mil@r1]Raghav10], [Gibeling06],
[Krasnov07])

In order to explain, the motivations for the chagieee are currently exploring, we briefly analyzeehe
the options that we can use for a 1000-core simoulahighlighting advantages and disadvantages.
We actually setup and tested them when it was sacg®r useful to advance with the mainline
experiments on the COTSon framework. We think utseful also to recall them in order to make
clear and motivate more strongly our choices ord®d Son framework.

In the following, it is important to note that oaim is to be able to choose flexibly the Prograngmin
Model and the Architecture. Of course, for refeeemeasons, the initial setup takes the existing
available Programming Models and Architectures,(T&ERAFLUX Baseline Machine), but we note
(as also clearly stated in D7.1)dwgolve this machine towards the TERAFLUX modelsTherefore
also the simulation environment must reflect thesibility.

2.3.3.1 Setup #1: Physical Machines, MPI Programming Mode

This setup is manly useful for reference. The Rttysical Machine is a node includingd®res. For
simplicity we can assume a fixed number of corespee, say

The simplest solution to scale to 1K cores is tansxt N nodes with (Ccores each one so that
N x Cy equals 1000. We represent this situation in Figuféor simplicity we represent the case of
just two nodes). The simplest off-the-shelf netwoak be Ethernet based.

Each computer runs a lightweight Operating Systm (Linux with MPI libraries).

On top of each OS runs a set of applications caiipatwith MPI libraries. These applications with
MPI allow load balancing of computations among thigerent CPUs, at the expense of software
overhead.

Setup #1

APP + MPI APP + MPI

HDD Image

II
(2]
II
(%]

INTERCONNECTION NETWORK

Figure 4 - Two Physical Machines running MPI appliations

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 21 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

UNISI has some test hosts available, which are @isethis task. BSC has provided access to the
MareNostrum computer for more complex tests (in ldtter case the interconnection network is
obviously much faster, see 2.3.A.1).

In this setup, we can also extract “HDD images”rgHRisk Drive image) and then run those images
as virtual disk of a Virtual Machine (see next Sadt®ns).

Advantages:

« This setup can run both on a real machines (at btasmall scale for tests) AND on the
COTSon simulator as provided at the Month-1 of i(BRAFLUX project.

- ltis arapid configuration to test parallel Apg@timns in a first instance.

- Way to obtain some reference number for, e.g.,@i@ttimes of the running applications or
other characterizations of the applications (se€lB@ a more extensive discussions on the
collected data)

Disadvantages:
« It's not possible to modify the architecture of themachine.

« Taking into account that we aim to flexibly chartge programming model and architecture
(e.g. the dataflow based execution model and atoite proposed in D6.1), this setup may
end up in poor performance when N (number of nothesgases.

» Binds the application to the machine, which is dyabe opposite direction that we want to
follow globally in TERAFLUX: we aim to decouple thgplication (WP2) from the machine
with appropriate Programming Models (WP3), ComjolatTools (WP4) and Execution
Models (WP6).

« The run-time is constantly involved to appropriatethedule the ready tasks/threads on the
available nodes.

« The Physical architecture that is a Distributed Mae not like the general one we aim in
TERAFLUKX for.

2.3.3.2 Setup #2: Virtual Machines running on Several Phyisal Machines, MPI
Programming Model
This setup is also provided for reference. For §uitp, we assume that each Physical Machine is

running exactly one Virtual Machine (each PhyshMalchine could run several Virtual Machines in a
general case).

Here, instead of running the set of applicationstgm of a physical machine, we use a virtual
machines (VMs) such as the one provided by SimNowQBMU. In particular, one important

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 22 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

advantage is that we can use most of the off-tleé-ddehavior of the VM while we can add the
additional instructions (ISA extensions) that weritified in the first 6 months (see D.1).

A more extensive discussion on adding new inswuastin SimNow is described in Section 3.2.1 in
this document. In Section 3.2.3 we also show hoveaveadd custom instructions in QEMU.

HP provided a sample simulation COTSon setup feNimodes case (extension of the basic example
“twonodes.in”). BSC has provided an HDD image (Bagure 5) with a first of Applications (a large
subset of the Applications identified at Month-6 iiddtone M2.1)): the applications are fully
configured to run in the COTSon framework. The Hixge can be directly has a virtual disk of the
COTSon simulation.

In Figure 5, we show an example of this setup. \lge aighlight that, instead of having a single
(host) OS, in this case the Virtual Machine russitvn (guest) OS with a separate address space. The
VM on a given host runs on top of the Host OS thahages this host.

In particular, in this case there are two levelaadress spaces (the guest one and the host ocoe. M
recent x86 based computers have ways to map mficeertly guest to host address spaces (AMD
RVI, Intel VT-x [AMDO08], [INTEL10], [INTELVTX06]). We aim to take advantage of such
mechanism to improve the simulation efficiency. loer, at the current stage we can already use the
COTSon component to run experiments by using twgsiphl hosts (therefore clearly parallelizing
the simulation itself).

To simulate 1k cores we can here use e.g., N Pdiydimsts, each one withy@ores, such that N x\C
=1000.

Setup #2
APP + MPI APP + MPI
HDD Image
NETWORK
SIMNow COTSon m SIMNow
INTERCONNECTION
: NETWORK :
Figure 5 - Two Physical Machines each one running ¥irtual Machine.

Advantages:

e This setup can run both on a real machines (at Easmall scale for tests) and on the
COTSon simulator as provided at the Month-1 of TERAFLUX project.

« It allows us to modify system parameters like aignber of cores in each simulated instance.

- It allows for a parallelization of the simulatiaih¢ several instances are running in parallel on
completely independent hosts).

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 23 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Disadvantages:

« Taking into account that we aim to flexibly charige programming model and architecture
(e.g. the dataflow based execution model and aatoite proposed in D6.1), this setup may
end up in poor performance when N (number of nothesgases.

« Binds the Application to the Machine, which is ethathe opposite direction that we follow
globally in TERAFLUX: we aim to decouple the Ap@iton (WP2) from the Machine with
appropriate Programming Models (WP3), Compilatiaol$ (WP4) and Execution Models
(WP6).

« The MPI run-time is constantly involved to apprapely schedule the ready tasks/threads on
the available nodes.

« The communication and synchronization among theulsition instances adds up to the
Application traffic on the Physical Interconnectiddetwork, thus slowing down the
simulation.

« The guest address space in one node can onlynfassation to the guest address space on
another node through the Physical interconnectietwiirk (operations for the support of the
TERAFLUX Memory Model, such those described in et 3.1.7, 3.1.8, may be
considerably slowdown the simulation due to theyawgpof data buffers).

« We cannot take advantage of RVI/VT-x virtualizatimechanisms across different Physical
Machines.

2.3.3.3 Setup #3: Virtual Machines running on a SINGLE Plysical computer, MPI
Programming Model

This setup is the most used during the first ydaexperiments, and we aim to develop it more

extensively as it provides several advantages,ewhié will progressively release the dependence

from MPI.

In this setup we use just one host Machine. Thehikacessentially provides Shared Memory and a
number of cores (e.g., a CC-NUMA with 48 cores 2668 GB of memory as explained in 2.2.A.2 and
in the experiment of next Sections). The intercatioa Network is completely provided by the
COTSon Mediator. This is shown in Figure 6.

To simulate 1k cores we can here use e.g., N COT&obetter SimNow) instances, each one with
Cy cores, such that N xNG=1000.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 24 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Setup #3

APP + MPI

Virtual
NETWORK

SIMNow COTSon COTSon SIMNow

OS Host

APP + MPI

HDD Image

CPU (1 or more cores)

Figure 6 - One Physical Machine running two VirtualMachine instances that communicate through the

Virtual Network (Mediator).

Advantages:

This setup can run both on a real machines (at Egasmall scale for tests) AND on the
COTSon simulator as provided at the Month-1 of i(BRAFLUX project.

It allows us to modify system parameters like augnber of cores in each simulated instance.

It allows for a parallelization of the simulatiain¢ several instances are running in parallel on
the available cores — load balancing automatigaibyided by the Host OS scheduler).

Possible to avoid copying buffers among instanexsaibse they reside in the Host Shared
Memory Network (operations for the support of tHeRRFLUX Memory Model, such those
described in sections 3.1.7, 3.1.8 may take adgartéthis).

Possibility to take advantage of RVI/VT-x virtuaiion mechanisms across different
Physical Machines (under development).

The communication and synchronization among theulsition instances adds up to the
Application traffic, but could bypass TCP/IP andiavusing the Physical Interconnection
Network.

No need to use the Physical Network.

Disadvantages:

Taking into account that we aim to flexibly charibe programming model and architecture
(e.g. the dataflow based execution model and &toite proposed in D6.1), this setup may
end up in poor performance when N (number of nothesgases.

Tightens the Application to the Machine, which isaetly the opposite direction that we
follow globally in TERAFLUX: we aim to decouple thgplication (WP2) from the Machine
with appropriate Programming Models (WP3), ComjolatTools (WP4) and Execution
Models (WP6).

The MPI run-time is constantly involved to apprapely schedule the ready tasks/threads on
the available nodes.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 25 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

« The Physical architecture that is more natural talehis a Distributed Machine not like the
general one we aim in TERAFLUX.

2.3.3.4 Setup #4: Virtual Machines running on a SINGLE Plysical computer, Flexible
Programming Model on top of a Distributed Machine Guest

In this setup we use a Single System Image OShiewe the illusion of a shared-memory system on
top of the simulated cluster as provided by COTS3dw situation is shown in Figure 7.

Setup #4
999
Figure 7 - VM instances governed by a Single Sourdmage (SSI) OS.
Advantages:

« Allows us to run Shared Memory applications likee@®P ones (can still run MPI as if it
was a single big node).

« Can run both on a real machines (at least at ssualle for tests) and on the COTSon
simulator as provided at the Month-1 of the TERABKL_project.

- It allows us to modify system parameters like augnber of cores in each simulated instance.

- It allows for a parallelization of the simulatiaih¢ several instances are running in parallel on
the available cores — load balancing automatigalhyided by the Host OS scheduler).

« Possible to avoid copying buffers among instanaxsabse they reside in the Host Shared
Memory Network (operations for the support of tHERRFLUX Memory Model, such those
described in sections 3.1.7, 3.1.8 may take adgartéthis).

« Possibility to take advantage of RVI/VT-x virtuaimn mechanisms across different
Physical Machines (under development).

« The communication and synchronization among theulsition instances adds up to the
Application traffic, but could bypass TCP/IP andiavusing the Physical Interconnection
Network.

« Load Balancing for the Application is managed by @uest OS

» No need to use the Physical Network.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 26 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Disadvantages:

« This setup requires the use of a Distributed OSGaest OS (like e.g., Kerrighed
[KERRIGHED10], which offers the view of a unique Mnachine on top of a cluster) or in
general a SSI (Single System Image) OS.

« Relatively poor performance when N (number of npdeseases;

« Partially tightens the Application to the Machiméjich is in the opposite direction in respect
to what we follow globally in TERAFLUX: we aim tcedouple the Application (WP2) from
the Machine with appropriate Programming Models 8)YFCompilation Tools (WP4) and
Execution Models (WP6).

« The underlying Guest Architecture is a “clusterhigh is then more naturally mapped to a
physical Distributed Machine not a generic one likeeaim in TERAFLUX.

2.3.3.5 Setup #5: Virtual Machines running on a SINGLE Plysical computer, Flexible
Programming Model on top of a Shared-Memory Guest

This setup resembles the previous one but nowsegea “standard” OS (like Linux). However, we
need to perform a trick in the OS so that this n@8) which acts as “Master Node” is aware of all
N of the VM instances (i.e., of the all SimNow oERU instances).The Guest therefore appears like
a single node with as many cores as NGy is the number of cores provided by each VM). The
“Slave” nodes just provide the cores in the sansbifm as the Master Cores provides its ones. It is
the Guest OS that provides the illusion of a lasigared memory guest machine to the Applications.
This solution is essentially the one already prepom the Deliverable D7.1. In D7.1 additional
details are provided. Those details will not bedssed here again.

The master core is aware of the precise memory(figpre 8).

Setup #5
APPLICATION

OS Guest

SIMNow
(999)

SIMNow (0) SIMNow (1)

COTSon

OS Host

CPU (1 or more cores)

Figure 8 - One core aware of all the other coresés also D7.1).

This kind of experiments is explored in Section23(DS support). In this case, we add a special
module to the SimNow environment that maps a sharewhory block allocated on the host. This

module presents itself to the guest OS as a pHydssdéce (e.g. PClbar), and the shared block is see
by the guest OS as memory inside that device. fif@mory can then bmapped into the virtual

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 27 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

address space of guest processes using a speciate deriver in the guest OS.
Also note that this setup is the same proposedrid [kf. D71. — Figure 9, reported below in Fig@re

for easy of reading)
TFX APPS LEGACY APPS
(e.g. GROMACS) (e.g. ORACLE DBMS)
LINUX +
TFX scheduler patch

DF-threads L-/S-threads

TAAL (x86-64 ISA &

Simulator “illusion”
(SW should only assum
what seen at this level)

VCPU1 VCPU2 | ., .| VCPUn

X86-64 ISA
cruncher-1

X86-64 ISA
cruncher-2

X86-64 ISA

Simulator COTSon
infrastructure

Figure 9 - The “simulator illusion” already proposed in D7.1 (this is the same as Setup #5).
Advantages:

« Allows us to run Shared Memory applications likee@®P ones (can still run MPI as if it
was a single big node).

« Can run both on a real machines (at least at ssaale for tests) AND on the COTSon
simulator as provided at the Month-1 of the TERABKL_project.

- It allows us to modify system parameters like augnber of cores in each simulated instance.

« It allows for a parallelization of the simulatioin¢ several instances are running in parallel on
the available cores — load balancing automatigaibyided by the Host OS scheduler).

- Possible to avoid copying buffers among instanaxsabse they reside in the Host Shared
Memory Network (operations for the support of tHeERRFLUX Memory Model, such those
described in sections 3.1.7, 3.1.8 may take adgargéthis).

« Possibility to take advantage of RVI/VT-x virtuaimn mechanisms across different
Physical Machines (under development).

« The communication and synchronization among theulsition instances adds up to the
Application traffic, but could bypass TCP/IP andiavusing the Physical Interconnection
Network.

« Load Balancing for the Application is managed by @uest OS
« No need to use the Physical Network.

« No need to use a very different OS like an SSI OS.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 28 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

« The underlying Guest Architecture is a shared mgmmoachine, however thanks to the
availability of a global address space, there i& fdl possibility of evolving the machine in
a more “general one” like the one we aim to evalweing the TERAFLUX project. The
TERAFLUX Execution Model can decouple completelg #rchitecture of the machine.

Disadvantages:

» Relatively poor performance when N (number of ndpdesreases; however, as other
simulator like COREMU [Wang11] already demonstraaduigh speed up in simulations even
with 255 cores, we have good confidence that weicgmmove much the simulation speed
going in a similar direction.

« Requires some patches to the Linux OS; howevemhatt seed to patch anyway the Memory
Manager and the Scheduler in order to properly stpghe TERAFLUX threads (DF+L+S)
as outlined in deliverables D6.1 and D7.1.

2.3.3.6 Setup #6: SINGLE Virtual Machine running on a SINGLE Physical computer,
Flexible Programming Model on top of a Shared-Memoy Guest
As clearly shown in Figure 10, in this setup we stitbte the many instances of several Virtual

Machines (SimNow or QEMU ones) with a single instarof a Virtual Machine (COREMU
[Wang11]).

COREMU [Wangl1] is a scalable and portable fulltegs emulator built on QEMU. Currently,

COREMU supports x86-64 and ARM (MPCore Cortex A&)get on x64_ 86 Linux host system.
COREMU is able to boot 255 emulated cores runnimgik. on one testing machine which has only,
e.g., 4 physical cores with 2GB of physical memory.

Similar to the use of QEMU, in order to provide thming models we need to patch this software in
order to provide an interface to the COTSon. COTSdlh provide the “timing feedback” as
explained in the Section 2.

Setup #6

StarSS APP

Guest 0S

QEMU (COREMU)

Host OS

CPU (1 or more cores)

Figure 10 - One host CPU runs a VM with, e.g., 256ores (COREMU), emulating shared memory
communication.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 29 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Currently, there is the limitation of 255 QEMU iastes. There are some approximations that allow
connecting several QEMU instances via PCI [Gligbra@d the experiment in Section 3.9 (OS
support) are usable also for this setup.

Advantages:

« Allows us to run Shared Memory applications likee@gMP ones (can still run MPI as if it
was a single big node).

- Parallelization is performed by several tricks desthe COREMU (they are in the form of
patched to QEMU).

« Relatively acceptable performance when(@umber of nodes) increases;
- It allows us to modify system parameters like augnber of cores in each simulated instance.

« Possible to avoid copying buffers among instancasabse they reside in the Host Shared
Memory Network (operations for the support of tHERRFLUX Memory Model, such those
described in sections 3.1.7, 3.1.8 may take adgantathis).

» Possibility to take advantage of RVI/VT-x virtuaiion mechanisms across different
Physical Machines (under development).

« The communication and synchronization among theulsition instances adds up to the
Application traffic, but could bypass TCP/IP andiavusing the Physical Interconnection
Network.

« Load Balancing for the Application is managed by @uest OS
« No need to use the Physical Network.
« No need to use a very different OS like an SSI OS.

« The underlying Guest Architecture is a shared mgnmmachine, however thanks to the
availability of a global address space, there is fdl possibility of evolving the machine in
a more “general one” like the one we aim to evalweing the TERAFLUX project. The
TERAFLUX Execution Model can decouple completelg grchitecture of the machine.

Disadvantages:

« Requires modification of the COTSon in order tcerface it with the COREMU (this work
however is quite similar to that one necessamtieriace QEMU).

« We do not know if we are able to overcome the curlienit of 255 cores that are emulated
by COREMU.

« We completely miss the timing interface as provitlgdCOTSon (unless the modifications
pointed out above are implemented).

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 30 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.3.4 The search for “efficient benchmarks/applications”

In order to adequately stress the 1000-core simulatve needed some initial application that: i) do
not present “algorithmic bottleneck” when scaling 1000 or more cores; ii) reasonably load
interconnects and memory (without an “exponentipl@sion” of the dataset). This is very important
to adequately stress the 1000-core simulation. \a@k these kinds of benchmarkefficient
benchmarks/applications”.

While this analysis is performed more systematycadl WP2 (see D2.1), we report also here some
results done for the sake of immediately enabliagrners to test the COTSon framework at a 1000-
core scale.

A first step is detect if there are “algorithmicttbenecks” is to analyze an application using tdis
“cilkscreen” and “cilkview” to detect thparallelism of the application [cilk1, cilk2, cilk3].

Frigo, Leiserson, et al., defined the parallelistee ratio between “work” and “span”. The “work’ i
the total time needed to execute sequentially fakads in the Control-Data Flow Graph that
represents the application. The span is the exectithe of the computation on an infinite number of
processors [Frigo98]. This gives us an upper boondthe available Thread Parallelism in the
application: if there is not enough parallelismtie application, it's not worth to add more cores t
the machine.

In order to do these tests, we currently need &audifferent programming model like Cilk [cilk1,
cilk2, cilk3]. However, this is very easy (Cilk hassically three construct to express parallelism:
cilkk_spawn , cilk_sync , cilk_for) for smaller programs. This topic is also investegl in
WP2 (see D2.1 - sections 3.1-3.3).

For example, in Figure 11 we show the parallelignthe Simple Matrix Multiplication (same as in
2.3.2.2.1). This information tells us that in ord@ve an efficient benchmark we must also consider
an input data set consisting in matrices of sizevali024.

4096 .
2048 —
1024

512
256 P

CILK parallelism
=
(o]

128 1024 8192

Figure 11 — The parallelism detected in a Simple M&x Multiply benchmark for different matrix sizes.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 31 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.4 Knowledge transfer and support model to the partners
(Partners HP Labs, UNISI)

HP Labs made the COTSon simulation infrastructveglable under an open source license (MIT) as
part of Task 7.1 (months 1 — 12) (Knowledge transied Training). The tool is available for all
partners ahttp://cotson.sourceforge.néiP Labs also provided ongoing consulting and sttp all
partners to explain the simulation tool and cusken for each partner’s research objectives

COTSon experiment distribution workflow

As shown in Figure 12 -, the first stage of our kflow development is to implement the TAAL
subcomponents are individually and test them bgigutie COTSon simulator on the HW facilities
locally available to the partners (codenamed “Badig@n” machines). In a successive merging phase
the results are validated so that experiments eacabried out on a simulation facility (codenamed
“TeenagerCotson”) made available at Partner UNMich includes all changes from every partner
(Figure 12). What has been described in this doatimell be running and evaluated on the
TeenagerCotson where all the subsystems must wearklessly.

Starting from January 2010, an initial public releaf the COTSon simulation infrastructure has been
published under the MIT Open Source License. Thisva people from all over the world to freely
contribute to the development of COTSon. A pubpasitory has been set up and is hosted on
SourceForge.net. Subversion has been chosen asvibmn control system for keeping track of all
changes in the source files. Because COTSon idlyagvolving and improving, the suggestion is to
check out the development tree to get both therprmogsources and the extensive set of examples
provided by HP partner.

UNISI hosts an additional local repository for TERAJX internal releases. That is why a local
Subversion repository for the COTSon source codeld and managed by UNISI. All partners have
access to it (same authentication access as the wooKaborative site). The URL is
https://teraflux.eu/svn/tix

Improving the COTSon impact and influencing the stalents

COTSon is written with portability principles in nd. However, it has been tested mainly on
Ubuntu/Debian Linux distribution. Due to a largevadability of expertise on Fedora Linux
Distribution, UNISI has also extended the availpfior the Fedora distribution (specifically Fedor
14). This is also an important factor to enlarge impact of the results of the project. Now, the
sourceforge.net has been updated with also the UddiStribution and can be used very easily on
four very widespread Linux Distributions (Ubuntuiien, Fedora/RedHat).

COTSon is a very powerful tool, and thanks to tHeERARFLUX project COTSon’s usability was
enhanced and therefore its acceptance will be elguarn particular, we are now able to show that it

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 32 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

is relatively easy to scale up the simulation ofafgevice systems, encompassing e.g. 1000 cores
(see also next Sections).

To show the improvement of the usability, UNISI Istisdied the reaction of students at the Faculty of
Engineering of the University of Siena. The studemére readily able to perform their experiments

on different problems such as large databasesiomléted) datacenters and on larger experiments
involving many thousands of concurrent threadstifeumore, the students were also able, to modify
part of the COTSon timers under our guidance.

One of the most important WP7 objectives for UNES&lso to integrate COTSon with QEMU which
is open-source (under GPLv3 license). To cope WiehGPLV3 at the goal is to provide “COTSon
patches for QEMU”, nevertheless this will largatgrease the impact of the COTSon, for example to
simulate other emulated platforms that are diffefiemm the x86-architecture.

Finally, to extend the availability of the COTSan,smaller distribution “COTSon-on-a-stick” has
been made available. Some initial presentationalss been done at popular events like the “Linux-
Day”. This also attracted the attention of othespde of the Linux Community.

Common Infrastructure

WP2/BSC

Baby-cotson #2 ’

WP6/UCY

Baby-cotson #6 ’

WP7/UNISI

Baby-cotson #1 ’

WP3/UNIMAN

Baby-cotson #3 ’

WP4/INRIA

Baby-cotson #4 '

teenager-cotson

s
S~
c
>
c

2
Baby-cotson #5 [

Other Partners/ Baby-cotson #x ’

External Contributors

Partners test their plugins/modules/etc locally or remotely on
baby-machines

Teenager always represents current “stable” TERAFLUX system
* Accessible for simulations to all partners

Figure 12 - COTSon experiment distribution among péners.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 33 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.5 First COTSon simulations (Partners UNISI, HP)

2.5.1 Running examples on SimNow: 1 node with 32 cores

Currently, all the partners received an HDD imagarric64.img http://wiki.teraflux.eu/upload
provided by Partner BSC with some of the applicatianalyzed in the WP2 (see also Deliverable
D2.1).

Below we show some of the output of a COTSon fyditem simulation in the case of a program that
we also tested on the BSC’s MareNostrum supercangaee Section 2.3.3): DMM (Dense Matrix
Multiplier). In this case, the SimNow instance @82 core AMD models (so called “AweSim”
model) with a nominal characteristics of 1600 MHze memory per nodes 8GB of DDR3 at
266Mhz. This example uses a mix of the StarSS aRdl (Ml is still an initial case study — not a final
target for the TERAFLUX system)(Figure 13).

| B4 (63 =EE
File Wiew Special Keyboard Help
EEIEEREEET
Mumeric Display(s) b
i Simulater Stats ————— i IDE Primary Display — 1~ IDE Secondary Display— i~ Diagnostic Ports r Floppy Display—
||9,251.86 Host Seconds || 580,608 master read | 0 master read |00 |00 |00 |00 83 - BO || 0 read
| | e ——— i Ty it T I .
| 712.79 sim Seconds || 202,776 masterwritten| || 0 masterwritten| || A6 (A6 |A6 [A6 B7 -84 ||| 0 writken
: e — et et
| .84 Avg MIPS Aot Mgl ||98,188,800 slave read |. 0 slave read |00 |00 |00 |00 e3-e0
|
|

i!16,191,488 slave writken 0 slave writken

[0.0z mips S Sl oy e
|| DMA/DMA mode ||PIO/PIO. mode

"run_16toni.sh"” 18L, 422C written
froot@node-0000: ~toni mpiexamples/Slave_HDD/modZammpismpss# . run_16toni.sh
Euroben single-CPU benchmark V1.0 (C-version), program modZa

Computer Machine type?
Memory size fimount of memory?
Compiler version Compiler version?
Compiler options Compiler options?
Operating System version Operating System?
Working precision 64 bits

[Run by Name of benchmarker?
Company~Institute Affiliation?

This program is run at: Thu Mar 3 16:08:14 2011

ImodZan: Matrix-matrix multiply test Clm,n) = Alm, D)=B(1,n)
o. of processes = 1

Figure 13 - Dense Matrix Multiplier (DMM) running o n a SimNow instance with 32 cores. Input data are
2 square matrix of size 1024 CSS_NUM_CPUS (=numbef “workers” in StarSS) is equal to 32.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 34 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2.5.2 Running examples on SimNow+COTSon: 2 nodes connecte d by
the simulated Ethernet (Mediator)

We can run all the examples provided in COTSorkigure 14 we show the two nodes example that
it is based on two VMs running a Linux pinging frame node to the other (setup #3, cf. 2.3.3.3).

File Edit View Search Terminal Help
portero@tfx2:~/cotson-0.9.6/src/exanples. toni.2$
portero@tfx2:~/cotson-0.9.0/src/exanples. toni.2s cd ../exanples.toni.3
portero@tfx2:~/cotson-0.9.6/src/exanples. toni.3$ gedit twonodes.in

I~

portero@tfx2:~/cotson-0.9.0/src/exanples. toni.3§ make run_twonodes
Running a cluster of 8 nodes pinging each other

sinulation runs in background -- be patient (a few minutes)

Type <return> to start or <ctrl-c> to abort

using local host

Generating control script twonodes-ctrl
starting mediator VNC: twonodes-2
getting mediator configuration

setting mediator configuration into nodes
starting node

starting node

WATEING wounnnsmsnd We now fire a viewer of the
node 0 G T e e P T T —
node 1
portero@tfx2:~/cotson-0.9.0/src/exanples. toni.3$
nd: vncviewer :5i

executing vncviewer in background: vncviewer :51

[11AMD SimNow Main Window = Public Release

- IDE Primary Displ IDE Sec ondary Display— - Diagnostic Part
it (1626516 master read s [(o0 (o0 [9% [Fe
[2z s ds en en| (00 [0 [00 [o0
| i7savamps Resetava 0 slave read | osravomps [Resetavs [ostaversad | o000 00 o0
e [0 slave written ||| 0 T e [0 slavewritten || 0 slavewritten
|DMA/PIO mode |DMA/PIO. mode PIO/PIO. made

) 56(84) b ~ c 8 04:02:15 UTC 2009
168.10.11)

| 5 10.
:09 UIC 2010 from n2 (192.168.10.12)
fry

uTC 2010 on n2 (192.168.10.12)

nnnnn

Bl (B portero@tfx2: ~/cotso... || [VNC: twonodes-2 || T1 VNC: twonodes-1

Figure 14 — Two nodes ping-ing each other”.

2.5.3 Booting 1000 thousand cores with SIMNow+COTSon — an instance
of the TERAFLUX TBM (32 nodes x 32 cores)

Booting up 32 nodes with 32 processors each

This experiment is a relatively straight forwaragce all the necessary setup is done, but it toak us
considerable effort to be able to manage it for fir& time. First of all we needed an adequate
machine (see section 0). In particular, after yarg the possibility of setting up 32 nodes x 32ex)
we decided to use this node/core configurations Thislightly different from our first idea of 64
nodes x 16 cores, but serves for demonstratinéetisbility of such simulation.

As explained in the Deliverable D7.1 this can reprg an instance of the TBM (TERAFLUX
Baseline Machine), which can be seen as a machaiast which we would like to show the research
improvements that we carry out during the project.

This represents one of the most important Milestoreof the TERAFLUX project (M7.1): all the
partners are not only able to simulate an initial st case in the common framework, but also an
initial test case of an adequate size (1024 cores).

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 35 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We report in Table 2 the memory and CPU utilizationbooting 1024 cores (i.e., 32 nodes with 32
cores per node). Please note that even if ingkigriment only 98 GB are showed as “used”, in
some initial phase of the boot process the menegyest increases up to about 250GB.

Table 2 - Output of the “top” command under the Linux simulation host for the 1024 core experiment.

Cpu(s): 65.3%us 4.3%sy 0.0%ni 30.4%id

Mem: 264677636K 98931216k used 165746420k free 69232k buffers
total

Swap: 67108860} Ok usedg 67108860k freeg 543236k cached
total

= ~ /D¢ EIEE]] = por i toni. |=J[B][x]jetah.in {~/cotson-0.9.0/src/examples.toni.2) - gedit [=Jla)]x
File Edit View Search Terminal Help File Edit View Search Terminal Help uments Help
Cpu(s): 64.8%us, 4.4%sy, 0.0%ni, 30.7%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st [~l|executing vncviewer in background: vncviewer :67 5] e = Po
Mem: 264677636k total, 98054556k used, 166623080k free, 67144k buffers node 31 ndo B Qa
Swap: 67108860k total, 0k used, 67108860k free, 400832k cached |_|executing vncviewer in background: vncviewer :68
executing vncviewer in background: vncviewer :69 ‘

PID USER PR_NI_VIRT RES SHR 5 %CPU %MEM _ TIME+ _COMMAND execut = = = == =
10499 portero 20 © 9802m 2.6 22n R 101 1.0 0:40.08 simnow eemened O VNC; 32nodes-2 |-|(0]1x]know vhy. toni
10523 portero 20 0 9802m 2.69 22m R 161 0: 97 simnow

10535 portero 20 6 9797m 2.6g 22m R 101
10546 portero 20 © 9804m 2.6g 22m R 101
10559 portero 20 © 9797m 2.6g 22m R 101
10572 portero 20 © 9797m 2.6 22m R 101
10586 portero 20 © 9797m 2.6 22m R 101
16625 portero 20 © 9797m 2.69 22m R 101
10639 portero 20 © 9814m 2.6g 22m R 101
10652 portero 20 © 9799m 2.69 22m R 161
10666 portero 20 © 985lm 2.6 22m R 101
10694 portero 20 6 9797m 2.6g 22m R 101
10736 portero 20 © 9858m 2.6 22m R 101
10778 portero 20 © 9835m 2.6g 22m R 101

53 simnow 1) (77 T AwD Simiew el Windew - Public Releage[RIENEIR) ke

File View special Keyhoard Help

(9o 9 a[aola]e
|| Nurneric Display(s)

- Simulator Stats—— (- IDE Primary Display - IDE Secondary Display— - Diagnostic Ports

142,20 Host Secands

0 master read 0 master read

igis; EZ;E:: ;g g :;:m ;gg ;;: ﬁ 121 ;; :::zﬁ RIS | 38.63 sim seconds [0 masterwritten| || 0 masterwritten |[s [46 (a6 (a6 87-84 ||
¥ onds oo |
16834 portero 20 © 9836m 2.6g 22m R 161 85 simnow ‘ 0.57 Avg MIPS Reset Avg i seeien R [00 (00 00 (00 e3-en

684,032 slave written

0 slavewritten

[Fo7#15 moce

10847 portero 20 © 9797m 2.6g 22m R 101
10878 portero 20 © 9856m 2.69 22m R 101
10891 portero 20 © 9848m 2.6g 22m R 101
10487 portero 20 6 9832m 2.6g 22m R 101
10511 portero 20 © 9804m 2.6 22m R 101
10599 portero 20 © 9846m 2.6g 22m R 101
10612 portero 20 © 9797m 2.6 22m R 101
10680 portero 20 © 9799m 2.6 22m R 161
10721 portero 20 0 9797m 2.6g 22m R 161
10750 portero 20 © 9805m 2.6 22m R 101
10763 portero 20 © 9812m 2.6g 22m R 101
10792 portero 20 © 9799m 2.6 22m R 101
10861 portero 20 © 9828m 2.6g 22m R 101
10906 portero 20 © 9799m 2.6 22m R 101
10708 portero 20 © 9797m 2.6 22m R 100
3521 portero 20 © 128m 65m 8540 S 8
3869 portero 20 © 30lm 15m 16m S
3335 nx 20 0 111m 2428 816 S
3989 portero 20 © 20084 1968 944 R

0.00 MIPS

8615 portero 20 0 60872 2Im 1772 §
11545 portero 20 © 26588 3800 1356 R
2274 root 20 011360 684 504 S
2386 root 20 0 135m 25m 4176 S
10781 portero 20 © 24528 7968 2412 S

585 root 20]

:00.52 irgbalance
88 Xorg
36 Xvnc4

30 kondemand/1 oo | ReLEASE key: OtKey1 000004 scancade=nxic /|

0 os

586 root 20 0 6 0 8s 56 kondemand/2 S
588 root 20 @ 8 0 85 26 kondemand/4

594 root 20 0 86 o @s :00.41 kondemand/10

596 root 20 0 6 0 8s 100.96 kondemand/12

597 root 20 0 e 0 8s :00.26 kondemand/13

611 root 20 0 8 05 42 kondemand/27

3525 nx 20 0 37012 2736 2256 S 45 nxssh

16513 portero 20 0 24540 7956 2412 S
18525 portero 20 0 24524 7904 2412 S
16537 portero 20 © 24532 7912 2412 S
10562 portero 20 0 24524 7904 2412 S
18575 portero 20 © 24276 7904 2412 S
portero@tfx2:~/Desktops ~C

6 [.

35 Xvnc4
:00.37 Xvnc4
9:00.35 Xvncd

9.34 Xvncd

1 .{VNC: 32nodes-2

Figure 15 - Snapshot of the simulation of bootingu 1024 cores. (1) COTSon execution of 32 SimNow
instances. Command “top” shows the 32instances ofrffNow. (2) Example of one VNC instance showing
a SimNow instance with an AMD architecture x86-64§SD) of 32 cores (processors). Execution of the
commandcat /proc/cpuinfo | grep processar the SimNow prompt (3) Thirty two VNC instances d@
SimNow. In total there are 32 instances of 32 corpwhich sums to 1024 cores available.

In Figure 15 we show on the left the Lintop command. Théop command provides the tasks that
are being executed. In our case 32 SimNow instameéle center a SimNow instance that executes
the command cat /proc/cpuinfo | grep processor. This command shows that the node has 32
processors. On the bottom of the snapshot, we eaithe other 32 VNC SimNow instances all with
similar environment.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 36 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3. Status of experiments and integration based ont he
COTSon simulation platform

In this Section we describe in more detail theustadf separated experiments from the various
partners and their effort towards the integratiothie common platform.

3.1 Running benchmarks over the platforms under study (Partners
BSC, UNISI)

In order to simplify the distribution of applicatis, and to provide a consistent simulation
environment for all partners, BSC prepared a diskge containing several TERAFLUX reference
applications. The image contains a minimal Linugtatlation as well, which enables booting it in
COTSon (directly with QEMU), and simulating the fm@mpiled applications with no additional
hassle.

The image also includes an extensible managemapt &ar running applications or re-building the,
which is explained on the wiki:

https://wiki.teraflux.eu/bin/view/TERAFLUX/WP2/TFSM +EMS
The image was distributed in a USB stick in the EHNE meeting.
The ISO image is available to the Consortium Pastirethe collaborative wiki site:

https://upload.teraflux.eu/uploads/COTSON_APPS/karm ic64.img.bz2

3.2 Simulation extensions and enhancements (Partners HP, UNISI)

Partner HP Labs worked on two specific areas oéresibns and enhancements of the COTSon
simulator for TERAFLUX: adding custom instructio(fsection 3.2.1) and developing the interfaces
for power modeling (Section 3.2.2). Partner UNISirked on ISA extension in a QEMU (Section
3.2.3).

3.2.1 Mechanism to add Custom Instructions in SimNow an d COTSon
(Partner HP)

In order to provide a simple, extensible and effitimechanism for custom instructions, we decided
to overload the x86-instruction “CPUID”. The “CPUlDnstruction intentionally includes an
implementation-specific and vendor-specific behavioat we can use to extend the ISA with
additional functionality. By default, CPUID readetltAX register and clobbers the EBX, EDX, and
ECX registers. However, by providing appropriatenpder directives, we can also pass and return
additional parameters and read/write simulated nmgmo

The following example () shows how to insert a oosinstruction (called instl) in a piece of guest
code.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 37 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

inline static void __inst1()

/I Force a fence

asm __volatile__ ("mov $0x8000000a,%%rax;\n cpu id;\n":::"memory");
}
foo()

do_something();

__inst1();

do_something_else();

}

Figure 16 - Sample guest code using a custom insttion.

On the simulation side, implementing the custontruttions can be done either in thealyzer
interface (to implement pure functional behaviothivi SimNow) or again theonitor interfaces (to
also affect the COTSon timing analysis or other-horctional behavior). Regardless of the interface,
since SimNow is a binary translating emulator, ishgglvith custom instructions involves

e Decoding and tagging the CPUID instruction during code translation.
e Catching a “special” set of reserved RAX opcodes during code execution.

For example, for thanalyzer interface, this behavior could be implemented sagsimplified) show
in Figure 17.

case ANALYZER_IN_TRANSLATE: {

INTRANSLATESTRUCT *inst = reinterpret_cast<INTR ANSLATESTRUCT*>(pl);

UINT8* opc = inst->pOpcodeBuffer+inst->nOpcodeO ffset;

/l Tag CPUID

if (inst->nOpcodeCount >= 2 && opc[0]==0x0F && opc[1]==0xA2)
inst->nInstructionTag = custom_inst_tag;

break;

}
case ANALYZER_IN_EXECUTETAG: {
UINT32 tag = reinterpret_cast<UINT64>(p1l);
if (tag == custom_inst_tag) {
X8664SMMSTATE regs;
cpu->GetX8664SMMState(®s);
UINT64 RAX = regs.IntegerRegs[15];
switch(RAX) {
case 0x8000000a: // The special INST1 ¢ ode
run_inst1();
break;

default:
break; // Not ours

Figure 17 - Sample "analyzer" code intercepting a gstom instruction in COTSon.

In the execution of run_instl, we can read andewrgisters, operate virtual-to-physical address
translations, read and write simulated memory (jgay®r virtual).

Using functional analyzers is convenient (and reoemded) when implementing complex behavioral
functionality that needs to be extensively testathaut paying the price and burden of a timing
backend. Depending on the specific implementatiequirements, that functionality can then be
migrated to COTSon itself, or a separate commuioicatechanism between the analyzer and

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 38 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

COTSon need to be established. The specificatiothisf last mechanism is something we have
started working on recently and we plan to reldgsthe next milestone.

In COTSon (i.e., when using tinonitor interface), we have built a special “tracer” wrapglass that
achieves a similar functionality. However, impagtiiming also requires correctly inserting events i
the instruction queue so that the custom instrosti&re executed in the correct order with resmect t
the other regular instructions. This also requaesparate “simulation callback” that is only inedk
when simulation is running a timing measurement@anior example, an equivalent COTSon tracer
that achieves the analyzer functionality expresd®x/e would be accomplished by the following pair
of private functions.

void instl_functional(FunctionalState, uint64_t, ui nt64_t, uint64_t, uint64_t,
uint64_t);
InstructioninQueue instl_simulation(Instruction*,ui

cpuid_call c1(0x1234,&instl_functional,instl_simula

nt64_t,uint64_t);
tion); // registration

static char simbuf[20]; // Example of state passed between functional and

simulation

/I The functional part (always executed)
void instl_functional(

FunctionalState f,

uint64_t nanos,

uint64_t devid,

uint64_t a,uint64_t b,uint64_t c)

/I For example, read 20 bytes of the simulated
/I Notice the virtual->physical conversion firs

memory buffer pointed to by 'c'
t

uint64_t vc = Cotson::Memory::physical_address(c);
Cotson::Memory::read_physical_memory(vc,20,simb uf);
/I Do something with it...

}

/I The simulation part (only executed during a samp ling interval)

InstructioninQueue instl_simulation(

Instruction* inst,
uint64_t nanos,
uint64_t devid)

uint64_t a,b,c;

tie(a,b,c)=inst->cpuid_registers();

/I Note that for example we can't call Cotson::

/ functional execution, hence we have no injec

/I memory could have been overwritten in betwee
/I Anything we need has to be collected in the
cout << simbuf << endl; // Example, just print

/I Do something with the instruction, such as i
return DISCARD;

Memory here because we're past
tor available and

n.
functional part (eg. simbuf)
the simbuf out

nvoke the timer

Figure 18 - Example "monitor" code for implementing the behavior of an instruction.

A complete example is available http://cotson.svn.sourceforge.net/viewvc/cotsombhes/tflux-
test/simnow/devel/analyzers/tm-te¢tdr the analyzer interface) and (for the COTSoteiiface) at

http://cotson.svn.sourceforge.net/viewvc/cotsonkifsrc/examples/tracer/The custom

instruction

capabilities have been successfully used by UNIMANIevelop their initial Transactional Memory
prototype.

Deliverable number: D7.2
Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc

Page 39 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2.2 Power Modeling (Partner HP)

In order to show how to collect and manipulate $ation events in such a way that they can be fed to
other analysis (such as power) tools, we develgpeadechanism that connects the results of a
COTSon simulation to the McPAT power and area edion tool
(http://www.hpl.hp.com/research/mcpat/McPAT (Multicore Power, Area, and Timing) is an
integrated power, area, and timing modeling fran&w©PU architectures. It models power, area,
and timing simultaneously and supports comprehensiarly stage design space exploration for
processor configurations ranging from 90nm to 2z2nd beyond. McPAT includes models for the
components of a complete chip multiprocessor, gioly in-order and out-of-order processor cores,
networks-on-chip, shared caches, and integratedamewontrollers. It models timing, area, and
dynamic, short-circuit, and leakage power for eafcthe device types forecast in the ITRS roadmap
including bulk CMQOS, SOI, and double-gate transssto

The cotson2mcpat conversion tool ipel script that queries the COTSon result simulatiatabase
and leverages the McPAT XML interface, with a fldescribed by the following figure.

COTSon e —— cotson2 ey Poxévsgezrea,
Im. ¢ McPAT
(e.g., sqlite) mcpat XML input E> estimates

Figure 19 — Extracting power data in COTSon.

The script generates a McPAT input containing #levant event information (instruction counts,
memory accesses, etc.) that the power analysis tbheh processes to produce an estimate of the
simulation power consumption. The tool is currekigigned to operate psst-mortem, but it would

also be possible to invoke it during simulation (epeatedly for individual simulation interval) to
support generating power profiles over time.

The cotson2mepat script traverses the simulation database using@®e APl and queries about the
configuration parameters, the simulation samplicliese, and the individual events. We expect this
tool to be the foundation for the future TERAFLUXower and energy evaluations. Code and
examples are available lattp://cotson.svn.sourceforge.net/viewvc/cotsonitfsrc/mcpat/

3.2.3 x86-64 ISA Extension in QEMU Emulator (Partner UNI SI)

We used QEMU as our x86-64 emulator and extendedtht the new DTA instructions to support
DTA. The following are the steps to add a new undion to the x86-64 in QEMU:

1. Define a helper function that implements the nestrirction. The helper function will be
called by QEMU to emulate the new instruction whemet is invoked in the program. The
helper function name and input/output parameterdabe defined in the QEMU source file:
gemu/target-i386/helper.n Example:

DEF_HELPER_O(TREAD, void) //output is void and 0 in put parameters ‘

2. Write down the implementation of the helper functiefined in step 2. Add it to the QEMU
source file: gemu/target-i386/op_helper.c, Notd fleu need to attach the prefix “helper_”
before the name of the function. Example:

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 40 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

void helper_TREAD() {

struct frame *f;
struct continuation *cont=get_current();

fprintf(fp_dta, "TREAD("TARGET_FMT_Ix", "TARGE T_FMT_IX")\n", EAX, ECX);
if (unlikely(!cont)){
printf(*fload-ERROR: could not find a current continuation \n");
exit(1);

}

f = &(cont->frame.frame);
if (unlikely(f->__magic !'= SDF_FRAME_MAGIC)) {

EAX);

printf("fload-ERROR: invalid frame at "TAR GET_FMT_Ix"\n", EAX);
exit(1);

} else if (unlikely(ECX >= FRAME_SLOT)) {
printf("WARNING: out of frame exception. F rame "TARGET_FMT_Ix"\n",
exit(1);

}
EAX = f->data[ECX];
stat.fload++;

fprintf(fp_dta, "TReading EAX="TARGET_FMT_lu"\ n", EAX);
prn_ld((int64_t)&f->data[ECX]); //added by Ran ia
}
3. Select an opcode that is not used in the x86-64 I8& whole x86-64 ISA reference that

defines the used and unused opcodes can be fourfdt@t/ref.x86asm.net/coder.html
Example:

FFO4

Add the selected new opcode in the QEMU sourcedienu/target-i386/translate.c inside the
function disas_insn in the case statement as otieeotases right before the “arith & logic”
cases. Replace the first byte with 0x1. Example:

FFO4 become®x104

Add the call to the helper function defined in stdpand 2 in the case body added in step 4
followed by a break statement. Note that you needltach the prefix “gen_helper_" before
the name of the function. Example:

case 0x104: //[TREAD opcode

gen_helper_TREAD();

break;

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 41 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.3 ISA extensions and binary specification (Partners UCY, BSC, INRIA,
UNISI)

In order to support the dataflow execution we psepto have some ISA extensions (Section 3.3.1).
Targeting such instructions is also investigatetViR4 (see D4.3) by Partner INRIA. Together with
Partners BSC, UCY and INRIA, UNISI is investigatiagspecification of the TERAFLUX binaries,
such that they target the Execution Model defimet\MiP6 and initial specification done in the WP7
(D6.1, D7.1). In order to provide examples for tbempilation tool-chain and the necessary
modification in the compiler backend, we show cedamples and provided an “imperfect” but fully
functional tentative compilation tool-chain thatasmodified software components (Section 3.3.2).
Finally, we provide an example to show the first teins of that program on the QEMU virtualizer
(Section 3.3.3).

3.3.1 DTA-Transitional Instructions and Implications on Binaries that Are Targeted
by the Compiler (Partner UNISI)

This specification is also part of the WP6 work. Véport it here for convenience of the reader of
having a self-contained document: Table 3is imprta understand the examples and their output as
simulated by the QEMU. Moreover, this documentdeg to be public, while other Deliverables still
are under restricted release.

Table 3 reports a proposed instruction set exten&iso indicated in D6.1 and D7.1) to support a
DATAFLOW execution model for threads.

Instructions that are not reported in this tableréo the standard x86-64 instructions set *se€lD7
for more details).

In the examples below we consider a couple of gmpbgrams that can be targeted by the compiler.
Initially, a considerable effort has been spentrisher to make these tools running in our interoal-t
chain. We are now able to target fairly complexgpaons: however this effort is mainly intended to
generate some training examples (as agreed atickeffkmeeting with partner INRIA, leading the
WP4) so that the compiler could start targeting tude. Some results of this effort are also replort
in the deliverable D4.3.

The Example 1 (Figure 20) shows a very simple @nogwhere we show how we can generate
parallel code from sequential code in an automatig. The granularity is extremely small in this
case but this is only due to the simplicity of theample and the setting of the compiler to fragment
the program at this level. More general programukhde segmented at the granularity that the
compiler deems appropriate.

The Example 2 (Figure 21) shows a recursive progtaan is compiled to exploit the dynamic
execution model that builds on the DTA Executionddio Similar examples are indicated in the
D6.1, where also DDM is considered. Integratiomieeth DDM and DTA for a common compilation
target has been also initiated and we plan to dstreme more results of this in the common
framework during the next periods.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 42 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Table 3 - DTA-transitional ISA extension. (The sizef the operands is by default 1 machine word (e.§4

bits for x64 platforms)).

Deliverable number: D7.2
Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions

File name: TERAFLUX-D72_v20final.doc

Page 43 of 78

DTA-transitional INSTRUCTION |IMPLIED COMPILER TARGET

Synopsis | TCREATERS], RS2 RD <frame_pointer>= TCREATE (<IP>, <SC>)

Description This instruction allocates the resources (a DF-frafnsizeRS2words and a corresponding entry
in the Thread Scheduling Unit) for a new DF-thread returns its Frame Pointer (FP)RD.
RS1specifies the Instruction Pointer (IP) of theffirsstruction of the code of this DF-thread and
RS2specifies the Synchronization Count (SC).

Notes The allocated DF-thread is not executed itgtBC reaches O.

The TCREATE can be conditional or non-conditionaséd on the value stored in the zero flag.
If the zero flag is set to 1 then the TCREATE walke effect, otherwise it is ignored.

Synopsis | TDESTROY TDESTROY

Description The thread that invokes TDESTROY finishes and f&sfiame is freed, (the corresponding entry
in the Thread Scheduling Unit is also freed).

Notes -

Synopsis | TWRITE RS, RD, offset <frame_pointer> + <offset> = <source_register>

Description The data irRSis stored into the DF-frame pointed toR at the specified offset.

Notes Side Effect The Thread Scheduling Unit decrements the SChefdorresponding DF-thread
entry (located through the FP)SGrp = SGrp-1

Synopsis | TREADoffset RD <destination_register>=<self_frame_pointer>+<offset

Description Loads the data indexed by 'offset' from the SELKFrémt thread) DF-frame infRD.

Notes Assumption the TSU has to load into the register implicitlsed by TREAD the value
<self_frame_pointer>. In a x86-64 implementatior, san reserve RAX for this purpose.

Synopsis | TALLOC RS1 RS2 RD <pointer> = TALLOC (<size>, type>)

Description Allocates a block of memory d@S1words. The pointer to it is stored RD. RS2 specifies the
type (TM, TLS, OWM, FM).

Notes The Thread Scheduling Unit tracks the menatiocated. An implementation can code <type>
in the 2 LSB of <size>

Synopsis | TFREE RS TFREE(<pointer>)

Description Frees memory pointed to IRS.

Notes The Thread Scheduling Unit tracks the merdesflocated.

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

.c (sequential) .x86 assembly

(parallel)

void main() {
inta=4;
intb=4;

int add, mul, c;
FP2=tcreate(add,3)

twrite(FP2|2,a)
twrite(FP2|4,b)

add=a+b;
mul =a * b;

¢ = mul/add;

}

a=tread(FP2|2)
b=tread(FP2|4)

twrite(FP4|2,a+b)

FP1. main

FP3=tcreate(mul,3)

twrite(FP3|2,a)
twrite(FP3|4,b)
[

a=tread(FP2|2)
b=tread(FP2|4)
twrite(FP4|4,a*b)

Node: Frame ID. Thread Name

Frame Allocation Instruction

FP4=tcreate(div,2)

FP4. div

add=tread(FP4|2)
mul=tread(FP4|4)

Other Instructions e= e
tdestroy
y
.x86 assembly (parallel)
main: movq 4, %R8 add: TREAD $2, %R8
movq 4, %R9 TREAD $3, %R9
movq $1, %RAX TREAD $4, %R10
cmpq $1, %RAX movq %RS, %R11
TCREATE Sadd, $3, %R10 addg %R9, %R11
TCREATE smult, $3, %R11 TWRITE %R11, %R10, $2
TCREATE Sdiv, $2, %R12 TDESTROY
TWRITE %RS, %R10, $2
TWRITE %R, %R10, $3
TWRITE %R12, %R10, $4
TWRITE %R8, %R11, $2
TWRITE %R, %R11, $3
TWRITE %R12, %R11, $4
TDESTROY
mult: TREAD S2, %R8 div: TREAD $2, %R8
TREAD $3, %R9 TREAD $3, %R9
TREAD %4, %R10 movq $0, %RDX
movg %R8, %RAX movg %R9, %RAX
mulg %R9 divg %R8
movg %RAX, %R11 movq %RAX, %R10
TWRITE %R11, %R10, $3 TDESTROY
TDESTROY

Figure 20 - Example 1:

“Three-Treads”

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions
File name: TERAFLUX-D72_v20final.doc

Page 44 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

#N = 4 > fib(4 .
main: m0\(/q) $4, %R9 .C (Sequentlal)
movq $1, %RAX
cmpq $1, %RAX int fib(int n) {
TCREATE $Result, $1, %R11 if (n==0)
TCREATE $fib, $3, %R10 return(1);
TWRITE %R9, %R10, $2 else if (n==1)
TWRITE %R11, %R10, $4 return(1);
TWRITE $2, %R10, $6 else
TDESTROY return(fib(n-1)+fib(n-2));
1
void main() {
fib(4);
fib: #N>1, call fib(N-1) and fib(N-2))
#N <= 1, return(1)
TREAD $2, %R9
TREAD $4, %R10 rett: #N <=1, return(1)
TREAD $6, %R11 TREAD $4, %R10
cmpq $1, %R9 TREAD $6, %R11
cmovle $1, %RAX TWRITE $1, %R10, %R11
cmovg $0, %RAX TDESTROY
#N>1
cmpq $0, %RAX
TCREATE $callfib, $3, %R13
#N<=1
cmpq $1, %RAX
TCREATE Sret1, $2, %R13
TWRITE %R9, %R13, $2
TWRITE %R10, %R13, $4
TWRITE %R11, %R13, $6
TDESTROY
callfib: #N>1, call fib(N-1) and fib(N-2) Resultt TREAD $2, %R8
TREAD $2, %R9 #Output result of fib(N) here
TREAD $4, %R10 TDESTROY
TREAD $6, %R11
movq $1, %RAX ;
ompa $1 %RAX fib12: #calculate fib(N-1) + fib(N-2)
TCREATE $fib12, $4, %R15 R EAD gi N
:)
movg O wRi2 TREAD $6, %RI0
subq $1 %R12 TREAD $8, %R
movq $1, %RAX addq %R10, %R11
empa $1 %RAX TWRITE %R11, %R8, %R9
TCREATE Sfib, $3, %R14 TDESTROY
TWRITE %R12, %R14, $2
TWRITE %R15, %R14, $4
TWRITE $6, %R14, $6
#call fib(N-2)
movq %R9, %R12
subq $2, %R12
movq $1, %RAX
cmpq $1, %RAX
TCREATE $fib, $3, %R14
TWRITE %R12, %R14, $2
TWRITE %R15, %R14, $4
TWRITE $8, %R14, $6
#calculate (fib(N-1)+ib(N-2))
TWRITE %R10, %R15, $2
TWRITE %R11, %R15, $4
TDESTROY

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions
File name: TERAFLUX-D72_v20final.doc

Page 45 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.3.2 Preparing the way to compile from C to DTA-x86-64 instruction

extensions

We describe here UNISI's internal tool-chain inteddo show the feasibility of compilation form
(sequential) C into (parallel) DTA-x86-64-assemfliese are the steps of our current tool chain:

1.

2.

3.

The programmer writes the application in the highel language C. This is a sequential
program.

We then run the sequential C program into a comfd€C, originally developed for the SDF
architecture [KaviO1]) that converts it into a DT#termediate representation (essentially the
DTA legacy code — completely x86 unfriendly). Thésthe same application divided into
parallel DF-threads.

We then use a translator to convert the paralleftib€ads into x86-64 instructions. Some

DTA instructions cannot be translated to x86-64ase they are not supported by x86-64.
We extended the x86-64 instruction set with newodps to support these new instructions.
Moreover some tradeoffs had to be done in orderctoeve a sensible result. The translator
then converts the intermediate representations tmo#xisting X86 instructions and to the

new opcodes, which are represent the instructioi@ble 3. The result is an application that
is composed of parallel DF-threads written in x868&ssembly coupled with new opcodes
specifically for DTA-transitional instructions.

We then run the dataflow x86-64 assembly onto tBMQ x86-64-linux emulator to test our
application for correctness. We of course, modiflee QEMU x86-linux emulator to include
the new DTA opcodes and their implementation asxa@nsion to the X86 instruction set.

1. Programmer writes app.
L

Sequential (.c)

|

Parallel assembly (.DTA)

I

Parallel assembly (.X86-64+DTA)

|

QEMU X86-64 + DTA extension

Figure 22 - From sequential to parallel programs wh DTA extensions

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 46 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.3.3 An example of output obtained with the QEMU-DTA E xample
Fibonacci of N = 4 (UNISI)

Here we show the actual output of the first exangfla C program, automatically generate and run
on an actual simulation of the QEMU. These are ypegjiminary results, never published before.

We show them here to demonstrate our ability tothengenerated code on the QEMU.

In the next period we can now both use QEMU ins@a8imNow or reflect our ability of running
such examples in the AMD SimNow. In both caseswiliebe able to extract performance and power
data for our examples.

When the WP4 will produce the GCC based tool chhien we are able to demonstrate the most
complex applications designated in the WP2. Forrtmment this will suffice us for tuning the
architecture in WP6, and the simulation environment

TSU Scheduling: dispatching continuation #0
switch_to: context switch from cont #2 to cont #0
switch_to: prevoius EIP = 000000000040066f
switch_to: new EIP = 000000000040066f
EIP==000000000040066f
TREAD(0000000000000000, 0000000000000002)

EIP==000000000040066f
EIP==000000000040066f
EIP==000000000040067d
TDESTROY/(0) -- but still 0 are running
deleting continuation #0

switch_to: context switch from cont #0 to cont #104 8576
switch_to: previous EIP = 000000000040067d

== TCREATE: 15

== TREAD: 44

== TWRITE: 44

== TDESTROY: 15

Figure 23 - Last line of the Fibonacci(4) program unning on the QEMU DTA-x86-64 (the full output is
reported in the appendix).

This experiment is intended to test and actually mu a Virtual Machine (QEMU) a program
compiled for the DTA-x64 by extending the X86 ISA tnclude the instruction extensions
(TCREATE, TREAD, TWRITE, and TDESTROY - see Tab)e Bhe DTA instruction extensions
are implemented in the X86 ISA in the QEMU emulatbhe program we experiment with is
fibonacci with parameter N = 4. The result is “5” as hightigd in the Figure 23. As shown 14 DF-
threads were created using the TCREATE and 44 reagsframe memory and 44 writes to frame
memory were done using TREAD and TWRITE respectivEhe source code of tlfionacci in C is
shown above as well as the DTA-x86-64 assemblye QEMU emulator takes as input the DTA-
x86-64 assembly dfibonacci and runs it using the x86-64 ISA + the DTA-traisial instruction
extensions.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 47 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.4 Custom devices (Partners UNISI, UCY)

In this Section we present some COTSon implememtaif devices needed overall (NoC, Section
3.4.1), and as needed in WP6 such as Thread Satgdlirit (TSU, Section 3.4.2). More details are
given here on the NoC. The TSU is also describeddre detail in D6.1.

3.4.1 Network on Chip (Partners UNISI)

The modeling of a NoC was not planned from the tr@igig but we have to do it to keep a credible
platform for on-chip simulation of the TERAFLUX ggm. UNISI took the effort of modeling an off-
the-shelf network (namely Xpipes [Bertozzi04]). @furse after implementing the basic model, we
will be more quickly able to refine it with morepgusticated models if needed by the Partners.

Towards this goal, we use COTSon, which is a systeel simulator that models nodes of multi-core
CPUs, networking and I/O. It can run full OS andlrapplication. To address the simulation
challenge COTSon has a modular simulation infrattine that decouples functionality and timing.
COTSon uses AMD SimNow platform simulator for fuooglity and HP Labs timing for timing
simulation. The functional simulation emulates thehavior of all components of the system.
However it needs to verify the correctness of tadggmance results with the timing simulation. The
timing simulation models the timing of all compotgenlt measures performance (according to
metrics) and informs the functional simulation ofyanew performance results. As one can see in
Figure 24 fig. 1 the functional simulator is affedtby the timing simulator, allowing the system to
capture timing dependent affects.

Device

i i o Metrics,
function Functional Timing .
and SIAISten ime fi Simulator time and
Time feedback power

Software (predicted IPC)

Figure 24 — COTSon’s “functional-directed” approach the time-feedback..

As we foresee that TERAFLUX will have a high regdibandwidth, a Network-on-Chip needs to be
used as a communication fabric to connect the nfpogsibly 1000 or more) processing elements;
hence the tools that simulate these complex aathites should contain the simulation infrastructure
of a NoC. This paper covers this subject. It britigssimplementation and results to integrate a NoC
with COTSon platform. The integration enables teddvior emulation of a system connected by a
NoC. The NoC feeds COTSon with performance regldtency, throughput), as depicted in Figure
25.

COTSon Node

Network-on-Chip Mediator

Sourceli),
Destination (i),
Data(i) Address

Translation baceet I Functional Timing |

Performance

Figure 25 - Block Diagram of simulation with COTSonand NoC model.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 48 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The NoC model implementation is an interconnectietwork model inside the COTSon full-system
framework (COTSon). The model consists of a lowelemterconnection networks evaluation and
models the detailed features of the state-of-attvowk. Researchers interested in investigating
different network-on-chip can readily modify the deted microarchitecture.

In Figure 25 one can see some details of the imgadation. COTSon had a network interface to use
Ethernet protocol, with this interface several rodan communicate. The communication is done
according to Figure 26. The MAC addresses of soarm destination are translated to network
addresses, and packets are used to transporthdatayer instead of a NoC (as shown in Figure 26)
COTSon had a full network (with TCP/IP protocol hieh is less efficient). The simulation becomes
heavy for thousands of nodes; in this case we ceflge old network structure for a simpler strugtur
as will be explained in the following section.

The NoC Infrastructure

The NoC is described in C++ and SystemC with a Enaescription of the routers architecture;
hence the simulation of the NoC system is fass(tkan 1ms for a 25x25 mesh and 10000 cycles of
simulation). The NoC model follows the strategydubg COTSon; it is split in functional and timing
simulation as depicted in Figure 26. The functigreat contains the router blocks and the connestion
among them. The functional model is receives thekgta coming from the source nodes and sends
them to the destination nodes. The functional msdalds the packet injection and departing time to
the timing simulation when a performance resufeguested.

Packet(i) in
Packet(i) cut

Performance

Figure 26 - Block Diagram of NoC model.

NoC Functional Implementation

NoC-Router design

We used the NOXIM platform [Noxim09] as a start-pfatform due to its simplicity of router
description. In Figure 27a we show the NoC anddlueer block. The router can have any number of
input and output ports depending on the topology eanfiguration. The major components of the
router - which constitutes the router - are theutripuffer, flow control logic and crossbar. The NsC

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 49 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

modeled in flit-level buffering and these bufferzes can be specified. The routing can be
deterministic or adaptive.

In Figure 27c, we show the router pipeline thatmadel. A head flit on arriving at an input portsti
gets decoded and buffered in the input buffer. Themequest is sent to the routing algorithm
simultaneously, and the output port for this padckefalculated. The switch allocation stage artgga
for the switch input and output ports. On the wingnswitch, the flit moves to the crossbar. This is
followed by link transversal to travel to the nexide. In, e.g. a wormhole routing, body and téi fl
follow a similar pipeline except that they do nettg the routing algorithm block. The tail flit dhe
leaving the router, realizes the path. This desiga chosen because it is fast and of low complexity
while still providing reasonable throughput, makitigem suitable for the high clock frequencies.
Moreover it has the following features: point-togidinks and switches, mesh or torus topology with
configurable size, adaptive or deterministic rogitabgorithm and configurable buffer size.

‘—-—-h

-

%

_‘

™
\\
ter lT tk“ﬁﬁrt

(@)

Implemented in COTSon

Header| BW
fit| ga | SA | LT
Body
tail BW SA LT
Implemented in Noxim flit
(b) (c)

Figure 27 - Block Diagram of: (a) NoC and router, i) network interface and (c) router pipeline.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 50 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

NoC-Network-Interface design

One uses a shared FIFO to communicate COTSon pratisth NoC. Each node to communicate
with NoC has a FRONT-END NI, which creates and/oites in a shared FIFO and a BACK-END

NI. The COTSon node has the FRONT-END NI and tb€ Mas the BACK-END NI. The last one

reads the shared FIFO created by COTSon node. i§;hedch node in COTSon has a FRONT-END
Network interface and in the NoC the correspon@AGK-END NI as illustrated in Figure 27b.

The front-end NI receives from COTSon the followinmigstination addresssource addressdata
size anddata, which are all written in the FIFO. The pseudocddabove belongs to the FRONT-
END NI in COTSon. This FIFO has infinite size ortbe NI cannot stop COTSon framework from
sending data.

=> Pseudocode 1 of FRONT-END NI

1 wvoid writeN (int sour ce, int destination, int dat a_si ze, int
dat a[dat a_si ze]){

2 if FIFO not exist

3 id = source;

4 create FlIFQ(id)

5 FIFQ(id) = destination, data_size, data[data_size]
6 else

7 FIFQ(id) = destination, data_size, data[data_size]
8 endif;

9 return;

10 }

The BACK-END NI checks when there is new data tssést. One checks when the FIFO has new
data (as shown in line 2 of pseudocode 2). WherrtR® has new data it reads the data and sends it
to the local output port of the router. The localtgs responsible for sending data from the BACK-
END NI to the local output port. The pseudocodd@ns the BACK-END NIPayloadis the data to

be transmitted through the NoC.

=> Pseudocode 2 of BACK-END NI

1 wvoid readN (int source){

2 if (!FIFO newdata())

3 id = source;

4 destination = fifo(id);
5 data_size = fifo(id);
6 For i=0;i<data_size; i++
7 payload[i]= fifo(id);
8 el se

9 do not hi ng;

10 end if;

11 return;

12 }

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 51 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

In Figure 28 we show a flowchart of the integrateomong COTSon nodes and NoC model. Each
node in COTSon creates a shared FIFO with the addeess of the NoC. Each node in COTSon
translates the machine address to NoC addresgérfamance results as the data had been stored in
a file; moreover the performance results are rga@®TSon.

Source, Translate

Destination | [99ress B NVIY SN
.Dalg Front-end NI

Read Packet Send data s Storedata &
_ : ta and
FIFO(i) the data NoC performance

NoC ptaliormu NOXIM

Figure 28 - Flowchart of the NoC model integratiorwith COTSon.

NoC Timing Implementation

The timing simulation contains equations to compht average latency. According to the packet
injection and departing time one computes the @terf the NoC. That is, when the timing model is
requested, it receives the inputs during the tifmebservation and computes the average latency as
depicted in Figure 26. Using this strategy is paesio have the average congestion in the NoC.

Inside the NoC platform, in the file NoximNoC.cggete is a set of functions that replaces the NI in
COTSon. They are:

void NoximNoC::create_data(int local_id);

void NoximNoC::write_mem(int source, int destinatio n, int *data);

The functioncreate_data emulated the behavior of the node by creating datavrite mem emulates
the behavior of the NI by creating and writing ifl&O.

The status of this implementation is at an inisii@ge. We hope to finish the NoC implementation in
the next period (Year-2). The result has beenaddseloped according to the requirements in WP5, so
that the WP5 work can later on rely on this COT$8uoplementation while WP5 will continue the
development of their work without interdependenciigvertheless, we might expand the NoC
configuration (adding virtual channels, etc.) hamtand with the WP5.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 52 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.4.2 Thread Scheduling Unit - TSU (Partners UNISI, UCY)

The TSU has architectural block has been describedthe deliverable D6.1. An initial
implementation of the TSU under COTSon has beamted in terms of QEMU extension. The
examples in Section 3.3.3 demonstrate also thafuhetionality has been correctly implemented.
Following the “functional-directed” approach of COdn, the next step is to implement the timing
model.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 53 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.5 External COTSon API extensions (Partners BSC, HP, UNIMAN)

In this Section we describe some of the work towa#B| extensions to allow the low-level control of
the COTSon simulation.

3.5.1 Communication among simulation instances (Partners BSC, HP)

The standard COTSon model assumes that individ@&lnStances communicate through a set of
guest-exposed communication mechanisms and deviteh as (simulated) standard Ethernet.
However, this approach has some important limitegtion light of the TERAFLUX needs to exchange
fine grain messages that should not be loaded téh overhead of complex communication
mechanism such as TCP/IP.

In order to provide a more extensible and flexibemmunication mechanism, we have started
developing the foundation for a back-channel (satioh side) mechanism that enables COTSon
instances to exchange data without going throughBthernet interface. HP Partner developed a
simple example showing how two COTSon instancescoammunicate through a combination of host
and guest commands. This is the foundation to madgbbal non-coherent. The discussion of the
exact mechanism is still ongoing and several aeras are being evaluated. Example code is
available ahttp://cotson.svn.sourceforge.net/viewvc/cotsombnes/tflux-test/messaging/

In Figure 29 we show an example of the operatiomslved in sending a message buffer from one
COTSon instance to another without having to gough the simulated TCP/IP stack. Basically,
when the guest#1 (in COTSon instance #1) want&mo &t message, it issues a special instruction
(using the CPUID mechanism described in sectioril B inform the simulation system about the
location of the message buffer (gbufferl) and whkkgants to send it to. The simulation runtime
uses the buffer and receiving node informationeserve space in the receiving node, then reads the
simulated memory locations (after performing auattto-physical translation) into a local coalesced
buffer (sbufferl), which it transfer using standhabt-to-host communication mechanisms to the host
running the COTSon instance #2. The runtime systerthe simulation of COTSon instance #1
receives the message buffer in its own local bufsduffer2) and then proceeds to write it into a
predefined simulated memory area (gbuffer2). Aftleccessful completion of writing gbuffer2, the
guest #2 can be notified of a new message beirdy rieat processing. The advantage of using this
method, despite the complications of multiple buff®pying operations, is that most of the
processing happens on the simulation side, so wéeap the effect on simulated time under control,
depending on the specific communication mechantbatswe want to model.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 54 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

COTSon COTSon
instance #1 instance #2
[~
sbuffer1 @ = sbuffer2
Alllocate Send Allocgte
and copy @ and cqpy
gbufferl gbutfer2
Guest . Guest
instance #1 Instance
#2

Figure 29 - COTSon communications experiment usingimulation-side channels (i.e., without using
simulated TCP/IP).

3.5.2 Release consistency experiments (Partners BSC, HP)

In the deliverable D7.1, we posed the foundatiantfie Memory Models (FM, TM, OWM, TLS +
Code Memory).

One of the major simulation challenges of modelihg various memory spaces that have been
defined in the TERAFLUX Memory Models deals withpporting a form of mechanism to handover
the control on portion of memory across multipleagiation instances. In order to achieve scalability
to the desired range (1,000 cores), it is not coabée to have a fully coherent single memory
address space that all cores can access. Thisnstlsiog that would be both unrealistic from an
architecture perspective, but also unrealistic frarsimulation point of view. As a consequence,
multiple simulation instances (each running its ogwest operating system or microkernel) and
multiple simulated memory spaces (each under clootrhe individual guest kernel) are a necessity.
At the same time, certain TERAFLUX memory spaceaplire transparent global addressing, so an
important enhancement of the simulation toolsetsdeath how to reconcile the two contrasting
requirements. In order to support that, we havelyaed several alternatives and have started
evaluating some.

While this may appear as some form of Distributbdr8d-Memory (DSM), we need to clarify that

our final goal is to propose mechanisms that carkvem a single-chip (see D7.1) and does not
necessarily involve copying regions of memory frome core to the other of the TERAFLUX

architecture. Supporting DSM over a set of commatmg operating systems is an old and well
understood problem for which several solutions hbgen proposed in the past. In the following
sections, we describe some of the pros and coriseoélternatives we evaluated for COTSon and
TERAFLUX.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 55 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.5.3 A communication mechanism among separated COTSon/S imNow
instances (Partner BSC)

The communication among simulation instances catriggered by means of a special instruction
(namely,CPUID), in the sense that the simulator is able to aapaind act upon, thus extending the
ISA semantics of the simulated TERAFLUX architeetur

The mechanism pre-allocates a copy of the (gues®mary segment on each node
(COTSON/SimNow instances), at a fixed virtual addrerhis mechanism should not be exposed to
the programmer (applications in WP2) but allows TieRAFLUX runtime to explicitly issue data
synchronization to COTSon in the form of acquirese requests, whenever we need to make such
segment modifiable in one of the two separated QGfTiBstances. A simple consistency model can
be implemented: whenever a thread finishes writing shared object, it initiates a release oparatio
that triggers COTSon to copy (broadcast) the neta ¢ta all other copies of the shared segment,
residing in the different SimNow instances. Notattthe data broadcast is executed by COTSon
directly on the host, not the guest, therefore am@sonsume guest cycles.

The proposed implementation uses of acquire/releesaory therefore guaranteeing that a sharable
datum is only valid after it has been acquired, lagire it is released. It is important to note thés
mechanism enables concurrent sharing of read-aathy: if two nodes acquire a released object, they
both share a consistent view. However, if eithatenarites to the object, its consistency is no &ng
well-defined. This should not be a problem in tlemtext of TERAFLUX, as it is assumed that
concurrent writes (or asymmetric reader/writer sittgrare prohibited, and are prevented by either th
dataflow semantics, or the TM mechanism.

The release consistency model could serve as aerlyimd) memory semantic for all the memory
regions defined for the project: tipeivate memory or Thread-Local Storage (TLS) and tHerable
memory or Frame Memory (FM), Owner Writable Memory (OWMInd Transactional Memory
(TM). The triggering of object acquire and releaperations does not require modifications to the
application source code, but can rather be gerelatehe programming model's runtime, compiler,
or TERAFLUX-specific architectural modules, sucte tiM implementation or the TSU. This
mechanism could not be very efficient (due to tl&PAIP+copying), but we will investigate more
efficient mechanism in the next periods.

The following consists, first, of a descriptiontbé API available to guest applications runninghie
TERAFLUX system and, then, a description of howstis implemented to make all simulator
instances keep a consistent view of the system.

3.5.4 Memory model interface

All of the following routines are available to tgeest system through thietf library, most of which
translate into the aforementioned special instomc{CPUID). This library must be first initialized by
invoking thetf_init routine (residing in thd_common.hheader), prior to utilizing any of its routines.

3.5.4.1inter-process “sharable memory” tf_mem)

The functional simulation of memory is providedsfj by thetf_ memsubsystemt{_mem.hheader).
As TERAFLUX applications are intended to behave Ik single multi-threaded application (thus

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 56 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

having a global address space), TERAFLUX-enabledgsses can exploit this mechanism to allocate
a sequential chunk of bytes when the subsystenitialized (controlled by thdF MEM_SIZE and
TF_MEM_ADDRESS environment variables). Thus, all of them willoglite the same amount of
memory at the same address.

In the case we run the COTSon on the some simaldost (cf. Setup #3, #4, #5, #6 — Sections
2.3.3.3, 2.3.3.4, 2.3.3.5, 2.3.3.6), the SimNowanses have an additional benefit for the simufatio

time: this memory is really shared among all thecpeses and in particular with each SimNow
instance. Therefore, for the simulation purposésuemory will be functionally coherent among all

processes running on the same instance. This badtted benefit that the functional simulation will

not need to perform intra-node memory copies.

3.5.4.2 Sharable Memory allocation {f_mm_alloc)

Sharable Memory allocation is provided by ttiemm_alloc subsystem t{ mm_alloc.h header)
which provides two different sets of operations.

On one hand, there are ttfemm_alloc_mallocand tf_mm_alloc_freeroutines that will perform
application-wide dynamic memory allocations andlldeations. These allocations will all happen
inside the chunk of memory managed by thenem subsystem, while regular dynamic memory
allocations (i.e., standardalloc) will appear as private to the process (i.e.catmg “TLS”).

Additionally, there is a pair of routines implemetit using memory consistency operations:
tf_mm_alloc_set_globahndtf_mm_alloc_get globalThese two operations interact with tjebal
pointer. This global pointer solves the “bootstrap probl&hcommunicating the address of the first
dynamic memory allocation to all the processesh dhat any process (usually the master process
before invokingtf_xm_star) can perform a memory allocation and let all thigeo processes know
that address through these two routines.

3.5.4.3Sharable Memory consistencyt{_mm_cons)

Memory consistency is provided by ttiemm_conssubsystemt{_mm_cons.hheader) and provides
all the operations related to memory acquire amebhse, as mandated by the memory consistency
model provided by the TERAFLUX system (cf. D7.1,.D6

On the lowest level, there are four routines (&llbich must refer to memory provided by the
tf_memsubsystem):

» tf_mm_cons_try_shared_acquire (address, siz&Yyies to acquire a chunk of memory only
for read purposes at an arbitrary address andhbifrary length. If any other process has
acquired for write purposes (exclusive acquire)hank intersecting with this one, the
operation will fail and return the address of thstfbyte that could not be acquired. The same
chunk of memory can be acquired for read purpogesuitiple processes.

« tf_mm_cons_try_exclusive_acquire (address, siz8)milar to this routine, performs an
acquire intended for both read and write purposgath the exception that only one slave
process can have the exclusive ownership.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 57 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

» tf_mm_cons_try_upgrade (addressPerforms an upgrade from a shared acquire to an
exclusive acquire, if no other process has thisiklas acquired.

« tf_mm_cons_release (addres®eleases an already-acquired chunk of memory.

As the first three operations might fail and thewiator infrastructure cannot block the executiba o
process until the operation succeeds, there elisethelper routines that loop until the related
operation is successful:

e tf_mm_cons_shared_acquire
e tf_mm_cons_exclusive_acquire

e tf_mm_cons_upgrade_acquire

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 58 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.6 Implementation of Fault Detection Unit (FDU) and its interfaces
(Partner UAU)

The main work of UAU with respect to WP7 will comce
» the implementation of the FDU and its interfacemt(pf Task 7.2) and
» the fault injection and fault tracking (part of ka&3)

In the common TERAFLUX simulator, both tasks requar more advanced implementation
of the TERAFLUX architecture in COTSon and are dhere deferred to a later stage of the
project.

As preparative work UAU has built up knowledge atibe COTSon simulator (Task 7.1) by
learning about COTSon and taking part in COTSomitigs. UAU has participated in a
Web-Seminar given by Vincent Lim (AMD) on 5. No\W1D.

Furthermore, UAU has bought an AMD Opteron-baseditiroare machine (DELL
PowerEdge R815) with 48 AMD cores and 128 GB RAMmme/ for TERAFLUX
simulations — an investment of € 12,976 brought iIMERAFLUX project as additional
resources (not paid by TERAFLUX project). UAU irkd the COTSon simulator on the
multi-core and performed the following initial exprents:

A COTSon node based on SimNow simulating up tor8Lwas running on a single
Opteron core.

* 40 COTSon nodes simulating one core each werengromn 40 Opteron cores.
Communication between the COTSon nodes over theSo@ Thediator was tested
by a simple ping program (cf. Section 2.5.2).

The experiments have built up the know-how of howwork with COTSon such that an
FDU implementation within the COTSon simulator éendone in the second project year as
part of the overall TERAFLUX architecture simulatio

Moreover, as specified in Task 7.3, the fault msdeith the types of faults that have to be
modeled were specified in Work Package 5 (Relighiind are part of Deliverable D5.1.

Preliminary investigations concerned the injectudrfaults via the SimNow based COTSon
cores. It was found out that SimNow contains thgdP@ance Counter registers of AMD
processor cores, but does not update them. So W& that explicit setting of the
Performance Counter registers of SimNow can be @edault injection of core internal
faults in a later stage of the project.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 59 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.7 Data-Driven Multithreading (DDM) (Partner UCY)

UCY created a runtime system for the COTSon platfothat supports the Data-Driven
Multithreading (DDM) model. This system has beeoven to scale up to 12 cores (currently the
largest COTSon setup at UCY) and can execute ariyl Bpplication. The applications tested are the
Blocked Matrix Multiplication and Cholesky. The digptions along with the system can execute on
virtually any BSD with the Karmic Koala image (Ulur9.10). The runtime and the applications
have been bundled together into the image thatupkxaded to the wiki site. These can be found it
in https://wiki.teraflux.eu/uploadinder the folder /WP7/UCy. No extra configuratmmlibraries are
needed in order to have a fully functional system.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 60 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.8 Transactional Memory (Partner UNIMAN)

This section describes work done by UNIMAN withpest to WP7. The main focus of the discussion
is the progress made so far in implementing a fanat Transactional Memory (TM) system
simulation in SimNow.

3.8.1 Transactional Memory Implementation

At Manchester, we have developed a functional TiMugition in SimNow as aAnalyzer module.
The TM module, including source code, can be doaada from SourceForge website under the
project name COTSon http://cotson.svn.sourceforge.net/viewvc/cotsombhnes/tflux-
test/simnow/devel/analyzers/tm-testWe must emphasize here that the functional sittmrd is by no
means complete and we are constantly updating>edding it.

For a description of Transactional Memory, and @abrdiscussion of various design options, readers
are referred to deliverable D3.1. The followingtewts briefly talk about the properties of TM that
are implemented in our functional simulation anel éxtensions that we are planning.

We investigated several TM approaches, and theycamently being developed and tested in the
simulation. In this section we give some detailsutthe work in progress.

A. Data Versioning

A transaction needs to read and write data dutsi@xecution. Modifications made by a transaction
must be done in isolation and must not be visiblether transactions until it successfully compete
Data versioning handles simultaneous storage ohutied (©ld) and uncommittednew) data. There
are two main approaches to implement data vergjorizzy data versioning and eager data
versioning.

1. Lazy Data Versioning

In lazy data versioning, a transaction performsnowy updates by first making a private copy
of the data it wants to modify and then perforims tipdates to the private copy of the data
rather than to iteriginal memory location. Any further reads and writeshat tdata are made
to the private copy. Other transactions can atsmarrently modify the data by making their
own private copies.

When a transaction commits, it updates memory withprivate copies of the data. If a
transaction aborts, it simply discards all itsraté copies.

2. Eager Data Versioning

In eager data versioning, a transaction writeshered data directly i.en place and maintains
undo information in a private log.

If a transaction aborts, it restores all the oadjivalues of the data by copying the values from
its undo log. If a transaction commits, it simgigcards its undo log.

3. Data Versioning in our TM Implementation.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 61 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The current TM implementation in SimNow implemebtth eager and lazy data versioning. This
is a parameter of the system and can be set fimea gxperiment. Most of the testing is being
done with lazy data versioning, as we are curretitlgusing on lazy versioning and lazy
conflict detection, which is explained in the nembsection.

B. Conflict Detection and Access Visibility

All TM systems must provide a conflict detectionainanism in order to check whether conflicts exist
among transactions. If conflicts between transastare detected immediately when they happen, it is
known aseager conflict detection, and if conflict detection is delayed (e.g. detea@edommit time),

it is known adazy conflict detection.

Eager Conflict Detection

In eager conflict detection, conflicts betweemsactions are detected immediately whenever
a transaction declares its intent to modify shatath. By detecting conflicts early the TM
system aborts conflicting transactions and aveidg further loss of computation time or
resource usage by the aborted transaction.

Lazy Conflict Detection

In lazy conflict detection, a transaction cheatts gotential conflicts with other transactions
after it completes the execution of the atomickld his mechanism reduces the overhead of
performing conflict detection on every memory acdut it may reduce resource usage
efficiency by wasting resources in allowing tragi&ms to continue execution even after
conflict has occurred (but not detected).

Conflict Detection Granularity

Conflict detection granularity describes the wstitrage over which hardware TM systems
detect conflict between transactions. Most ofttaedware TM systems userd granularity

or block granularity, where block can be a cache line, page or any atjaibeed-size group

of words. Unlike software TM systems, hardware Hystems can associate metadata
directly with the data at word or block granubgarit

Implementation in the our TM Simulation

Our TM simulation implements both eager and laayflict detection. Like versioning, this is a
parameter that can be set for a simulation. Ourtfonal implementation uses word granularity
but this is just for testing purposes as we propsek level granularity for our future
implementations.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 62 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

C. Contention Management

Conflict between two transactions can be resolvwea@liorting one of the transactions and allowing
the other to continue execution. A TM system tylhjchas acontention manager, which implements
conflict resolution policies in order to decide which transaction to abort. Aan@oncern for TM
system is forward progress, and the contention gemaprovide support to the TM system to
guarantee forward progress.

Contention Management Implementation
In our functional TM implementation we use vemnple contention management policies.

In case of lazy conflict detection, priority issgn to the transaction that is in its commit stage.
Lazy conflict detection has a forward progressrgugee and in case of conflicts at least one
transaction always makes progress.

For eager conflict detection there is an impligiiority based on the unique hardware
identifier of the core on which the transactiorx®cuting. If the core ID is lower, we say its
priority is higher. This is purposefully made simpand arbitrary just to check the correctness
and working of the overall TM implementation.

D. Nested Transactions

A nested transaction occurs when a new transaigietarted by an instruction that is already inside
an existing transaction. The new transaction i@ gabe nested within the existing transaction.

There are three possible ways to handle nesteskittions.

» Nested transactions cdtatten all the transactions into one big transaction.sTisi the
simplest strategy; however, it has the downsidé @htailure in an internal transaction will
cause everything to abort all the way back to thierotransaction, so potentially losing a
large amount of work for a passing failure. Thisois particular concern if the inner
transactions are working with highly contested data

* Nestedclosed transactions. In this situation if the transactoicceeds or a parent transaction
aborts, then the semantics are exactly the sarfer #te flattened transaction, but if a nested
transaction aborts then only that transaction aboxit all the parent transactions as well. In
addition as this implicitly has independent reats der each level of the transaction, then
collisions because of earlier nested transactioills net result in the whole transaction
aborting. This is probably the most intuitive foafhnested transactions.

» Nestedopen transactions. In this version, once a nested aitsn commits successfully, all
its changes are permanent, so they will not be nedbthe parent transaction later aborts,
and visible to other transactions. Open nestingstaetions can be thought of as being
completely independent. This will make transactieeigy hard to reason about, and should be
avoided.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 63 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Implementation of Nested Transactions

Our initial TM implementation flattens all the med transactions. However, we plan to
extend the system to support closed nested trémss.c

Benchmarks

For testing purposes, we are running our own tes¢s; as well as some of the STAMP benchmarks
(Bayes, Genome, Kmeans, ssca2, Vacation), simglagnto 4 cores. We are able to run all these
tests correctly in the COTSon environment thatuidek our extensions.

TM Constructs

In our current COTSon implementation we only allwwe keywords for transactions.

Transaction begin

__tm_begin() ‘

and transaction end

__tm_end() ‘

These mark the span of a transaction. All memogesses within the span are treated as
transactional.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 64 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.9 OS support for TERAFLUX (Partner Microsoft)

3.9.1 Fast Simulation Exploration through Emulation Techn iques (MSFT)

Before starting simulating the system, using theT&@n simulation environment, it is important to
understand how the operating system together Wwiemew S/W environment will be executed on the
future “real machine”. To fulfill this task we agsa that

1. The system is built out of compute nodes, each nuaecontain, e.g., 16 cores.

2. At this point of the research we assume that tisesesingle node that runs Linux. We term
that node “Service Node” or “Linux Node”. Pleasaenthat since each Node may containl6
cores it is unlikely that the entire node will lzailty.

3. We also assume that all other nodes in the systeendedicated to run a “TERAFLUX code”
and so we term them “TERAFLUX Nodes” " (also nhami@dxiliary Cores” in D7.1).

4. In the future we plan to allow soft partitions beem the number of nodes that runs Linux and
the number of nodes that runs TERAFLUX Code so aveahange it at “boot time”.

5. A TERAFLUX node is controlled by a pico-kernel ([44KA10] or NaNOS [Ayguade07],
[NANOS10], [Teruel07])) which is in charge of:

a. Checking when tasks are ready to be executed
b. Copying parameters
c. Scheduling tasks for execution

d. Checking the health of the node and its relativeedpso that the global scheduler
could do the load balance work properly.

Routing operations such as exceptions, system eaits1/O operations (as these
operations cannot be handled by the TERAFLUX notiebe executed on the Linux
node and their results to be copied back to a eefilhed buffer.

e. Allowing code on any node to access the virtuakesislspace which is common
between all the physical nodes.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 65 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Cores View Memory View

Figure 30 - Multi-core representation with Linux and L4.

During the first period of our simulation work weer focused on running the system on a real HW
(8 way AMD machine which is partitioned between thervice cores that run Linux and the
TERAFLUX cores that runs L4), or using virtual pegsors on top of the virtualization layer.

Linux F13 (Host)

Kernel space

IVSHMEM

Figure 31 - QEMU instances with Linux connected though IVSHMEM

We implemented a system that can run instanceeof4hpico-kernel per physical node (Figure 30).
Such a kernel represents the work a TERAFLUX nedining. We also implemented a service node,
running a Linux OS on a single core (Figure 31).diferent cores share the common virtual address
space, while the physical address space may omotagupport full coherency.

At that point of time, in order to allow the simtita to include large number of cores (nodes), we
allow each core, together with its own OS, to rumtop of a virtual machine, so the number of
simulated cores we are simulating is not limited.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 66 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

We also build a layer of global virtual addresscepthat emulates the hardware that will allow the
access of the processor to local and remote meresources (we have a working prototype, but the
work is still “work-in-progress”). We also startéal investigate other alternatives for L4, suchhes t
use of the NANOS kernel which is part of the Stapg8ect. The advantage of this system is that it i
very small, however it does not support I/O, siggland similar low-level- simulation primitives
which are essential for the connection betweemit@kernel and the Linux.

mmap
region

mmap
region

pCl Kernel

PCI Kernel

Device Device

QEMU QEMU
Userspace Userspace

mmap mmap

Host

Figure 32 - QEMU maps a shared-memory area into R while it is exposed to the user as a PCI BAR.

The shared memory among the different nodes iseimphted as a “mapped PCI memory” ” (in this
we follow a similar approach used in the Nahanwijgmt [Macdonnel10]). By doing that, we can
allow on one hand, to deal with local memory ofreaocde and on the other hand, to emulate the
ability to access any virtual memory remotely. Therent version even requires doing some “fix-
ups” when accessing the remote memory so that wesicaulate the use of layer of message passing
between the nodes to maintain SW consistency. dpysoach represents a lower level approach for
implementing a communication method among QEMUainsgs (Figure 32, Figure 33). QEMU has
been chosen as open source alternative enginenftddsv for the COTSon, as described in the WP7
Objectives.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 67 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting

Grant Agreement Numbe249013
Call: FET proactive 1. Concurrent Tera-d

evice Cotimuu(ICT-2009.8.1)

+ Ownership (L4/Linux)
* Ready flag

* Type

* Length (bytes)

* Data

* Fixups (optional)

+ Ownership: who currently uses the buffer

» Ready: Signals the buffer is ready to be
transferred to the other side (inverse
owner)

* Type: The message type

» Data: simply the raw data (according to type)

« Fixups: A list of fixups in case we pass pointers

Figure 33 -

As next step, we would like to emulate th
the Service node so that we could actuall

Memory representation.

e impletagan of remote 1/O from a TERAFLUX node to
y run RAELUX code on a TERAFLUX full system.

As soon as we complete this part, we intend to ntlegemechanisms we developed on the stand alone

simulator to the COTSon so that it could

be integgtavith all other activities the team is doingtekf

doing that we will start implementing fault detectj injection and handling mechanisms.

Please note that this part of the research is melaa far as we know was never done before. So we

hope to be able to publish papers on it.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions
File name: TERAFLUX-D72_v20final.doc

Page 68 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4. Conclusions

All the planned activities WP7 started and we sssfidly demonstrated the feasibility of simulating
full-system at the scale of 1000-cores.

All the partners were involved in this Workpacka§eme partner like CAPS, THALES have started
using the facilities at INRIA and are preparingstep up their contribution in the remainder of the
project.

On the scientific side, we believe we are on a guatth to show that it is possible to adopt a défifier
execution model based on dataflow at thread lemsd, our initial experiments targeting a slightly
modified x86-64 platform are encouraging us.

The Thread Scheduling Unit (TSU) lies at the he&the new architecture: an initial implementation
in the simulation framework demonstrates its falisiband interoperability with a futuristic Tera-
device platform. The integration with a Fault Déie Unit (FDU) will also start soon.

The current TERAFLUX simulation environment allow to model the TERAFLUX architecture,
considering for example interesting research doasttowards 3-D stacked chip/package consisting
of 1000-core, a NoC, a memory subsystem, withoglenting the necessity of running a full
operating system and runtime to govern the I/Oadggsoftware, and other system processes (Figure
34).

AC=Auxiliary Core
SC=Service Core
I0x=1/0 or SC Core

Electronic
ACK Msg

AC ACACACAC ACACAC
AC ACACACAC ACACAC
AC ACACACAC ACACAC
AC ACACACAC ACACAC
ACAC ACACAC ACACAC

101

AC ACACACAC ACACAC q . .
disk =
I 5 e e A TSU=Thread Scheduling Unit

AC AC AC AC AC ACACAC 102 Core FDU=Fault Detection Unit
AC AC ACAC AC ACACAC (Keyboard)
AC AC AC AC AC AC ACAC
ACACACACAC ACACAC 103
ACAC ACACAC AcAcAc (NIC)

(PE,L1S,L2S-partition)

Uncore
(TSU/FDU, NoC-tap, ...)

Figure 34 - Thinking at the simulation of a FutureTera-device System.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteffixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 69 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5. References

[AMDO08] AMD White Paper, Virtualizing Server Workdals-Looking Beyond Current Assumptions, 2008.

[Argollo09] E. Argollo, et al. “COTSon infrastructairfor full system simulation.” Operating Systems Rev43, 52—-61,
2009.

[Asanovic09] K. Asanovic, et al. “A view of the f@dliel computing landscape.” Commun. ACM, 52(10):56-8J09.

[Austin02] T. Austin, E. Larson, and D. Ernst, “Sit@Scalar: An infrastructure for computer systemdeiimg,” IEEE
Computer, vol. 35, no. 2, pp. 59-67, 2002.

[Ayguade07] Ayguadé,. E.., . A.. Duran, . J.. Hogfer, . F.. Massaioli, and . X.. Teruel, "An Expegntal Evaluation of
the New OpenMP Tasking Model", Lecture Notes in CotapScience: Proceedings of the 20th International
Workshop on Languages and Compilers for Parallel @oimg, vol. 5234: Springer, pp. 63-77, October,
2007.

[Beckman09] N. Beckman et al. , “Graphite: A Disttibdl parallel Simulator for Multicores”, Computer &ote and
Artificial Intelligence Laboratory Technical Repdvtassachusetts Institute of Technology, MIT-CSAIL-TR
2009-056

[Bellard05] F. Bellard, “QEMU, a fast and portablendynic translator,” in ATEC'05: Proc. of the USENIXnAual
Technical Conference 2005 on USENIX Annual Techn@ahference, Berkeley, CA, USA, 2005.

[Bellens06] Pieter Bellens, Josep M. Perez, Rosa MiaBaud Jesus Labarta, "CellSS: A Programming Magletife Cell
BE Architecture”, in proceedings of the ACM/IEEE SC €wence, 2006.

[BertozziO4] D. Bertozzi et al. “Xpipes: A network-ahip architecture for gigascale system-on-chip’agdzine, IEEE,
Vol. 4, issue 2. 2004.

[Binkert06] N. L. Binkert, et al. “ The m5 simulatdviodeling networked systems.” IEEE Micro, 2006.

[Brewer92] E. A. Brewer, C. N. Dellarocas, A. Colbrodnd W. E. Weihl, “Proteus: a high-performance lara
architecture simulator,” in SIGMETRICS'92/PERFORMANCE®2! Proc. of the 1992 ACM SIGMETRICS
joint international conference on Measurement amdieting of computer systems, New York, NY, USA,
1992, pp. 247-248.

[BSC10] www.bsc.es, December 2010.

[Bunting06] Trina Bunting, Wayne Kimble, “IBM Blade CemntJS21 Technical Overview and Introduction, high-
performance blade server ideal for extremely détRR€ clusters”, IBM.com/redbooks, March 2006.

[Chen09] J. Chen, M. Annavaram, and M. Dubois, “B&m: A Platform for Parallel Simulations of CMPs G@MPs,”
SIGARCH Comput. Archit. News, vol. 37, no. 2, pp. 28-2009.

[Chidester02] M. Chidester and A. George, “Paralilglutation of chip-multiprocessor architectures,” ACMans. Model.
Comput. Simul., vol. 12, no. 3, pp. 176—-200, 2002.

[Chiou07] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil,.\Reinhart, D. E. Johnson, J. Keefe, and H. Angef®RGA-
Accelerated Simulation Technologies (FAST): Fast|-Bystem, Cycle-Accurate Simulators,” in MICRO '07:
Proceedings of the 40th Annual IEEE/ACM InternatioBgmposium on Microarchitecture, 2007, pp. 249—
261.

[Chiou09] Derek Chiou, Hari Angepat, Nikhil A. Patignd Dam Sunwoo, “Accurate Functional-First MultiEo
Simulators”,|IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 8ON2, JULY-DECEMBER 2009

[CHU77] YAOHAN CHU, "Direct-execution computer architure”, ACM SIGARCH Computer Architecture News
Homepage archive, Volume 6 Issue 5, December 1977

[Chung09] E. S. Chung, M. K. Papamichael, E. NudhiaJ. C. Hoe, K. Mai, and B. Falsafi, “ProtoFlexaiards Scalable,
Full-System Multiprocessor Simulations Using FPGASCM Trans. Reconfigurable Technol. Syst., vol. 2,
no. 2, pp. 1-32, 2009.

[cilk1l] "Intel Flexes Parallel Programming MuscleslPCwire (2010-09-02). Retrieved on 2010-09-14.

[cilk2] "Parallel Studio 2011: Now We Know What Hagned to Ct, Cilk++, and RapidMind", Dr. Dobbs Jour@&i10-09-
02). Retrieved on 2010-09-14.

[cilk3] Robert D. Blumofe, Christopher F. Joerg Brade. Kuszmaul, Charles E. Leiserson, Keith H. Randait Yuli
Zhou. “Cilk: An Efficient Multithreaded Runtime Systé, Proceedings of the Fifth ACM SIGPLAN

[Conte 96] T. M. Conte, M. A. Hirsch, and K. N Memsz “Reducing State Loss for Effective Trace Sangplirf
Superscalar Processors”, Proceedings of Interrati@anference on Computer Design, 1996, IEEE Computer
Society, October 7-9, 1996, Austin, Texas, USA 4§8-477

[Cooper09] Peter Cooper, "Beginning Ruby, from Novizdtofessional”, Second Edition, Apress, ISBN-13:978302-
2363-4, Springer 2009.

[Das94] S. Das, R. Fujimoto, K. Panesar, D. Allisand M. Hybinette, “GTW: A Time Warp System for & Memory
Multiprocessors,” in WSC '94: Proceedings of theh26bnference on Winter simulation, 1994, pp. 1332—
1339.

[Dave06] N. Dave, M. Pellauer, and J. Emer, “Impéeing a functional/timing partitioned microprocassimulator with
an FPGA,” in 2nd Workshop on Architecture ReseasihgiFPGA Platforms (WARFP 2006), Feb 2006.

[Dickens93] P. M. Dickens, et al. “A distributed mery lapse: Parallel simulation of message-paspitograms.” In
Workshop on Parallel and Distributed Simulatior93.9

[Etsion10] Yoav Etsion, et al. Implementing a Glb8hared-Memory in COTSon, TERAFLUX, internal repidv 2010.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 70 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[Flanagan08] David Flanagan, Yukihiro Matsumotoh&TRuby Programming Language”, O' Reilly Media, ISBR:978-
0-596-51617-8, 2008.

[Frigo98] Matteo Frigo, Charles E. Leiserson, Kekh Randall, “The implementation of the Cilk-5 muititaded
language”, PLDI '98 Proceedings of the ACM SIGPLA®B& conference on Programming language design
and implementation ACM New York, NY, USA 1998

[Gibeling06] Greg Gibeling, Andrew Schultz, and #rsAsanovic, The RAMP Architecture & Description riguage,
WARFP, Austin, TX, March 2006

[Giorgi97] R. Giorgi, C.A. Prete, G. Prina, L. Ricdar*Trace Factory: Generating Workloads for Tr&mésen Simulation
of Shared-Bus Multiprocessors", IEEE Concurrency N3892-3063, Los Alamitos, CA, USA, vol. 5, no. 4,
Oct. 1997, pp. 54-68, doi 10.1109/4434.641627

[Giorgi08] R. Giorgi, Z. Popovic, N. Puzovic, "Impfenting DTA support in CellSim", HIPEAC ACACES-2008,
ISBN:978-90-382-1288-3, L'Aquila, Italy, July 20Q&. 159-162.

[Gligor10] Marius Gligor, Nicolas Fournel and FréidéPétrot ,"Using Binary Translation in Event Driv&imulation for
Fast and Flexible MPSoC Simulation”, Tima France

[Gomperts10] Roberto Gomperts, “SGI Technical Brigfat CESCA Altix UV ", December 2010

[Heinrich02] Joseph Heinrich , “Origin and Ony2 Bhg of Operations Manual”,007-3439-002 Silicon Grag.

[Hughes02] C. J. Hughes, V. S. Pai, P. RanganatmhSaV. Adve, “Rsim: Simulating shared-memory riputicessors
with ilp processors,” Computer, vol. 35, no. 2, $9-49, 2002.

[lerusalimschy06] Roberto lerusalimschy, "PrograngrimlLua”, Lua.org, ISBN 85-903798-2-5, 2006

[lerusalimschyO6b]Roberto lerusalimschy, Luiz Hendg de Figueiredo, Waldemar Celes, "Lua Referenceuahl”,
Lua.org, ISBN 85-903798-3-3, 2006.

[INTEL10] Intel White Paper, Implementing and Exgarg a Virtualized Environment, 2010.

[IntelVTXO06] Intel Virtualization Technology Volum&0 Issue 03 Published August 10, 2006 IS5864864X DOI:
10.1535/itj.1003.01

[Jefferson85] D. R. Jefferson, “Virtual time,” ACM dmsactions on Programming Languages and Systemg, vio. 3, pp.
404-425, July 1985.

[Kanaujia06] S. Kanauijia, I. E. Papazian, J. Chaiabgrand J. Baxter, “FastMP: A multi-core simutetimethodology,” in
MOBS 2006: Workshop on Modeling, Benchmarking andusation, June 2006.

[Keller10] Rainer Keller, David Kramer, Jan-Philipfeiss, “Facing the Multicore-Challenge, Aspects efnNParadigms
and Technologies in Parallel Computing”, LNCS 631irir®er-Verlag Berlin Heidelberg 2010, ISBN 0302-
9743.

[KERRIGHED10] Website (December 2010): http://wwwrkghed.org/wiki/index.php/Main_Page

[kimble06] Trina Bunting, Wayne Kimble, “IBM Blade Cem JS21 Technical Overview and Introduction, high-
performance blade server ideal for extremely détRR€ clusters”, IBM.com/redbooks, March 2006.

[Knuth97] Donald Knuth, “The art of computer progmaing”, 1997 Volume 1, 3rd edition, Page 202.

[Krasnov07] Alex Krasnov, Andrew Schultz, John Wawrek, Greg Gibeling, and Pierre-Yves Droz, RAMP Blde
Message-Passing Manycore System In FPGAs, Progsedaf International Conference on Field
Programmable Logic and Applications, Amsterdam, Nieéherlands, August 2007.

[Kyriacou06] Kyriacou et al, “Data-Driven Multithagling Using Conventional Microprocessors”, Paralell Distributed
Systems, IEEE Transactions on Oct. 2006 Voluridsgue:10 On page(s): 1176 - 1188 ISSN: 1045-9219

[LAKA10] Website (December 2010): http://l4ka.org/

[Li09] Sheng Li, Jung Ho Ahn, Richard D. Strong, BayBrockman, Dean M. Tullsen, Norman P. Jouppi , PM@: An
Integrated Power, Area, and Timing Modeling Frameuwfor Multicore and Manycore Architectures”, ACM
MICRO 41, 2009

[Lugones09] Diego Lugones, Emilio Luque, Daniel i@, Juan C. Moure, Dolores Rexach, Paolo FabaroBamiiel
Ortega, Galo Giménez, Ayose Falcon, “Initial stedd¢ networking Simulation on COTSon”, HP-Laboratsri
HPL-2009-24.

[Lv10] Huiwei Lv, Yuan Cheng, Lu Bai, Mingyu Chen, Dgmui Fan, and Ninghui Sun, “P-GAS: ParallelizingCgcle-
Accurate Event-Driven Many-Core Processor Simulatsing Parallel Discrete Event Simulation”, Workshop
on Principles of Advanced and Distributed SimulatfBADS), 2010 IEEE

[Macdonell1l0] Cam Macdonell, Nahami project: A slhrenemory interface for KVM, http://www.linux-
kvm.org/wiki/images/e/e8/0.11.Nahanni-CamMacdonef|. pttp://gitorious.org/nahanni, December 2010.

[Magnusson02] P. Magnusson, M. Christensson, JldeskiD. Forsgren, G. Hallberg, J. Hogberg, F. fans A. Moestedt,
and B. Werner, “Simics: A full system simulation tidam,” IEEE Computer, vol. 35, no. 2, pp. 50-58pbFe
2002.

[Martin05] M. M. K. Martin, D. J. Sorin, B. M. Beckma, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moord. D.
Hill, and D. A. Wood, “Multifacet’'s general execaoti-driven multiprocessor simulator (GEMS) toolset,”
SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92-8ovember 2005.

[Mattson10] T. Mattson et al., “The 48-core SCC pesee: the programmer’s view”, SuperComputing comfege Nov.
2010.

[Mattson10b] T. Mattson (interview by Joab Jacks6imtel: 1000-core Processor Possible”, PCWorldyN2D10.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 71 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[Mauer02] C. J. Mauer, M. D. Hill, and D. A. WoodulFsystem timing-first simulation. In SIGMETRICS '0Proceedings
of the 2002 ACM SIGMETRICS international conference Measurement and modeling of computer
systems, pages 108-116, New York, NY, USA, 2002. ACM

[Mazalan08] Mazalan, L.; Sufian, RM.R.R.A.; AzikK.A.; Rohmad, M.S.; Manan, J.-l.A.; “Expenee with the
implementation of AES256 on L4 microkernel usingml (BID) environment” Information Technology,
2008. ITSim 2008. International Symposium on, A2@08.

[Mazalan08] Mazalan, L.; Sufian, R.M.R.R.A.; Aziz,KAA.; Rohmad, M.S.; Manan, J.-l.A.; “Experienaéh the
implementation of AES256 on L4 microkernel usingml (BID) environment” Information Technology,
2008. ITSim 2008. International Symposium on, A2@08.

[Miller10] Jason E. Miller, Harshad Kasture, Geoigarian, Charles Gruenwald IIl, Nathan Beckmann, Gbpker Celio,
Jonathan Eastep and Anant Agarwal, “ Graphite: striibiuted Parallel Simulator for Multicores”, HPC/#;1
Proceeding of the 16th International Symposium arhHPerformance Computer Architecture, January 2010.

[Monchiero09] M. Monchiero, J. H. Ahn, A. FalcobD. Ortega, and P. Faraboschi, “How to simulate 1@0fes,”
SIGARCH Comput. Archit. News, vol. 37, no. 2, pp. 18-2009.

[Mukherjee0Q] S. S. Mukherjee, S. K. Reinhardt, Bs&f, M. Litzkow, M. D. Hill, D. A. Wood, S. Huskederman, and J.
R. Larus, “Wisconsin Wind Tunnel II: A fast, portalparallel architecture simulator,” IEEE Concurrenayl.

8, no. 4, pp. 12-20, Oct—Dec 2000.

[MVMPC10] http://www.microsoft.com/windows/virtualgs, December 2010.

[Myri10] www.myri.com, October 2010.

[NANOS10] Website (December 201@)tp://nanos.ac.upc.edu/content/nanos4

[Noxim09] Noxim: network-on-chip simulator Website http://sourceforge.net/projects/noxim/

[Penry06] D. A. Penry, D. Fay, D. Hodgdon, R. Wels, Schelle, D. I. August, and D. Connors, “Explaitiparallelism
and structure to accelerate the simulation of chigti-processors,” in HPCA'06: The Twelfth Interratial
Symposium on High-Performance Computer Architectied, 2006, pp. 29—40.

[Perelman 03]E. Perelman, G. Hamerly, M. V. Biesbkoid'. Sherwood, and B. Calder, “Using SimPoint facérate and
Efficient Simulation”, Proceedings of the 2003 ACMIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, ACM$rdune, 2003, San Diego, California, USA, pp.
318-319

[Perez08] Josep M. Perez, Rosa M. Badia and Jesumthal?008. A Dependency-Aware Task-Based Progragimin
Environment for Multi-Core Architectures. In Proceegs of IEEE Cluster 2008.

[Prakash98] S. Prakash and R. L. Bagrodia. “Mpi-gising parallel simulation to evaluate mpi progrdnhs.WSC '98,
1998.

[Raghav10] Raghav, S.; Ruggiero, M.; Atienza, D.; ®i@.; Marongiu, A.; Benini, L.;” Scalable instruatiget simulator
for thousand-core architectures running on GPGPW8gh Performance Computing and Simulation (HPCS),
2010 International Conference on Issue Date: J&2020-July 2 2010 page(s): 459 - 466 , Print ISBRB-
1-4244-6827-0

[Refsgi] www.sgi.com, October 2010

[Reinhardt93] S. K. Reinhardt, et al. “The Wiscongiimd tunnel: Virtual prototyping of parallel compus.” Sigmetrics
Conference on Measurement and Modeling of Computsie8ys, '93.

[Renau05] J. Renau, et al. “SESC simulator,” 200%ilable online at: http://sesc.sourceforge.net.

[Rosenblum95] M. Rosenblum, S. Herrod, E. Witchet] &1 Gupta, “Complete computer system simulatione BImOS
approach,” IEEE Parallel & Distributed Technolo@ystems & Applications, vol. 3, no. 4, pp. 34—-43niAfr
1995.

[SIMNow09] AMD SimNow™ Simulator 4.6.1 User’'s MaaluRevision Date 2.13 November 2009

[Spm10] SuperMicro, “H8QG6+-F H8QGIi+-F USER’'S MANUARevision 1.0”, www.supermicro.com, 2010

[Teruel07] Teruel, X. Martorell, A. Duran, R. Ferreand E. Ayguadé, "Support for OpenMP tasks in [damd",
Proceedings of the 2007 conference of the Centrédeanced Studies on Collaborative Research: IBM, pp.
256-259, October, 2007.

[top500] www.top500.0rg, October 2010.

[UNISIM10] http://unisim.org, December 2010.

[Vantrease08] D. Vantrease, R. Schreiber, M. MorrchieM. McLaren, N. P. Jouppi, M. Fiorentino, A. \B® N. Binkert,

R. G. Beausoleil, and J. H. Ahn. Corona: System icatibns of emerging nanophotonic technology. In ISCA
'08: Proceedings of the 35th International Sympasan Computer Architecture.

[VirtualBox10] http://www.virtualbox.org/, Decemb&010.

[VMWare10] http://mww.vmware.com/, December 2010.

[Wangl11] Zzhaoguo Wang , Ran Liu, Yufei Chen, Xi Wulkn, Haibo Chen, Weihua Zhang, Binyu Zang, “COREMU: a
scalable and portable parallel full-system emufataccepted for publication in PPoPP '11 Procegsliof the
16th ACM symposium on Principles and practice ok programming.

[Wenisch06] T. F. Wenisch, R. E. Wunderlich, M. Feeh, A. Ailamaki, B. Falsafi, and J. C. Hoe, “SimFI&tatistical
sampling of computer system simulation,” IEEE Micvol. 26, no. 4, pp. 18-31, July-Aug 2006.

[Wunderlish03] R. E. Wunderlich, T. F. Wenisch, Bldafi, and J. C. Hoe, “SAMRTS: Accelerating Micrdaitecture
Simulation via Rigorous Statistical Sampling”, Predimgs of the 30th Annual International Symposium o
Computer Architecture (ISCA’03), IEEE Computer Sogidune 9-11, 2003, San Diego, USA, pp. 84-95

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 72 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[Wunderlich04] R. E. Wunderlich, T. F. Wenisch, Bal$afi, and J. C. Hoe, “An Evaluation of Stratifi€&mpling of
Microarchitecture Simulations”, Proceedings of ffierd Annual Workshop on Duplicating, Deconstrugtin
and Debunking, IEEE Computer Society, June 19-2@42Blunchen, Germany, pp. 13-18

[Xen99] Xen community overview. http://xensourcerzren

[Zeng09] Hui Zeng, Matt Yourst, Kanad Ghose and BynPonomarev, “MPTSim: A Cycle-Accurate, Full<tgm
Simulator for x86-64 Multicore Architectures with KErent Caches”, ACM SIGARCH Computer
Architecture News, May 2009, volume 37, issue 2.

[Zheng04] G. Zheng, G. Kakulapati, and L. V. Kal'BigSim: A parallel simulator for performance pretion of extremely
large parallel machines,” in 18th International dlat and Distributed Processing Symposium (IPDP®),
2004, p. 78.

[Zhibin 09] Zhibin Yu, Hai Jin, Jian Chen, and John,K, “TSS: Applying two-stage sampling in micreeaitecture
simulations”, in proceedings of IEEE InternatiorBymposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems, 2009 (MASQO0US). pp. 1-9

[Zhibin 10] Zhibin Yu, Hai Jin, Jian Chen, and Joln,K, “CantorSim: Simplifying Acceleration of Micrarchitecture
Simulations”, in proceedings of IEEE Internatior@ymposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems, 2010 (MASQDTIS). pp. 370-377

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 73 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix 1 — QEMU-DTA output
Output of the SIMULATION of the Fibonacci (4) program, showing TSU and x86-64 ISA

EXTENSIONS at work:
TCREATE(000000000040066f, 1, 0000000000000000) =
0

TCREATE(00000000004004€3, 3, 0000000000000000) =
1

TWRITE(0000000000000001, 0000000000000002,
0000000000000004)
TWRITE(0000000000000001, 0000000000000004,
0000000000000000)
TWRITE(0000000000000001, 0000000000000006,
0000000000000002)

EIP==0000000000400474
EIP==0000000000400474
EIP==00000000004004€2

TDESTROY(1048576) -- but still 0 are running
TSU Scheduling: dispatching continuation #1
switch_to: context switch from cont #1048576 to
cont #1

__switch_to: prevoius EIP = 00000000004004e2
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=4

TREAD(0000000000000004, 0000000000000004)
TReading EAX=0

TREAD(0000000000000000, 0000000000000006)
TReading EAX=2

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

TSU Scheduling: dispatching continuation #1
switch_to: context switch from cont #1 to cont #1
__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 0000000000400551
EIP==0000000000400551
TCREATE(000000000040062f, 4, 0000000000000000) =
2

TCREATE(00000000004004€3, 3, 0000000000000000) =
3

TWRITE(0000000000000003, 0000000000000002,
0000000000000003)
TWRITE(0000000000000003, 0000000000000004,
0000000000000002)
TWRITE(0000000000000003, 0000000000000006,
0000000000000006)
TCREATE(00000000004004€3, 3, 0000000000000000) =
4

TWRITE(0000000000000004, 0000000000000002,
0000000000000002)
TWRITE(0000000000000004, 0000000000000004,
0000000000000002)
TWRITE(0000000000000004, 0000000000000006,
0000000000000008)
TWRITE(0000000000000002, 0000000000000002,
0000000000000000)
TWRITE(0000000000000002, 0000000000000004,
0000000000000002)

EIP==0000000000400551
EIP==0000000000400551
EIP==000000000040062f

TDESTROY(1) -- but still 2 are running

deleting continuation #1

TSU Scheduling: dispatching continuation #3
switch_to: context switch from cont #1 to cont #3
__switch_to: prevoius EIP = 000000000040062f
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=3

TREAD(0000000000000003, 0000000000000004)
TReading EAX=2

TREAD(0000000000000002, 0000000000000006)
TReading EAX=6

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

TSU Scheduling: dispatching continuation #4
switch_to: context switch from cont #3 to cont #4
__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=2

TREAD(0000000000000002, 0000000000000004)
TReading EAX=2

TREAD(0000000000000002, 0000000000000006)
TReading EAX=8

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

TSU Scheduling: dispatching continuation #3
switch_to: context switch from cont #4 to cont #3
__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 0000000000400551
EIP==0000000000400551
TCREATE(000000000040062f, 4, 0000000000000000) =
1

TCREATE(00000000004004€3, 3, 0000000000000000) =
5

TWRITE(0000000000000005, 0000000000000002,
0000000000000002)
TWRITE(0000000000000005, 0000000000000004,
0000000000000001)
TWRITE(0000000000000005, 0000000000000006,
0000000000000006)
TCREATE(00000000004004€3, 3, 0000000000000000) =
6

TWRITE(0000000000000006, 0000000000000002,
0000000000000001)
TWRITE(0000000000000006, 0000000000000004,
0000000000000001)
TWRITE(0000000000000006, 0000000000000006,
0000000000000008)
TWRITE(0000000000000001, 0000000000000002,
0000000000000002)
TWRITE(0000000000000001, 0000000000000004,
0000000000000006)

EIP==0000000000400551
EIP==0000000000400551
EIP==000000000040062f

TDESTROY(3) -- but still 3 are running

deleting continuation #3

TSU Scheduling: dispatching continuation #4
switch_to: context switch from cont #3 to cont #4
__switch_to: prevoius EIP = 000000000040062f
__switch_to: new EIP = 0000000000400551
EIP==0000000000400551
TCREATE(000000000040062f, 4, 0000000000000000) =
3

TCREATE(00000000004004€3, 3, 0000000000000000) =
7

TWRITE(0000000000000007, 0000000000000002,
0000000000000001)
TWRITE(0000000000000007, 0000000000000004,
0000000000000003)
TWRITE(0000000000000007, 0000000000000006,
0000000000000006)
TCREATE(00000000004004€3, 3, 0000000000000000) =
8

TWRITE(0000000000000008, 0000000000000002,
0000000000000000)
TWRITE(0000000000000008, 0000000000000004,
0000000000000003)
TWRITE(0000000000000008, 0000000000000006,
0000000000000008)
TWRITE(0000000000000003, 0000000000000002,
0000000000000002)
TWRITE(0000000000000003, 0000000000000004,
0000000000000008)

EIP==0000000000400551

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions

File name: TERAFLUX-D72_v20final.doc

Page 74 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

EIP==0000000000400551
EIP==000000000040062f

TDESTROY(4) -- but still 4 are running

deleting continuation #4

TSU Scheduling: dispatching continuation #5
switch_to: context switch from cont #4 to cont #5
__switch_to: prevoius EIP = 000000000040062f
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=2

TREAD(0000000000000002, 0000000000000004)
TReading EAX=1

TREAD(0000000000000001, 0000000000000006)
TReading EAX=6

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

TSU Scheduling: dispatching continuation #6
switch_to: context switch from cont #5 to cont #6
__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=1

TREAD(0000000000000001, 0000000000000004)
TReading EAX=1

TREAD(0000000000000001, 0000000000000006)
TReading EAX=8

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400540

TCREATE_C()

TSU Scheduling: dispatching continuation #7
switch_to: context switch from cont #6 to cont #7
__switch_to: prevoius EIP = 0000000000400540
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=1

TREAD(0000000000000001, 0000000000000004)
TReading EAX=3

TREAD(0000000000000003, 0000000000000006)
TReading EAX=6

EIP==00000000004004€3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400540

TCREATE_C()

TSU Scheduling: dispatching continuation #8
switch_to: context switch from cont #7 to cont #8
switch_to: prevoius EIP = 0000000000400540
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=0

TREAD(0000000000000000, 0000000000000004)
TReading EAX=3

TREAD(0000000000000003, 0000000000000006)
TReading EAX=8

EIP==00000000004004€3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400540

TCREATE_C()

TSU Scheduling: dispatching continuation #5
switch_to: context switch from cont #8 to cont #5
__switch_to: prevoius EIP = 0000000000400540

__switch_to: new EIP = 0000000000400551
EIP==0000000000400551
TCREATE(000000000040062f, 4, 0000000000000000) =
4

TCREATE(00000000004004e3, 3, 0000000000000000) =
9

TWRITE(0000000000000009, 0000000000000002,
0000000000000001)
TWRITE(0000000000000009, 0000000000000004,
0000000000000004)
TWRITE(0000000000000009, 0000000000000006,
0000000000000006)
TCREATE(00000000004004€3, 3, 0000000000000000) =
10

TWRITE(000000000000000a, 0000000000000002,
0000000000000000)
TWRITE(000000000000000a, 0000000000000004,
0000000000000004)
TWRITE(000000000000000a, 0000000000000006,
0000000000000008)
TWRITE(0000000000000004, 0000000000000002,
0000000000000001)
TWRITE(0000000000000004, 0000000000000004,
0000000000000006)

EIP==0000000000400551
EIP==0000000000400551
EIP==000000000040062f

TDESTROY(5) -- but still 5 are running

deleting continuation #5

TSU Scheduling: dispatching continuation #6
switch_to: context switch from cont #5 to cont #6
__switch_to: prevoius EIP = 000000000040062f
__switch_to: new EIP = 0000000000400540
EIP==0000000000400540
TWRITE(0000000000000001, 0000000000000008,
0000000000000001)

EIP==0000000000400540
EIP==0000000000400540
EIP==0000000000400551

TDESTROY(6) -- but still 4 are running

deleting continuation #6

TSU Scheduling: dispatching continuation #7
switch_to: context switch from cont #6 to cont #7
__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 0000000000400540
EIP==0000000000400540
TWRITE(0000000000000003, 0000000000000006,
0000000000000001)

EIP==0000000000400540
EIP==0000000000400540
EIP==0000000000400551

TDESTROY(7) -- but still 3 are running

deleting continuation #7

TSU Scheduling: dispatching continuation #8
switch_to: context switch from cont #7 to cont #8
switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 0000000000400540
EIP==0000000000400540
TWRITE(0000000000000003, 0000000000000008,
0000000000000001)

EIP==0000000000400540
EIP==0000000000400540
EIP==0000000000400551

TDESTROY(8) -- but still 3 are running

deleting continuation #8

TSU Scheduling: dispatching continuation #9
switch_to: context switch from cont #8 to cont #9
__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=1

TREAD(0000000000000001, 0000000000000004)
TReading EAX=4

TREAD(0000000000000004, 0000000000000006)
TReading EAX=6

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

EIP==0000000000400534
EIP==0000000000400534

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions

File name: TERAFLUX-D72_v20final.doc

Page 75 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-devicem@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

EIP==0000000000400534
EIP==0000000000400540

TCREATE_C()

TSU Scheduling: dispatching continuation #10
switch_to: context switch from cont #9 to cont

#10

__switch_to: prevoius EIP = 0000000000400540
__switch_to: new EIP = 00000000004004e3
EIP==00000000004004e3
TREAD(0000000000000000, 0000000000000002)
TReading EAX=0

TREAD(0000000000000000, 0000000000000004)
TReading EAX=4

TREAD(0000000000000004, 0000000000000006)
TReading EAX=8

EIP==00000000004004e3
EIP==00000000004004e3
EIP==0000000000400534

TCREATE_C()

EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400534
EIP==0000000000400540

TCREATE_C()

TSU Scheduling: dispatching continuation #3
switch_to: context switch from cont #10 to cont

#3

__switch_to: prevoius EIP = 0000000000400540
__switch_to: new EIP = 000000000040062f
EIP==000000000040062f
TREAD(0000000000000000, 0000000000000002)
TReading EAX=2

TREAD(0000000000000002, 0000000000000004)
TReading EAX=8

TREAD(0000000000000008, 0000000000000006)
TReading EAX=1

TREAD(0000000000000001, 0000000000000008)
TReading EAX=1

TWRITE(0000000000000002, 0000000000000008,
0000000000000002)

EIP==000000000040062f
EIP==000000000040062f
EIP==000000000040066f

TDESTROY(3) -- but still 2 are running

deleting continuation #3

TSU Scheduling: dispatching continuation #9
switch_to: context switch from cont #3 to cont #9
__switch_to: prevoius EIP = 000000000040066f
__switch_to: new EIP = 0000000000400540
EIP==0000000000400540
TWRITE(0000000000000004, 0000000000000006,
0000000000000001)

EIP==0000000000400540
EIP==0000000000400540
EIP==0000000000400551

TDESTROY/(9) -- but still 1 are running

deleting continuation #9

TSU Scheduling: dispatching continuation #10
switch_to: context switch from cont #9 to cont

#10

__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 0000000000400540
EIP==0000000000400540
TWRITE(0000000000000004, 0000000000000008,
0000000000000001)

EIP==0000000000400540
EIP==0000000000400540
EIP==0000000000400551

TDESTROY(10) -- but still 1 are running

deleting continuation #10

TSU Scheduling: dispatching continuation #4
switch_to: context switch from cont #10 to cont

#4

__switch_to: prevoius EIP = 0000000000400551
__switch_to: new EIP = 000000000040062f

EIP==000000000040062f
TREAD(0000000000000000, 0000000000000002)
TReading EAX=1

TREAD(0000000000000001, 0000000000000004)
TReading EAX=6

TREAD(0000000000000006, 0000000000000006)
TReading EAX=1

TREAD(0000000000000001, 0000000000000008)
TReading EAX=1

TWRITE(0000000000000001, 0000000000000006,
0000000000000002)

EIP==000000000040062f
EIP==000000000040062f
EIP==000000000040066f

TDESTROY (4) -- but still 1 are running

deleting continuation #4

TSU Scheduling: dispatching continuation #1
switch_to: context switch from cont #4 to cont #1
__switch_to: prevoius EIP = 000000000040066f
__switch_to: new EIP = 000000000040062f
EIP==000000000040062f
TREAD(0000000000000000, 0000000000000002)
TReading EAX=2

TREAD(0000000000000002, 0000000000000004)
TReading EAX=6

TREAD(0000000000000006, 0000000000000006)
TReading EAX=2

TREAD(0000000000000002, 0000000000000008)
TReading EAX=1

TWRITE(0000000000000002, 0000000000000006,
0000000000000003)

EIP==000000000040062f
EIP==000000000040062f
EIP==000000000040066f

TDESTROY(1) -- but still 1 are running

deleting continuation #1

TSU Scheduling: dispatching continuation #2
switch_to: context switch from cont #1 to cont #2
__switch_to: prevoius EIP = 000000000040066f
__switch_to: new EIP = 000000000040062f
EIP==000000000040062f
TREAD(0000000000000000, 0000000000000002)
TReading EAX=0

TREAD(0000000000000000, 0000000000000004)
TReading EAX=2

TREAD(0000000000000002, 0000000000000006)
TReading EAX=3

TREAD(0000000000000003, 0000000000000008)
TReading EAX=2

TWRITE(0000000000000000, 0000000000000002,
0000000000000005)

EIP==000000000040062f
EIP==000000000040062f
EIP==000000000040066f

TDESTROY(2) -- but still 1 are running

deleting continuation #2

TSU Scheduling: dispatching continuation #0
switch_to: context switch from cont #2 to cont #0
__switch_to: prevoius EIP = 000000000040066f
__switch_to: new EIP = 000000000040066f
EIP==000000000040066f
TREAD(0000000000000000, 0000000000000002)

EIP==000000000040066f
EIP==000000000040066f
EIP==000000000040067d

TDESTROY/(0) -- but still 0 are running

deleting continuation #0

switch_to: context switch from cont #0 to cont
#1048576

__switch_to: previous EIP = 000000000040067d

== TCREATE: 15
== TREAD: 44
== TWRITE: 44
== TDESTROY: 15

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API

extensions

File name: TERAFLUX-D72_v20final.doc

Page 76 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Appendix 2 - Implementation of the functional
simulative model “Sharable Memory”

The functional simulation is provided by thibtf-model library, which is used by the simulation
frontends (in this cas€0TSon).

<<shmem singleton>> <
tf::common::Mem !

I
1 I
I

N+M 1

. . . 1 1 . M+N 1 <<shmem singleton>>
tf::mm::cons::Manager I—'E.Core tf::mm::alloc::Manager
N

1

<<singleton>>
tf::common::HostCmdQueue
M

1

<<shmem singleton>> ~ I . .
tf::common::HostCmdQueue::Shared tf::common::Cmd

Figure 35 - Central Abstraction of the functional $mulation model of the Shareable Memory.

This model encompasses the abstractions foundguré-35, which show a simplified diagram of the
central pieces implementing the functional simolati

Each simulator instance contains a group of ctir€¢re) instances that represent one of the nodes
in the TERAFLUX system. These cores provide anrfate to the implementation of the ISA
extensions.

Each SimNow instance contains a group of ctiteCpre instances) that may represent one of the
nodes in the TERAFLUX system (this is true in ti&M— TERAFLUX Baseline Machine — but may
change for the final TERAFLUX system). These cqasvide an interface to the implementation of
the ISA extensions.

Each of these extensions can follow two implemémaapproaches. On one hand, it can be fully
implemented in shared memory (identified by dmmem singleton keyword), like the centralized
memory allocation manager. This is all providedotlgh memory-mapped files, which can also
contain the necessary inter-process mutexes tav alnchronization among different simulator
instances.

Note that the memory allocation manager is ceatedli as its operation will be seldom triggered, and
thus there is not a need for a more complex gudgtimplementation.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 77 of 78

Project: TERAFLUX - Exploiting dataflow parallelism in Tera-device@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

On the other hand, classes can use the more coneplamiand queue abstraction. Using the
command queue, subjects can put and get seria@izaishmands (instances tf.common::Cmd
that are broadcasted to all command queue users.

This command queue is implemented as a ring buffsiding in the (host) shared memory
(tf::common::HostCmdQueue::Shared and a local interface tficommon::HostCmdQueug
Whenever all local interfaces have consumed a cardrfram the queue, its slot is marked as free for
future reuse. Thus, the command queue is a brad@ngahannel, with as many receivers as local
interfaces have been instantiated (which usuallyuants for one local interface per node).

The queue interface has three basic methods:

e get: Gets unread commands from the queue. This issittmplest method, as it simply
consumes commands from the queue, and leavesoiteq®ing up to the user. This is used,
for example, bytf::Core instances themselves before trying to perforputa as this method
is optimized to have low contention on the commaneue.

e put: Puts a new command into the list if its procegsansuccessful. The processing of a
command (whose implementation is command-speaéo)return a negative result, in which
case this indicates that the command was unsuctéss]., a failed acquire) and therefore
must not be put into the queue.

* get_and_put Atomically gets and processes commands and putsvaone into the queue.

In some cases, a command cannot be broadcastegieroprocessed before atomically
processing all pending commands of related typleis. i€ the case of memory consistency
management commands, which must be atomically peefd from the point of view of the
TERAFLUX system. To this effect, it atomically getl$ pending commands, processing
those of some specific types (e.g., all memory isbescy management commands), and puts
the new command into the queue. If any of the conthpaocessing is unsuccessful (both the
read and put commands), the command id is notnpathe queue (e.g., a failed acquire is
not broadcasted to all other nodes).
Note that this command queue implementation onlyke/mn a host with shared memory, and
therefore is valid only for simulation instancesming on the same host. For the time being we are
not exploring simulations spanning multiple hosts this would require much additional effort in
order to find efficient mechanism to get rid of TH*-copying as already noted (and, e.g., araextr
process on each simulation host, which would fodveommands among the different per-host

command queues).

Finally, thetf::mm::cons::Manager instances, direct the simulation frontend to panf@a memory
copy from thetf::common::Mem into the simulated (guest) memory in the casencequire, and a
reverse copy in the case of a release. As mentibeéate, this is optimized to avoid copies when
transferring memory ownership among cores insidesttime SimNow instance.

Deliverable number: D7.2

Deliverable name:Definition of ISA extensions, custom devices andteixal COTSon API
extensions

File name: TERAFLUX-D72_v20final.doc Page 78 of 78

