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Glossary

Auxiliary Core

A core typically used to help the computation (arlger core than service
cores) also referred as “TERAFLUX core”

BSD

BroadSword Document — In this context, a file tihahtains the SimNow
machine description for a given Virtual Machine

CDG

Codelet Graph

Cluster

Group of cores (synonymous of NODE)

Codelet

Set of instructions

COTSon

Software framework provided under the MIT licengeHiP-Labs

DDM

Data-Driven Multithreading

DF-Thread

A TERAFLUX Data-Flow Thread

DF-Frame

the Frame memory associated to a Data-Flow thread

DVES

Dynamic Voltage and Frequency Scaling

DTA

Decoupled Threaded Architecture

DTS

Distributed Thread Scheduler

D-TSU

Distributed Thread Scheduling Unit

Emulator

Tool capable of reproducing the Functional Behavigynonymous in this
context of Instruction Set Simulator (ISS)

D-FDU

Distributed Fault Detection Unit

L-Thread

Legacy Thread: a thread consisting of legacy code

L-FDU

Local Fault Detection Unit

L-TSU

Local Thread Scheduling Unit

MMS

Memory Model Support

NIU

Network Interface Unit

NoC

Network on Chip

Non-DF-Thread

An L-Thread or S-Thread

Node

Group of cores (synonymous of Cluster)

OwWM

Owner Writeable Memory

(ON)

Operating System

Per-Node-Manager

A hardware unit including the DTS and the FDU

PhyGAS

Physical Global Address Space

PK

Pico Kernel

Sharable-Memory

Memory that respects the FM,OWM,TM semantics of TTERAFLUX
Memory Model

S-Thread

System Thread: a thread dealing with OS servicé€or

StarSs

A programming model introduced by Barcelona Supapaing Center

Service Core

A core typically used for running the OS, or seegicor dedicated 1/O or
legacy code

Simulator

Emulator that includes timing information; synonymoin this context of
“Timing Simulator”

TAAL

TERAFLUX Architecture Abstraction Layer

TBM

TERAFLUX Baseline Machine

TLPS

Thread-Level-Parallelism Support
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TLS Thread Local Storage

TM Transactional Memory

TMS Transactional Memory Support

TP Threaded Procedure

UAS Unified Address Space (a.k.a. PhyGAS, Physical &lélldress Space)

Virtualizer Synonymous of “Emulator”

VCPU Virtual CPU or Virtual Core
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Executive Summary (UCY)

This document describes the work that was performedng the third year (M25-36) of the
TERAFLUX project within the context of Task 6.4 (8:28) “Fine-Tuned Execution Model”. Note
that this task extends for one more year and theswiork here presented does not reflect the
completed objectives for this task but limits itsel the achievements for the third year (M25-36).
Notice also that Task 6.5 (M25-48) “Abstraction kdywas also active during this year but the
results of the work in that task are not reportdtiie first year and are instead described in [26.4
the end of the project. Milestone M6.3 reports dldgances regarding the work for Task 6.5 for the
first year.

The work in Task 6.4 was a collaboration work bg thfferent partners involved and thus we report
here the contribution of each partner.
* UCY developed and evaluated a runtime dependescjution mechanism for the
DDM_style of the TERAFLUX execution model
+ UCY implemented and tested the execution of a DIWesapplication on a multi-node
system
» UNISI designed and evaluated a multi-node TSU wuaykhanks to the implementation of the
T* ISE
» BSC presented the evolution of the TaskSs impleatient
* UNIMAN showed the TM support for the TERAFLUX artditure
* UCY presented a program analysis tool based on RAHR

Our achievements show that our goals for this pldneove been met.
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1 Introduction (UCY)

The basic TERAFLUX execution model was presenteth@ first two years of the project. This
model is based on the dataflow concepts, wherdloatés used as the policy for scheduling threads
(collections of instructions). Transactions areeattb the dataflow threads as a way to explore more
parallelism and improve the programmability. Seleidferent types of dataflow threads were
defined, as well as the memory model. In additiwa,have adopted a template for the architecture
proposed within the WP6, which is depicted in Feggdr More details on the execution model and
architecture can be found in D6.1 and D6.2.

KEY:

n = # of nodes Nk = k-th Node (k=1..n)

m = # of cores per node NI = Network Interface

u= # of DRAM controllers insistingonthe  NoC = Network on Chip
Unified Physical Address Space

z=#0f /O Hubs

Cj =j-th core (j=1..m)

MC = Memory Controller

\\ DTSU = Distributed Thread-Scheduler Unit

| | | DFDU = Distributed Fault-Detection Unit
DTMU = Distributed TM Unit

LLS$H = Last Level Cache Hierarchy

\\
LLSH § DTSU DFDU DTMU |

LOCAL INTERCONNECT

CLS$H = Core Level Cache Hierarchy
TMx = TM Extensions to core memory
PU = Processing Unit

core LTSU = Local Thread-Scheduler Unit
LFDU = Local Fault-Detection Unit
LTMU = Local TM Unit

Core level HW support
(e.g. LTSU+LFDU+LTMU)

Figure 1: TERAFLUX Architecture Template

In year 3 of the TERAFLUX project, within the corteof the architecture work package (WP6),
most work was done towards exploring optimizatitmghe basic model and the implementation and
development of the hardware modules. This work dase as part of Task 6.4 (M25-48) “Fine-
Tuned Execution Model”.

This year, the partners have proposed ways to @ttenmodel as to allow for the efficient execution
across different nodes of multi-cores. This requiegtensions to the D-TSU, which are reported in
this deliverable. The implementation of the memamgdel proposed in previous years and the
extension of the T* instruction set have also bygam of the efforts performed during this year.

While it is well known that the dataflow model islato exploit the maximum available parallelism,
making it efficient is a challenge. This is esplgiaue for execution models that depend on tlagicst
definition of the dependencies. For this analysegmammers are many times faced with the task of
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identifying the dependencies among threads. In stames this might not be possible as dependencies
may only be determined at runtime. Last year weetdaveloped and tested the use of I-structures at
the Node level. During this year we have experiméntith an efficient mechanism to extend the
execution for distributed systems. An alternatipperaach is to allow the use of dynamic dependence
through the TSCHEDULE instruction as done in theapproach (c.f. D7.1, D6.2), widely adopted
and described in D4.6, D5.3 and D7.4.

In terms of hardware modules to support the exegutiodel, in addition to the Thread scheduling
modules for the support of DTA- and DDM-style dataf threads, which are reported in D7.4, during
this year there was a special effort in develophgmodules for support of coarse grain threads (th
TaskSs module) and transactions (TM module). Thendo allows for the system to explore
dynamically coarse-grain dataflow threads as a doedabor alternate model to the fine-grain DTA-
and DDM-style dataflow threads. The latter helpsthe support of the efficient execution of
transactions for exploring the access to sharedfiablé variables within dataflow threads.

Lastly, the successful execution of a parallel impgibn depends also on the careful analysis of its
execution and overcoming eventual bottlenecksthreeithe application or the runtime support for the
proposed model. This year we have adopted an myistiol for the analysis of the execution of
TERAFLUX applications. With this tool it is possibto analyze the status of the different queues in
the runtime and the time spent in different routioé both the application and runtime. This analysi
helps in tuning the runtime and also determiningl&oecks in the application.

Overall, the work presented in this document rédlebe work in improving the execution model
proposed in the previous two years. This work wersopmed within Task 6.4 but it is relevant to note
again that this task spawns for one more year lansl we still expect the evolution of the model to
continue for the next year of the project. Thisarping evolution will be presented at the end oftnex
year as an annex to this deliverable.

1.1 Document structure

This year we focused on fine tuning the executiadeh The main work is on the optimizations and
support for the execution model. This is preseimiegection 2. The first optimization presentecdhis t
work on exploiting the runtime dependency resolutibhen we present the support for the model to
allow the distributed execution of applicationsg Support for the memory model, the T* instruction
execution, the coarse-grain execution under Task®kthe support for Transactional Memory (TM).
The development of a program analysis tool is preskin Section 3. Section 4 presents the
conclusions and future work, i.e. the work thatmshin the context of Task 6.4 but that will be
completed within the next year.

1.2 Reation to other deliverables

The work here presented is based on the mateéalepted in previous deliverables such as D6.1
where we presented the basic TERAFLUX architectund model, and D6.2 where we presented the
advanced TERAFLUX architecture. In addition, aspedft the evolution of the model are closely
related to the material presented other delivesaptesented this year. In D5.3 we have the aspects
related to the programming model and in partictiaraddition of transactions to the dataflow model.
That work results in the TM support module reporitedhis deliverable. Another evolution to the
model is reported in D5.3 regarding the double etien of dataflow threads for the fault-tolerance
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support. Finally, the modules reported in thisgiable are implemented into the COTSon platform
and this effort is reported in D7.4. Some initisdhatectural decision was reported in D7.1.

1.3 Previous activities referred by this deliverable

The work reported in this deliverable is based lm work performed in Task 6.1 (Basic execution
model) where we proposed the dataflow model fortEBRAFLUX project and in Tasks 6.2 and 6.3

(Basic and Advanced architecture definition) wheeeproposed the architecture for the TERAFLUX

many-core processor. In this deliverable we preegptimizations and implementation issues related
to the execution model as to exploit the charasties of the architecture proposed before.

1.4 Activitiesreferred by thisdeliverable

The work performed in TERAFLUX in the context of Wih year three (M25-36) was according to
its two active tasks:
» Task 6.4 (M25-48) “Fine-Tuned Execution Model” and

» Task 6.5 (M25-48) “Abstraction Layer”.
This deliverable focuses on reporting the work froask 6.4. Notice that this task extends for one

more year and thus the work here presented doaeffmtt the completed objectives for this task but
limits itself to the achievements for the third yélsl25-36). The work performed for Task 6.5 is not
reported in this deliverable but instead will bpaded by the end of year four in deliverable D6.4.
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2 Execution Model Support and Optimization

2.1 Runtime Dependency Resolution (UCY)

In this Section we describe the lightweight runtimependency resolution mechanism using I-
structures. This mechanism was developed for th®1BBBle execution model.

2.1.1 I-Structures

An |-Structure[1] is a type of storage controller that obeys shwmgyle-assignment semantics, i.e. each
element is written only once but can be read mleltipmes. If a read request arrives for a data
element that has not been written yet, the comtrallefers the read until the write arrives. This
property of I-Structures provides the synchronization needed for exploitprgducer-consumer
parallelism without the risk of read-write racebeTbasic idea is to add status bits to the staralie
and a queue for holding deferred reads. Using-Bteuctureidea is possible to discover the dataflow
producer-consumer dependencies at runtime.

The state of each element of tk&tructureis depicted in the state diagram in Figure 2.

and can be one of the bellow:
» Absentnothing has been written into the element yetramdttempt has been made to read it.
A write operation is allowed. This is the entrytsta
* Present the element can be read but not written.
» Waiting nothing has been written into the element yet dbleast one read request was
attempted (deferred read). When this cell is writi# the deferred reads must be satisfied.
» Error: a second write to the same element is not alla¥vesl it results in an error in the

execution.
/// )
\i)sent

I-Fetch I-Store

I-Store

LFefeh | Waiting

( Error

Figure 2: State transition diagram for I-Structure Elements. A read operation referred to as an I-Fetch while a
write operation as an I-Store
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2.1.2 Runtime Dependency Resolution

A typical DDM-style program is statically partitied into a number of DF-threads. The producer
consumer dependencies among the threads are atsavelied statically. A problem arises when part
or all of the threads perform read operation(spata items whose address is not known at compile
time, i.e. it is resolved at runtime. In Figure Retehes our approach for dealing with runtime

dependency. We apply the following algorithm focle®ata-structure that has runtime dependencies:

« For every thread that performs at least one read operation on itltas which address is
resolved at run-time proxythread' is introduced.
0 Threadt' replacest in all the Consumer Lists of its explicit produdéreads, i.e.
threads that are identified as its producers afpderime.
* The RC (Ready Count) dfis set to the number of explicit producerg.of
0 The RC oft is set to the number of read operations perforoediata items with
addresses resolved at runtime.
o For every such read a special I-structure Fetdre(th) request is issued Bywith
the parametersaddress of the data to read, identifier of t, aoxis of t>.
o0 When the I-structure receives an I-Fetch requeagidcks whether the data has been
stored in that specific address
= if the data is present a request is sent to the TSdecrement the RC of
threadt,
= if the data is not present, a request is addedarpending list inside the I-
Structure.
» For every thread producing data that for is potdigtread byt, a special I-structure Store (-
Store) request is issued

|-Structure

I-Fetch(&A[?],T5<0>)

- Decrement RC

Figure 3: The top part of the figure depicts a Threaded graph with a run time dependency A[?]. The bottom
part illustrates our I-Structure approach for DDM

2.1.3 Evaluation

In order to study the effect of the performancerbgad of the I-Structure operations we compare
three versions that run on a single node. The fietsion (C-D) utilizes the Compile-time
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Dependency resolution. The second version (RC-Dhbioes both approaches, i.e. part of the
dependencies are resolved at Runtime (using I-Fatdh-Store operations) and the rest are resolved
at Compile-time The third version (R-D) utilizesethRuntime approach for resolving the

dependencies.
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dependencies (C-D) approaches

A quick description of the applications and th@mgple code is the following:

» Cholesky: blocked Cholesky decomposition (SMPS®@admples
http://www.bsc.es/plantillaH.php?cat_id=425
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» LU: blocked LU decomposition (CellSs code examples
http://www.bsc.es/plantillaH.php?cat_id=421
« MatMult: blocked matrix multiplication

Figure 5 depicts the comparison of the performawfcthe three versions for various thread sizes
(16x16, 32x32 and 64x64 array decompositions) wiput size for these examples two 4096x4096
matrices. The execution time reported is from thtvie execution of the application using the DDM-

style model implementation of the TSU at user-lewal a 12-core machine composed of two 6-core
AMD Opteron processors with 32GB of RAM.

The results demonstrate that, as expected, thepbegsirmance is delivered by the version utilizing
the compile-time approach (C-D), followed by thesien utilizing the combination of the compile-
time and runtime approaches (RC-D). Note that tier MatMult benchmark, only the first and third
versions are available, as the threads in thisrprmodnave only one data dependency.

Figure 4 illustrates the execution time of the Rzl RC-D versions normalized to the execution time
of the C-D version. The results demonstrate thatywa increase the granularity of the threads by
increasing the size of the blocks the threads opema, the total number of blocks decreases and so
does the total number of thread invocations. Camsetty the number of I-Fetch and I-Store
operations decreases, thus reducing the overhiglateover, increasing the granularity of the threads
amortizes the I-Structure operations overheads.

The results of these executions give us the mdtvapply I-Structure to distributed systems as we
observed good performance on single node execution.

2.2 Multi-node Execution (UCY)

The original implementation of the DDM-style exdontmodel was for single Muli-core Node. In the
context of Task 6.4 we have extended this to supper execution of applications across multiple
Nodes.

The inherent tolerance for latencies of the exeouthodel allows extending the execution across
multiple distributed nodes with lesser overheacdhtbtner approaches. This is achieved by tolerating
inter-node latencies resulting from data and symmilzation communications with the execution of
threads.

To facilitate the distributed multi-node execution:

1) We developed the Network Interface Unit (NIU), whis a software extension module for
the DDM-style runtime that allows the executionaasran off-chip network. Each node is
an independent multi-core machine running one D-&Slthany L-TSUs as the number of
cores, on a conventional OS.

2) We made changes to existing TSU data structuresraaded new ones to support the new
functionality.

3) We implemented a distributed memory mechanismahaitvs us to share data throughout a
set of nodes running a TSU using Global AddresSipace.
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4) We utilized the Dijkstra—Scholten termination déiat algorithm.

Distributed DDM-style programs are fundamentally #ame as single-node ones except for:

(1) the distribution of data across Nodes at startwpoaming execution, and
(2) the gathering of data post-execution.

The DDM-style runtime is extended to handle remm#&mory accesses, resulting from producer and
consumer threads residing on different nodes. Ehisandled by forwarding the data to the node
where the consumer is scheduled to run. DDM-threadsrce the single assignment semantics for
data exchanged among threads. Thus, traditiona@reabe-management operations are not required
for data movements among the nodes. For the disiib of threads across the cores of the system
nodes we employ a static scheme, in which the mapigi determined at compile time and does not
change during the execution. This simplifies thieesling and data management tasks and, in the
presence of an accurate knowledge of the threaglsuégn loads, can lead to a very efficient and
balanced parallel execution. It is important toentitat a static distribution only specifies where t
thread will be scheduled once its ready, howevbemnthe thread is ready is decided based on data-
availability.

The DDM-style runtime adopts a distributed orgatidraconsisting of multiple D-TSU units (one per
node) communicating across the network to coordittae overall DDM execution, as shown in the
figure 6.

Nodeo Node1 Nodew-1
Core1 CoreN-1 Core0 Core1 CoreN-1 Core0 Core1 CoreN-1
DDM-VM DDM-VM DDM-VM DDM-VM DDM-VM DDM-VM
Runtime Runtime Runtime Runtime Runtime Runtime
TSU TSuU TSU
+CacheFlow DDM DDM +CacheFlow DDM DDM +CacheFlow DDM DDM
Thread aee Thread Thread eee Thread Thread . Thread
Execution Execution Execution Execution Execution Execution

_____________________________________________________________________________________________________________________________

Bus | [ Bus | [ Bus - ]
v v : : 5
Main Memory ’/OT Main Memory ”dT Main Memory I/0§
Local Local Local
TSU oo A TSU A TSU 5 A

Global Address Space (shared)

DDM H DDM : DDM

ThreadsData | 't » ThreadsData [  =%=ee=s » Threads Data

X, v
Network H '

Figure 6: The Distributed DDM-style Architecture

Comparing to the original DDM-style architecturgpoeed in the previous deliverables, for the
support of the distributed execution we made somamges to a few TSU structures:

* On the Graph Memory (GM), for each node, we onadithe meta-data of the threads that
are expected to execute on that node.

* The Synchronization Memory (SM) requires extrardita as the allocation of SM entries of
a thread is directly influenced by the assigneedaling policy. If a thread is assigned to a
core using a deterministic policy based on inforamathat is static and shared to all nodes,
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the TSU has enough information to handle the afioodor the SM implementation. On the
other hand, if the thread is assigned a custoneyulritten by the application programmer,
the SM implementation needs to be re-examined aadaaxcessive redundant allocations. In
the current implementation we allocate the enaregge of the SM entries on each node,
regardless which threads will execute on each riodbe future we need to improve this to
reduce the amount of memory used by the TSU arld Aunechanism that allocates SM
entries in regards to the scheduling policy.

The rest of the TSU structures remain unchangedveder, we have added two new structures to
support distributed execution:

* The Distributed Acknowledgement Queue (AQ): Thiswg holds the decrement RC requests
coming from the TSUs on the remote nodes.

* Forward Table (FT): This table holds the addresksare of the data that will be forwarded to
remote nodes.
When a thread finishes its execution and its comsuson the same node, an entry is inserted in the
AQ of the local node D-TSU. If the consumer belotgs remote node, a message containing the
invocation (Threadld, context) is sent to the reamutde D-TSU.

To support this communication a new software modladded to the TSU: The Network Interface
Unit (NIU). The NIU is a software module that edion the underlying network hardware interface.
We developed our own connectivity layer using ntwcking TCP sockets. The NIU is responsible
for managing the network initialization, establigiconnections with the other nodes in the system
and providing communication services to the TSUsnduthe execution. The NIU also supports
distributing/gathering data across the global askispace in the system at startup and post-exacutio
of the DDM-style program. Termination is detecteding the Dijkstra—Scholten distributed
termination algorithm. The current NIU implemenpatiuses the available Ethernet network for the
exchange of messages as it is used in the usdrb&d-style runtime. With the TSU integration
with COTSon, the NIU will take advantage of the stixig interconnection network for faster
exchange of messages.

2.2.1 Unified Address Space

A Unified Address Space (UAS) is supported acrdssha nodes in the system. We employ data
forwarding, in which the data produced by a thrsafbrwarded to the node where the consumer is
scheduled to run. The distribution of program datthe UAS across the nodes occurs at startup and
the gathering of the results after the program eti@s ends. An address referring to the UAS cossist
of the ordered pair (node id, local address). Titst Eomponent refers to the node identifier arel th
second refers to a conventional main memory addogssthat node. Coherence-management
operations are not required between the nodes.nTdqgping of the program data into the UAS
depends on the assignment of the program thre&dsddta of a certain invocations is mapped to the
part of the UAS belonging to the node where thi®@ation is scheduled to run. The movement of
data between producers and consumers running faretif nodes during the execution is managed
automatically by the DDM-style runtime without timervention of the programmer.

2.2.2 Evaluation

For the evaluation of the DDM-style distributed teys we used 5 different applications. A quick
description of these applications and their saroptie is the following:
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Cholesky: blocked Cholesky decomposition (SMPS&@damples
http://www.bsc.es/plantillaH.php?cat_id=425

CONV2D: two-dimensional convolution, where a maskpplied to a 2D image (based on
the code described hittp://www.stanford.edu/group/sequoia/cgi-bin/nd@&and found the
Sequoia SDK examples)

IDCT: inverse discrete cosine transform (basechedDCT kernel in the mpeg library code
similar to one found in

http://www.irisa.fr/master/ COURS/CAPS/CoursCD/HTMIddes/ExercicesScap/exercice9/i
dct.g

mult: blocked matrix multiplication

trapez: trapezoidal rule of integration

For the evaluation we used two input data setsniast applications (Cholesky, CONV2D, Mult) and
their sizes were 4096x4096 and 8192x8192. For ID@Tused 8192x8192 and 16384x16384 due to
the small execution time of the application. Foagaz we used 657M and 1250M steps.
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Figure 7: Speedup comparison: first two columns present the comparison between identical configurations

with different input size. Following two columns present the comparison of the previous executions using a

second identical node through an Ethernet network

In Figure 7 we present the speedup obtained foretkecution of four applications, Cholesky,
CONV2D, IDCT, mult, and Trapez, implemented on bBM-style model using the user-level
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software TSU implementation. The speedup repodezbimpared to the sequential execution of the
same application. The execution was done nativelinwm 32-core machines, each composed of four
8-core AMD Opteron processors and 48GB of RAM. Vde see that increasing the problem size
does not necessarily give us better performan@ppkications like Cholesky that have "bottlenecks"
in certain parts of the algorithm which result iarformance degradation. Also, we can see that
doubling the resources by using a second systemyalachieves better results than the single node
execution even considering the unavoidable netwet&tys. We can observe that the performance, for
most applications, is not improved linearly buti@agl by a smaller rate. Matrix Multiply and Trapez
integration scale almost linearly due to the Igsgeallelism available in their algorithms.

2.2.3 Runtime Dependency Resolution on Distributed Systesn

To support runtime dependency resolution on digtetd systems we employ the same approach to
the UAS for the distribution the I-Structure endriacross all the nodes in the system. When the |-
structure receives an I-Fetch for data that beldogs remote node, the I-Fetch request is forwarded
to the appropriate node. We employ data forwardingwhich the data produced by a thread is
forwarded to the I-structure of the node where theye distributed at compile time. If data belongs
to the I-Structure of the current node, then tha daforwarded to all nodes that issued an |-Fé&ich
that data.
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2.3 Finetuning the TERAFLUX Frame Memory for 1024 cores (UNI SI)

Within the Teraflux project, a general templatetfue architecture of the envisioned Data-Flow targe
machine has been defined (see deliverables D6.DRP [3] and milestone M7.1 [4]). The template
sets basic features that specific architecturalempntations must have in order to efficiently exec
Data-Flow threads. As detailed in deliverable Dérid D6.2, the target machine architecture is
organized hierarchically into nodes, each of théunstering a set of cores, the last levels of cache
memory, the TSU, the FDU, and one or more memongrotlers. All the resources are connected
through a dedicated interconnection system (e §0@), both at the intra-node level and at therinte
node level. A picture of the reference architectae be found in D6.2 (Figure 1 of page 12), and is
reproduced in Figure 7 for completeness.

With the aim of completely distributing both thedhd scheduling and fault detection activities, the
thread scheduler and the fault detection elemeptsgit into a node-level unit, and a core-levait u
(hereafter we will refer to the thread schedulethasDistributed Thread Scheduler - DTS). The DTS
is responsible for all the activities concerning thread life-cycle. In particular it is responsitibr
allocating frames, keeping the list of waiting thle, keep the list of executable threads, and
distributing executable threads among the availebtes. All these activities are strictly relatedhe
adopted memory model, supporting the thread exatutiodel ([5,6,7,8]).

In the following, we describe a first attempt tdide a fine-tuned architectural support for exeagiti
Data-Flow threads based on T* ISA extension (T*ais extension of the x86-64 Instruction Set
Architecture [9,10,11]). UNISI started evaluatirige timplementation of frame memory to manage
DF-threads. As first test we verified that it isspible to execute the very same programs (e.g.,
Fibonacci and Matrix Multiply) both on: (i) singlede machine with 32 cores, and (ii) multi-nodes
machine with a total of 1024 cores (see also figuaad figure 8).

Examples

With the aim of developing and fine-tuning the feamemory support to DF-threads execution in a
DTA-style, UNISI considered an implementation o #irchitectural template presented in D6.1 ([2])
and D6.2 ([3]). In particular, frame memory supdortDF-threads has been implemented within the
common simulation infrastructure (i.e., the COTSmmulator), and evaluated using two different
simple benchmark applications: Fibonacci and Matidtiply. The purpose of these experiments is:
() to demonstrate that the frame memory strucameisioned within the TERAFLUX consortium
correctly works, and (ii) that the system suppartirame memory can scale almost linearly with the
increase of the number of available cores (seeRtgoe 8 and Figure 9).

Fibonacci (single- and multi-node)

The Fibonacci benchmark application recursively potes the Fibonacci integer sequence, given the
integer number for which the computation has topbgormed. The benchmark exploits T* ISA
extensions.

The advantage of a T* like architecture is demastt by the fact that we are now able to distribute
the computation of the same T* binary not only e tores within a single node but also among the
cores of several nodes. UNISI evaluated the bendhbiath in the case of a 32 cores single-node
TERAFLUX machine (i.e. following the template argtiture described in D6.2, Section 2.1 — [3]),
and in the case of a multi-nodes (with 32 coresnpele) TERAFLUX machine with a total of 1024
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cores. Figure 8 shows the results obtained runthiedrecursive Fibonacci benchmark calculating the
40th element of the Fibonacci sequence. Left aglat §raphs in Figure 8 shows thespeedup, when
considering respectively the single-node and nmdties simulated machine. As shown in the two
graphs, the system performs with an almost linealirgy, demonstrating the correctness of the frame

memory implementation and the ability too seamlesBétribute the computation across several
nodes.
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Figure 8: Speedup expressed on a log2 scale for the Recursive Fibonacci benchmark, computing the 40"
element of the Fibonacci sequence. The T* ISA extension allows the benchmark to scale
almost perfectly both in the single-node and in the multi-node

Matrix Multiply (single- and multi-node)

Similarly to the previous case, Matrix Multiply eded UNISI to evaluate the behaviour of a single-
and multi- nodes machine with the support for treeme memory. The benchmark computes the
multiplication of two square matrixes of the sanze sUNISI has tested the benchmark with matrices
of different sizes. The Matrix Multiply benchmarldbeen generated in the executable form, which
exploits T* ISA extensions ([9,10,11]). MoreoveLEI evaluated the benchmark both in the case of
a 32 cores single-node TERAFLUX machine, and incse of a multi-nodes TERAFLUX machine
with a total of 1024 cores and 32-cores per nodeil&ly to the previous example, Figure 9 shows
the results obtained running the benchmark appdicatomputing the matrix multiplication for two
square matrices with a size of 512x512. Left agtitrgraphs in Figure 9 show the speedup, when
considering respectively the single-node and mmdtles simulated machine. As shown in the two
graphs, again, the system performs with an almoesat scaling, demonstrating the correctness of the
frame memory implementation and the advantage of T*
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Figure 9: Speedup expressed on log2 scale for the Matrix Multiply benchmark, using input matrices with a
size of 512x512. The T* ISA extension allows the benchmark to scale almost perfectly
both in the single-node and in the multi-node case
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2.4 Instruction execution (UNISI)

The architecture implementation directly suppolts life-cycle of DF-threads, by means of the T*
instruction set extension (T* ISA) [9,10,11]. Curtly the ISA extension accounts for four
instructions that are suited for allocating andldeating frames during the initial and the findlgses

of DF-threads’ life (namely TSCHEDULE and TDESTROWegscribed in Section 3.3.1), and for
accessing the frame memory during the DF-threadscugion (namely TREAD and TWRITE,
described in Section 3.3.2). From the architectd@bpoint, the management of frames accesses can
be seen as mediated by the Memory Management WiNtU), whose functions are extended in
order to correctly addressing the frame memory @kact mechanisms for managing the memory
virtualization are currently under research).

2.4.1 DF-threads life cycle (TSCHEDULE, TDESTROY)

The main Distributed Thread Scheduler (DTS) intkstraictures in the L-TSUs are (the area cost has
been evaluated in the second year, D6.2, sectn the Waiting List/Table (WL oWT) and the
Pre-Load Queue (PQ &LQ).

Assuming that each core has the capability of magatipe information of pframes: the WT holds
up to it DF-Thread continuations (i.e., a tuple <IP,FP,SC;, IP=Instruction Pointer, FP=Frame
Pointer, SC=Synchronization Count), whose inpuin&as waiting for coming data; the PLQ queues
up to nr DF-Thread continuations (in this case SC==0, apfikld is not present), which are globally
ready to be executed.

Please note that the DTS still retains the poésitid assign the DF-threads as it retains prodacti
(i.e. respecting the power/ temperature/performaesiience envelope) until the last moment.

The main Distributed Thread Scheduler (DTS) intestiactures in the D-TSUs are (as evaluated in
the second year, D6.2, section 2.4): the Free Fieabde FFT) and the Pending Tschedule Request
Queue PTQ) are in the D-TSU.

Assuming that each node contains m cores: the Fftdsim entries that, at any time and for each
core, track the Free Frames Number (FFN); the PO€ues up to #iq tuples consisting of the ID of
the Core (CID) that issued a TSCHEDULE operaticat ttannot be served locally to such core or
immediately (i.e., <CID, IP, SC> or the CID and F®CHEDULE parameters).

The Core Record (CR) is another per-core intermalctire that maintains constantly updated
information such as: Power, Temperature, Faultin€bs structure could be placed either at Core
Level (as initially designed in D6.2), Node Levelgbobally.

Table 1: Description of TSCHEDULE and TDESTROY T* instructions

T* instruction | Description

1. At the execution stage in the pipeline of a Praogsbnit, a frame request is sent to the|L-
TSU (indicating also other associated info SuUCKESCHEDULE, IP, SC>);

TSCHEDULE 2. The request is sent to the node’s D-TSU, via toallmterconnect;
The requests from any core arriving to such D-T&Joueued in the PTQ ;
The D-TSU sees the node availability of frames ulgitothe FFT: after a FFT lookup the
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frame request is served preferably in the requgstiade or wherever there is frame
availability (in this step an assignment policy cade the decision);

5. The D-TSU structures (FFT, PTQ) are updated,;
6. The L-TSU structures (WT, PLQ) are updated;

7. The requesting core receives the FP to the availithime and the instruction executipn
terminates;

Note: some implementation trick (virtual FPs or $)Orould be used to make the abgve
operations faster.

1. At the execution stage in the pipeline of a Prdogstnit, a frame deallocation (and
DF-thread completion request) is sent to the L-T8ldicating also other associated
info such as <TDESTROY, FP>);

The request is sent to the node’s D-TSU, via teallmterconnect;
3. The L-TSU structures (WT, PLQ) are updated;
The D-TSU structure (FFT) is updated and the i$ion execution terminates.

TDESTROY 2

2.4.2 DF-threads frame memory interaction (TREAD, TWRITE)

Similarly to the previous sub-section, the follogiable 2 shows the details about the interactfon o
the processing unit, the L-TSU, and the D-TSU dutime execution of the TREAD and TWRITE
instructions. The former allows a DF-thread to relath from its assigned frame, while the latter is
used to write data in the frame of consumer(s) IDEad. The interaction implements the architectural
template described in D6.2, section 2.4 [3].

Table 2: Description of TREAD and TWRITE T* instructions

T*instruction | Description

1. At the execution stage in the pipeline of a Prdogsbnit, the PU sends a <TREAD, FP
Offset> request to the L-TSU;

2. The L-TSU returns the value read from the frame orgnpointed by FP, at the specified
offset.

TREAD

1. At the execution stage in the pipeline of a PU,TAMRITE, FP, Offset, Data> request fis
sent to the L-TSU;

2. The write operation can proceed along the memasahthy as any other write operation;

TWRITE 3. The SC associated to the DF-Thread’'s Frame (ttdstiected by the effective address bejng
contained within such Frame address range) shauttebremented:

4. The core (either local or remote) that detectsiteviaelonging to the Frames that it manages
will be responsible to update the Frame’s SC.
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25 TaskSs(BSC)

Objectives

The goal of this work is to implement a functiopabtotype of the Task Superscalar design presented
by Etsion et al. [12,13]. To achieve this goalra@e but functional implementation of the hardware
design has been selected. This prototype is showigure 9. As it can be seen the Task Superscalar
frontend employs a tiled design, and is manage@rbyasynchronous point-to-point protocol. It is
composed of four different modules: Pipeline gateWaW), task reservation stations (TRS), object
renaming tables (ORT), and object versioning ta{iBagT).

The GW is responsible for pushing the flow of taske the pipeline including: allocating TRS space
for new tasks, distributing tasks to the differenbdules, and blocking task generating threads
whenever the pipeline fills.

TRSs store the meta-data of the in-flight tasks fordeach task, track the readiness of its pararaet
To do this, TRSs maintain the data dependency g@phmunicating to each other in order to relate
consumers to producers and notify consumers whignisleeady.

The ORTs match memory parameters to the most ré¢asktaccessing them, and thereby detect
object dependencies. Furthermore, each ORT hadlexae OVT associated with it. The OVT
tracks all the live versions of every parameterabsociated ORT stores. That helps TRSs to maintain
the data dependency graph. The functionality of @\éTs (and their associated ORT) therefore
resembles that of a physical register file, butydol maintain meta-data of parameters. Effectively,
the OVT also manages anti- and output-dependeneitgr through parameter renaming, or by
chaining different bidirectional (inout) parametars] unblocking them in-order.

The implemented prototype is composed by the mimimumber of modules that maintain the
prototype functional and the Task Scheduler has beplaced by a Ready Queue (RQ) that will
dispatch tasks following a simple Round-Robin pcoto
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Figure 10: Implemented prototype of the Task Superscalar architecture

Current Status

Currently all the modules that compose the prowtgpe completely functional when simulated and
isolated from the rest of the system. Also, altl@dm and their corresponding memories have been
synthesized targeting commercial devices. To actiemghis goal the modules' design and VHDL
code have been maodified to accomplish the conssramposed by such devices (as available free
memory or registers). The next step is connectihh@ modules and simulating the resulting system
to verify its correct behavior. After that, the ilasystem will be synthesized and its performance
will be measured.

The improvements made this year are the following:

* The functional simulation of all the modules hasrmbé&nished.

* The network has been optimized to decrease the euailpackets and the number of
connections needed between modules, while maintathie same functionality.
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» All the memories have been synthesized “standaltergjeting a commercial FPGA
device. Their design (HDL code) has been tunedetteb suit the constraints of real
FPGA devices.

* All modules have been synthesized “standalone”etarg a commercial FPGA
device.

* The Finite State Machines (FSM) of all the moduiase been optimized in order to
shorten the number of cycles needed to procegsaitieets as shown in Table 1.

Results

At this point we can present the first results oted by the hardware implementation of the
prototype. Table 3 shows the processing time thatFinite State Machine (FSM) of every module
needs to process an incoming packet.

Table 3: Latencies of processing the packets.

Packet Processing latency Responsible  Size (bits)
Unit
Contlssue 2 cycles GW 24
Create Version « 2 cycles if first time (input or output) ovT 240

e 3 cycles ifNotfirst time and input
e 4 cycles ifNot first time and output

DataReady 2 cycles TRS 64
DropParam 2 cycles ovT 40
DropVersion » 2 cycles for deleting the last version ORT 120

» 3 cycles for deleting the last version
and the previous one
Finish 4 cycles + 2 additional cycles for loading TRS 88

each parameter

Forming Execute 1 cycle (for loading meta-data of a task) + TRS 176+(#param*75)
packet 2 cycles for loading each parameter + 1
cycle for sending the task to the ready
queue
IssueAck 2 cycles GW 24
Issue * 5 cycles for tasks without any TRS 160
parameter

» 3 cycles for tasks with at least one
parameter + 2 additional cycles for
each parameter (using ParamTRS (200
bits) or DirectParam (96 bits) packets)
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ParamORT 2 cycles ORT 168

Also we have results from synthesis of each mobollated from the rest of the system (but including
their local memories). Table 4 shows a selectiotheke results as maximum working frequency,
slice logic utilization including the number of cadi flip flops (FFs, the number of one-bit registers
used in the whole FPGA) and slice look-up tablddT§) that are used as logic or distributed RAM or
even as shift registers. Macro Statistics incli@ertumber of required resources such as regisers (
comparators (C), multiplexers (M), adders/subtract@\), tri-state buffers (T) and xor gates (X).
Finally, the table presents the % of use that ewsvgule represents in each target FPGA (the Xilinx
xc7vh290t that has the smallest number of LUTs antbe available devices of its family and the
Xilinx xc7v2000t that is the biggest one in the fignfit4]). The table also includes the results tioe
FIFOs and Arbiters needed to implement the netvearknections and an estimation (total) of how
many resources will use the whole system oncéaliodules are connected.

Table 4: Synthesis result of main modules (R:regists, M:multiplexer, A:adder/subtractor, C:comparator , T:tristate
buffers, X:xor).

Component Freq. #Slice  #Slice Macro Statistics Usage of  Usage of
(MHz) LUTs FFs xc7vh290t  xc7v2000t
GW 389.63 9756 600 455R,4A,198M 4.4% 0.8%
TRS 142.93 39771 4800 1970R,9A,2C,945M, 18% 3.2%
497X
OovT 297.40 26843 2917 919R,1A,266M 12.3% 2.2%
ORT 201.57 28067 13654 8856R,21C,1137M, 13% 2.3%
8427X
FIFOs 498.32 8190 4770 108R,54A,90M 3.7% 0.6%
Arbiters 703.60 3102 2397 768R,771M,768T 1.4% 0.25%
Total 142.93 115729 29138 13094R,3407M,68A, 53% 9.5%
268T,8924X
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2.6 TM Support (UNIMAN)

Transactional Memory (TM) attempts to simplify canent programming by allowing a group of
load and store operations to execute in an atonag. wit is a concurrency control mechanism
analogous to database transactions for controflougss to shared memory in concurrent computing.
TM systems can exist in hardware, software or dwitlymplementations. This discussion is related
to the hardware implementation of TM systems.

TM hardware must perform a number of tasks.

Transaction modifications are isolated from the dsthe system until commit time through data
versioning.

The system detects and resolves read-set andsetitesnflicts.
Transaction commits appear to occur atomically.
In case of a conflict leading to an aborted tratisaca consistent state is reached after rewinding

Transactional mechanisms are being designed whdepikg following requirements under
consideration.

Performance should be achievable without an undugeln on the programmer.
The system should scale gracefully to a largesitelarge amounts of concurrency.

The system should be able to cope with, and ifipesgxploit, a hierarchical organization of cores
into nodes (clusters).

Our research at Manchester University aims to ansellowing questions regarding TM hardware
system.

Is it better to exchange information about shabegveen transactions as they go along or to do so
only at the commit time?

How can we leverage the node (clustered) archite¢tuprovide good performance for transactions?
Is it useful to have different local and global inagisms?

What sharing patterns exist across a broad rangeidoads?

What is the best balance between communicatioragtaand false sharing?

We have developed a TM implementation on COTSoh iheforms lazy version management and
lazy conflict detection. The initial implementatignsimilar to Stanford TCC implementation [15].

The programmer only marks TM-Begin() and TM-End{yjions and the underlying system ensures
that the transactions run concurrently while manitg Atomicity, Consistency and Isolation
properties.
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This model has been extended and a scalable veskitie system has been developed. The scalable
system is also a purely lazy implementation but doenmit process takes advantage of the
hierarchical organization of cores into nodes (elt®. The committed changes are broadcast within
the node (cluster) but outside the node the inatibds are sent only to the nodes that were agtuall
sharing the committed data. In order to implembetdcalable TM system we have used a directory
based cache coherence protocol as a starting pminbur baseline system. The directories are
extended with information about sharing of transaetl data across nodes. The implementation is
available on [18], as described in D7.4.

Figure 11 shows the diagram of the scalable mdd¢ie are evaluating.

K—>

Sharing

Network
on Chip

Figure 11: Clusters with extensions to cache and directory to support Transactional Memory

In this system each core has its own private L1l#hdache. L1 is write-through while L2 is a write
back cache. Within each node (cluster) there ibaaesl L3+remote cache, a directory and part of
distributed memory.

The directory tracks transactional memory regiom&l anaintains information at cache line
granularity. Each directory entry contains a bittee to represent the sharers. Sharers are maaatain
at the cluster level.

L1 and L2 caches are used to maintain data vergjoBiuring commit, a transaction first occupies all
the directories in its R/W-set and marks all thehealines in its write-set. The occupy and mark
process is similar to Scalable TCC [15]. After céetipg the occupy phase the transaction locks the
L3 controller and then writes back all its modifieM lines to the shared L3. After writing back &4
data, the transaction unlocks the L3 controller tieth sends commit messages to all the directories
in its write set so that they can send the releirarglidations. The write back is required so that
contains the most up to date copy and can resmoaadyt requests to the cluster.
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There are many optimizations possible to our ihitigplementation. For example using bloom filters
to reduce the size of our read/write-set and tk thectories at lower level of granularity [16].

We have developed a functional model of purely [&k§ support into SimNow (c.f. D7.4). This had

to be done through a special mechanism, since COTi&terfaces with SimNow in a manner such
that functional modifications to execution are potsible. This included interacting with AMD as
well as our partners at HP, with AMD extending soimterfaces into SimNow to allow the

implementation. A more sophisticated model for tignitransaction commits is currently being
developed [18].

For the purpose of evaluation, we have run twohaf ETAMP benchmarks on the scalable TM
hardware. KMeans implements a clustering algoritiims has a parallel phase to assign objects to
clusters, and a serial phase to recalculate clastdres. Vacation simulates a travel booking degab
for cars, hotels and flights. Each table (carselsoflights) is represented as a transactiondi teise.
Reservations as performed as transactions, whiahgehthe availability of each booked item in the
database.

Figure 12. shows the performance results of thesetmarks. Both benchmarks are available in [18].

Transacational Memory Speedup - KMeans Transacational Memory Speedup - Vacation
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Figure 12: Performance results for Kmeans and Vacation Benchmarks
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3 Program Analysis Tool (UCY)

Paraver [17] offers a graphical representationulsefperformance analysis of parallel applications
It supports a detailed qualitative and quantitativalysis of the performance bottlenecks of pdralle
applications. Using the Paraver tool the programmasrthe ability to optimize the performance of the
application by focusing on the main performancetleoecks and to minimize the hardware
requirements. Paraver imports trace files of th@iegtion that are produced by the EXTRAE tool. In
general, Paraver offers detailed quantitative aiglyof application performance, simultaneous
comparative analysis of multiple trace files antti@analysis of large traces files. Originally, &agr
supports MPI, OpenMP, Pthreads, CUDA, and OmpSkcappns.

Through the Paraver tool the user can monitor ggrek of parallelism of applications, the timeline
of the processor during execution, the evolutionamycess of changing the values of a specific
(preselected) variable, monitor the load balancdiféérent parallel loops and the instruction/cycle
ratio of each thread. The Paraver tool can alsades for simultaneous analysis of different trace
files that can help the programmer compare diffevensions of the same code, compare the behavior
of the application on two different machines, fihe differences between two different executions of
the same application and finally determine the ichpaf the application problem size on the
execution.

For our work, we were interested in adapting tbid to the DDM-style runtime system. To produce
performance results for a DDM-style application @ebedded function calls to the EXTRAE API

inside the application code. Passing then the egtpin with the EXTRAE tool we generate the trace
file for the application that will be used as inpoatthe Paraver tool to produce performance arslysi
results for the original DDM-style application.

In an attempt to analyze the performance of the ,@&Jembedded EXTRAE API calls in the most
important functions of the TSU.

The calls added to the code are: (a) by the prepsmr tool and (b) to a version of the runtime
system. An example of such calls is presentedgnri13 bellow.

int main(int arge, char **argv)
Extrae init();

myIP = (char *) malloc(sizeocf (char)*24);

myName = ({(char *) malloc(sizeof(char)*24);

Figure 13: Extrae calls added to DDM-style program to monitor events by Paraver
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Figure 14: TSU performance analysis when executing MULT

The use of such a tool is very important to thangrof the model as it is possible to observe the
bottlenecks of the execution in the different romgtifunctions and also the use of the most relevant
data structures.

In Figure 14 we present an example of the TSU pexdoce analysis when running the MULT
application. The results show the sizes of the Aekerdgement Queue (AQ), the Waiting Queue
(WQ) and the Fire Queue (FQ). The first chart shewsolor code the actions which the TSU and
the application were performing during the executime (Some of the important colors for the first
line, which represents the TSU, are following: Whit Decrement Consumers, Yellow — Moving
threads from WQ to FQ, Pink — Checking the sizethefqueues). The second chart shows the size of
the AQ, the third the size of the WQ and the last shows the size of the FQ.

On the first chart we can see in cyan the idle winhe worker, which is the time spent until th&d
assigns work to the specific worker. If we follovingpothetical vertical line to the next charts vea ¢
get a further understanding of the reasons forfuis In the second chart, during the idle timesse

the TSU serving AQ tasks and thus decreasing theireng data in the queue. In the third chart we
have the WQ which gets more entries as the AQ iisgbserved, we can clearly see that there is a
threshold were the TSU stops adding records. Odatstechart we have the FQ where we can see
again that the TSU assigns jobs to be executethécurrent worker using again a threshold. From
this information it is possible to infer that thedads being executed are too small for the prowpss
speed of the TSU and that is the reason for treepdtiods where the worker has no work to fetch
from the FQ.
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4 Conclusions and Future Work (UCY)

In this document we have presented the achievenientbe third year of the TERAFLUX project
regarding Task 6.4. We have included extensions agptanizations of the model, description of
modules to support the model, and analysis todig. dontributions reported are from the different
partners that participate in this Task.

We described techniques to improve the executicappfications such as the dynamic resolution of
the dependencies. We also presented initial reBoltis T* by executing an unmodified binary also
on multiple nodes, and finally the Transactionalnhdey support. We closed with the presentation of
a tool that allows for the monitoring of runtimeeewtion and data structure utilization as to idgnti
potential bottlenecks and performance issues iticaions.

As Task 6.4 extends for one more year, in the year we will finalize some of the techniques

mentioned in this report. In particular we plandontinue the work on prefetching, the use of
scratchpad memories, explore more comprehensivadathg policies, and the memory model. More

details will also be explored concerning the impmetation of the hardware modules such as their
timing and power consumption.
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