
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 1 of 34

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D6.3 – Fine-tuned TERAFLUX Execution Model

Due date of deliverable: 31th December 2012
Actual Submission: 20th December 2012

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: UCY

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Author Organization Change History
0.1 Pedro Trancoso UCY Initial outline
1.0 Pedro Trancoso, Skevos Evripidou,

George Matheou, George Michael,
Andreas Diavastos, Constantinos
Christofi

UCY UCY parts

1.1 Pedro Trancoso UCY Added contributions from
partners

1.2 Andreas Diavastos UCY Formatting into template
2.0 Pedro Trancoso UCY Revised
2.1 George Michael, Andreas

Diavastos, Paraskevas Evripidou
UCY Revised

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 2 of 34

Release Approval
Name Role Date
Pedro Trancoso Originator 07.12.2012
Paraskevas Evripidou WP Leader 12.12.2012
Roberto Giorgi Coordinator 19.12.2012

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 3 of 34

TABLE OF CONTENT

GLOSSARY .. 4

EXECUTIVE SUMMARY (UCY) ... 7

1 INTRODUCTION (UCY) ... 8

1.1 DOCUMENT STRUCTURE .. 9
1.2 RELATION TO OTHER DELIVERABLES .. 9
1.3 PREVIOUS ACTIVITIES REFERRED BY THIS DELIVERABLE .. 10
1.4 ACTIVITIES REFERRED BY THIS DELIVERABLE .. 10

2 EXECUTION MODEL SUPPORT AND OPTIMIZATION ... 11

2.1 RUNTIME DEPENDENCY RESOLUTION (UCY) ... 11
2.1.1 I-Structures .. 11
2.1.2 Runtime Dependency Resolution .. 12
2.1.3 Evaluation ... 12

2.2 MULTI-NODE EXECUTION (UCY) ... 14
2.2.1 Unified Address Space ... 16
2.2.2 Evaluation ... 16
2.2.3 Runtime Dependency Resolution on Distributed Systems ... 18

2.3 FINE-TUNING THE TERAFLUX FRAME MEMORY FOR 1024 CORES (UNISI) ... 19
2.4 INSTRUCTION EXECUTION (UNISI) ... 21

2.4.1 DF-threads life cycle (TSCHEDULE, TDESTROY) ... 21
2.4.2 DF-threads frame memory interaction (TREAD, TWRITE) ... 22

2.5 TASKSS (BSC) ... 23
2.6 TM SUPPORT (UNIMAN) .. 27

3 PROGRAM ANALYSIS TOOL (UCY) .. 30

4 CONCLUSIONS AND FUTURE WORK (UCY) ... 32

REFERENCES ... 33

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 4 of 34

Glossary
Auxiliary Core A core typically used to help the computation (any other core than service

cores) also referred as “TERAFLUX core”
BSD BroadSword Document – In this context, a file that contains the SimNow

machine description for a given Virtual Machine
CDG Codelet Graph

Cluster Group of cores (synonymous of NODE)
Codelet Set of instructions

COTSon Software framework provided under the MIT license by HP-Labs
DDM Data-Driven Multithreading

DF-Thread A TERAFLUX Data-Flow Thread
DF-Frame the Frame memory associated to a Data-Flow thread

DVFS Dynamic Voltage and Frequency Scaling
DTA Decoupled Threaded Architecture
DTS Distributed Thread Scheduler

D-TSU Distributed Thread Scheduling Unit
Emulator Tool capable of reproducing the Functional Behavior; synonymous in this

context of Instruction Set Simulator (ISS)
D-FDU Distributed Fault Detection Unit

L-Thread Legacy Thread: a thread consisting of legacy code
L-FDU Local Fault Detection Unit
L-TSU Local Thread Scheduling Unit
MMS Memory Model Support

NIU Network Interface Unit
NoC Network on Chip

Non-DF-Thread An L-Thread or S-Thread
Node Group of cores (synonymous of Cluster)

OWM Owner Writeable Memory
OS Operating System

Per-Node-Manager A hardware unit including the DTS and the FDU
PhyGAS Physical Global Address Space

PK Pico Kernel
Sharable-Memory Memory that respects the FM,OWM,TM semantics of the TERAFLUX

Memory Model
S-Thread System Thread: a thread dealing with OS services or I/O

StarSs A programming model introduced by Barcelona Supercomputing Center
Service Core A core typically used for running the OS, or services, or dedicated I/O or

legacy code
Simulator Emulator that includes timing information; synonymous in this context of

“Timing Simulator”
TAAL TERAFLUX Architecture Abstraction Layer
TBM TERAFLUX Baseline Machine
TLPS Thread-Level-Parallelism Support

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 5 of 34

TLS Thread Local Storage
TM Transactional Memory

TMS Transactional Memory Support
TP Threaded Procedure

UAS Unified Address Space (a.k.a. PhyGAS, Physical Global Address Space)
Virtualizer Synonymous of “Emulator”

VCPU Virtual CPU or Virtual Core

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 6 of 34

The following list of authors will be updated to reflect the list of contributors to the writing of the document.

Constantinos Christofi, Andreas Diavastos, George Michael, George Matheou, Pedro

Trancoso, Paraskevas Evripidou
UCY

Marco Solinas, Alberto Scionti, Andrea Mondelli,
Ho Nam, Antonio Portero, Roberto Giorgi

UNISI

Behram Khan, Salman Khan, Mikel Lujan and Ian Watson
UNIMAN

Fahimeh Yazdanpanah, Daniel Jiménez-González, Carlos Alvarez Martínez,
Yoav Etsion and Rosa M. Badia

BSC

© 2009-11 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu

web site and can be distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities

for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising

out of the use of the information contained in this document.

This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be

used or copied in accordance with the terms of the License. The information in this document is a work in progress,

jointly developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use

only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade

secrets owned by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology

and related materials. Any use of the protected technology and related material beyond the terms of the License

without the prior written consent of TERAFLUX is prohibited. This document contains material that is confidential to

TERAFLUX and its members and licensors. Until publication, the user should assume that all materials contained

and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from the

nature of such materials (for example, references to publicly available forms or documents).

Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited

without the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary

material. The trademarks, logos, and service marks displayed in this document are the registered and unregistered

trademarks of TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX,

whether registered or unregistered, may not be used in connection with any product or service that is not owned,

approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer confusion

or that disparages TERAFLUX. Nothing contained in this document should be construed as granting by implication,

estoppel, or otherwise, any license or right to use any copyright without the express written consent of TERAFLUX, its

licensors or a third party owner of any such trademark.

Printed in Siena, Italy, Europe.

Part number: please refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY TERAFLUX TO

MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT

LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL

DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING

FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH

ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT,

TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 7 of 34

Executive Summary (UCY)
This document describes the work that was performed during the third year (M25-36) of the
TERAFLUX project within the context of Task 6.4 (M25-48) “Fine-Tuned Execution Model”. Note
that this task extends for one more year and thus the work here presented does not reflect the
completed objectives for this task but limits itself to the achievements for the third year (M25-36).
Notice also that Task 6.5 (M25-48) “Abstraction Layer” was also active during this year but the
results of the work in that task are not reported for the first year and are instead described in D6.4 at
the end of the project. Milestone M6.3 reports the advances regarding the work for Task 6.5 for the
first year.

The work in Task 6.4 was a collaboration work by the different partners involved and thus we report
here the contribution of each partner.

• UCY developed and evaluated a runtime dependency resolution mechanism for the
DDM_style of the TERAFLUX execution model

• UCY implemented and tested the execution of a DDM-style application on a multi-node
system

• UNISI designed and evaluated a multi-node TSU working thanks to the implementation of the
T* ISE

• BSC presented the evolution of the TaskSs implementation
• UNIMAN showed the TM support for the TERAFLUX architecture
• UCY presented a program analysis tool based on PARAVER

Our achievements show that our goals for this period have been met.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 8 of 34

1 Introduction (UCY)
The basic TERAFLUX execution model was presented in the first two years of the project. This
model is based on the dataflow concepts, where dataflow is used as the policy for scheduling threads
(collections of instructions). Transactions are added to the dataflow threads as a way to explore more
parallelism and improve the programmability. Several different types of dataflow threads were
defined, as well as the memory model. In addition, we have adopted a template for the architecture
proposed within the WP6, which is depicted in Figure 1. More details on the execution model and
architecture can be found in D6.1 and D6.2.

Figure 1: TERAFLUX Architecture Template

In year 3 of the TERAFLUX project, within the context of the architecture work package (WP6),
most work was done towards exploring optimizations to the basic model and the implementation and
development of the hardware modules. This work was done as part of Task 6.4 (M25-48) “Fine-
Tuned Execution Model”.

This year, the partners have proposed ways to extend the model as to allow for the efficient execution
across different nodes of multi-cores. This required extensions to the D-TSU, which are reported in
this deliverable. The implementation of the memory model proposed in previous years and the
extension of the T* instruction set have also been part of the efforts performed during this year.

While it is well known that the dataflow model is able to exploit the maximum available parallelism,
making it efficient is a challenge. This is especially true for execution models that depend on the static
definition of the dependencies. For this analysis programmers are many times faced with the task of

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 9 of 34

identifying the dependencies among threads. In some cases this might not be possible as dependencies
may only be determined at runtime. Last year we have developed and tested the use of I-structures at
the Node level. During this year we have experimented with an efficient mechanism to extend the
execution for distributed systems. An alternative approach is to allow the use of dynamic dependence
through the TSCHEDULE instruction as done in the T* approach (c.f. D7.1, D6.2), widely adopted
and described in D4.6, D5.3 and D7.4.

In terms of hardware modules to support the execution model, in addition to the Thread scheduling
modules for the support of DTA- and DDM-style dataflow threads, which are reported in D7.4, during
this year there was a special effort in developing the modules for support of coarse grain threads (the
TaskSs module) and transactions (TM module). The former allows for the system to explore
dynamically coarse-grain dataflow threads as a combined or alternate model to the fine-grain DTA-
and DDM-style dataflow threads. The latter helps in the support of the efficient execution of
transactions for exploring the access to shared modifiable variables within dataflow threads.

Lastly, the successful execution of a parallel application depends also on the careful analysis of its
execution and overcoming eventual bottlenecks in either the application or the runtime support for the
proposed model. This year we have adopted an existing tool for the analysis of the execution of
TERAFLUX applications. With this tool it is possible to analyze the status of the different queues in
the runtime and the time spent in different routines of both the application and runtime. This analysis
helps in tuning the runtime and also determining bottlenecks in the application.

Overall, the work presented in this document reflects the work in improving the execution model
proposed in the previous two years. This work was performed within Task 6.4 but it is relevant to note
again that this task spawns for one more year and thus we still expect the evolution of the model to
continue for the next year of the project. This upcoming evolution will be presented at the end of next
year as an annex to this deliverable.

1.1 Document structure
This year we focused on fine tuning the execution model. The main work is on the optimizations and
support for the execution model. This is presented in Section 2. The first optimization presented is the
work on exploiting the runtime dependency resolution. Then we present the support for the model to
allow the distributed execution of applications, the support for the memory model, the T* instruction
execution, the coarse-grain execution under TaskSs, and the support for Transactional Memory (TM).
The development of a program analysis tool is presented in Section 3. Section 4 presents the
conclusions and future work, i.e. the work that is within the context of Task 6.4 but that will be
completed within the next year.

1.2 Relation to other deliverables
The work here presented is based on the material presented in previous deliverables such as D6.1
where we presented the basic TERAFLUX architecture and model, and D6.2 where we presented the
advanced TERAFLUX architecture. In addition, aspects of the evolution of the model are closely
related to the material presented other deliverables presented this year. In D5.3 we have the aspects
related to the programming model and in particular the addition of transactions to the dataflow model.
That work results in the TM support module reported in this deliverable. Another evolution to the
model is reported in D5.3 regarding the double execution of dataflow threads for the fault-tolerance

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 10 of 34

support. Finally, the modules reported in this deliverable are implemented into the COTSon platform
and this effort is reported in D7.4. Some initial architectural decision was reported in D7.1.

1.3 Previous activities referred by this deliverable
The work reported in this deliverable is based on the work performed in Task 6.1 (Basic execution
model) where we proposed the dataflow model for the TERAFLUX project and in Tasks 6.2 and 6.3
(Basic and Advanced architecture definition) where we proposed the architecture for the TERAFLUX
many-core processor. In this deliverable we present optimizations and implementation issues related
to the execution model as to exploit the characteristics of the architecture proposed before.

1.4 Activities referred by this deliverable
The work performed in TERAFLUX in the context of WP6 in year three (M25-36) was according to
its two active tasks:

• Task 6.4 (M25-48) “Fine-Tuned Execution Model” and
• Task 6.5 (M25-48) “Abstraction Layer”.

This deliverable focuses on reporting the work from Task 6.4. Notice that this task extends for one
more year and thus the work here presented does not reflect the completed objectives for this task but
limits itself to the achievements for the third year (M25-36). The work performed for Task 6.5 is not
reported in this deliverable but instead will be reported by the end of year four in deliverable D6.4.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 11 of 34

2 Execution Model Support and Optimization

2.1 Runtime Dependency Resolution (UCY)
In this Section we describe the lightweight runtime dependency resolution mechanism using I-
structures. This mechanism was developed for the DDM-style execution model.

2.1.1 I-Structures
An I-Structure [1] is a type of storage controller that obeys the single-assignment semantics, i.e. each
element is written only once but can be read multiple times. If a read request arrives for a data
element that has not been written yet, the controller defers the read until the write arrives. This
property of I-Structures provides the synchronization needed for exploiting producer-consumer
parallelism without the risk of read-write races. The basic idea is to add status bits to the storage cells
and a queue for holding deferred reads. Using the I-Structure idea is possible to discover the dataflow
producer-consumer dependencies at runtime.

The state of each element of the I-structure is depicted in the state diagram in Figure 2.

and can be one of the bellow:
• Absent: nothing has been written into the element yet and no attempt has been made to read it.

A write operation is allowed. This is the entry state.
• Present: the element can be read but not written.
• Waiting: nothing has been written into the element yet, but at least one read request was

attempted (deferred read). When this cell is written all the deferred reads must be satisfied.
• Error: a second write to the same element is not allowed thus it results in an error in the

execution.

Figure 2: State transition diagram for I-Structure Elements. A read operation referred to as an I-Fetch while a

write operation as an I-Store

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 12 of 34

2.1.2 Runtime Dependency Resolution
A typical DDM-style program is statically partitioned into a number of DF-threads. The producer
consumer dependencies among the threads are also discovered statically. A problem arises when part
or all of the threads perform read operation(s) on data items whose address is not known at compile
time, i.e. it is resolved at runtime. In Figure 3 sketches our approach for dealing with runtime
dependency. We apply the following algorithm for each Data-structure that has runtime dependencies:

• For every thread t that performs at least one read operation on data items which address is
resolved at run-time a proxy thread t' is introduced.

o Thread t' replaces t in all the Consumer Lists of its explicit producer threads, i.e.
threads that are identified as its producers at compile-time.

• The RC (Ready Count) of t' is set to the number of explicit producers of t.
o The RC of t is set to the number of read operations performed on data items with

addresses resolved at runtime.
o For every such read a special I-structure Fetch (I-Fetch) request is issued by t' with

the parameters <address of the data to read, identifier of t, contexts of t>.
o When the I-structure receives an I-Fetch request it checks whether the data has been

stored in that specific address
� if the data is present a request is sent to the TSU to decrement the RC of

thread t,
� if the data is not present, a request is added into a pending list inside the I-

Structure.
• For every thread producing data that for is potentially read by t, a special I-structure Store (I-

Store) request is issued

Figure 3: The top part of the figure depicts a Threaded graph with a run time dependency A[?]. The bottom

part illustrates our I-Structure approach for DDM

2.1.3 Evaluation

In order to study the effect of the performance overhead of the I-Structure operations we compare
three versions that run on a single node. The first version (C-D) utilizes the Compile-time

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 13 of 34

Dependency resolution. The second version (RC-D) combines both approaches, i.e. part of the
dependencies are resolved at Runtime (using I-Fetch and I-Store operations) and the rest are resolved
at Compile-time The third version (R-D) utilizes the Runtime approach for resolving the
dependencies.

A quick description of the applications and their sample code is the following:

• Cholesky: blocked Cholesky decomposition (SMPSs code examples
http://www.bsc.es/plantillaH.php?cat_id=425)

Figure 5: Speedup comparison: runtime-determined

dependencies (R-D) vs. runtime & compile-time determined

dependencies (RC-D) vs. compile-time determined

dependencies (C-D) approaches

Figure 4: Execution time comparison: execution time

using the runtime-determined dependencies

approach vs. the runtime-determined & compile-time

determined dependencies approach normalized to

the execution time using the compile-time

determined dependencies approaches

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 14 of 34

• LU: blocked LU decomposition (CellSs code examples
http://www.bsc.es/plantillaH.php?cat_id=421)

• MatMult: blocked matrix multiplication

Figure 5 depicts the comparison of the performance of the three versions for various thread sizes
(16x16, 32x32 and 64x64 array decompositions) with input size for these examples two 4096x4096
matrices. The execution time reported is from the native execution of the application using the DDM-
style model implementation of the TSU at user-level, on a 12-core machine composed of two 6-core
AMD Opteron processors with 32GB of RAM.

The results demonstrate that, as expected, the best performance is delivered by the version utilizing
the compile-time approach (C-D), followed by the version utilizing the combination of the compile-
time and runtime approaches (RC-D). Note that for the MatMult benchmark, only the first and third
versions are available, as the threads in this program have only one data dependency.

Figure 4 illustrates the execution time of the R-D and RC-D versions normalized to the execution time
of the C-D version. The results demonstrate that, as we increase the granularity of the threads by
increasing the size of the blocks the threads operate on, the total number of blocks decreases and so
does the total number of thread invocations. Consequently the number of I-Fetch and I-Store
operations decreases, thus reducing the overheads. Moreover, increasing the granularity of the threads
amortizes the I-Structure operations overheads.

The results of these executions give us the motive to apply I-Structure to distributed systems as we
observed good performance on single node execution.

2.2 Multi-node Execution (UCY)
The original implementation of the DDM-style execution model was for single Muli-core Node. In the
context of Task 6.4 we have extended this to support the execution of applications across multiple
Nodes.

The inherent tolerance for latencies of the execution model allows extending the execution across
multiple distributed nodes with lesser overhead than other approaches. This is achieved by tolerating
inter-node latencies resulting from data and synchronization communications with the execution of
threads.

To facilitate the distributed multi-node execution:

1) We developed the Network Interface Unit (NIU), which is a software extension module for
the DDM-style runtime that allows the execution across an off-chip network. Each node is
an independent multi-core machine running one D-TSU as many L-TSUs as the number of
cores, on a conventional OS.

2) We made changes to existing TSU data structures and created new ones to support the new
functionality.

3) We implemented a distributed memory mechanism that allows us to share data throughout a
set of nodes running a TSU using Global Addressing Space.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 15 of 34

4) We utilized the Dijkstra–Scholten termination detection algorithm.

Distributed DDM-style programs are fundamentally the same as single-node ones except for:

(1) the distribution of data across Nodes at startup and during execution, and
(2) the gathering of data post-execution.

The DDM-style runtime is extended to handle remote memory accesses, resulting from producer and
consumer threads residing on different nodes. This is handled by forwarding the data to the node
where the consumer is scheduled to run. DDM-threads enforce the single assignment semantics for
data exchanged among threads. Thus, traditional coherence-management operations are not required
for data movements among the nodes. For the distribution of threads across the cores of the system
nodes we employ a static scheme, in which the mapping is determined at compile time and does not
change during the execution. This simplifies the scheduling and data management tasks and, in the
presence of an accurate knowledge of the threads execution loads, can lead to a very efficient and
balanced parallel execution. It is important to note that a static distribution only specifies where the
thread will be scheduled once its ready, however, when the thread is ready is decided based on data-
availability.

The DDM-style runtime adopts a distributed organization consisting of multiple D-TSU units (one per
node) communicating across the network to coordinate the overall DDM execution, as shown in the
figure 6.

Figure 6: The Distributed DDM-style Architecture

Comparing to the original DDM-style architecture reported in the previous deliverables, for the
support of the distributed execution we made some changes to a few TSU structures:

• On the Graph Memory (GM), for each node, we only load the meta-data of the threads that
are expected to execute on that node.

• The Synchronization Memory (SM) requires extra attention as the allocation of SM entries of
a thread is directly influenced by the assigned scheduling policy. If a thread is assigned to a
core using a deterministic policy based on information that is static and shared to all nodes,

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 16 of 34

the TSU has enough information to handle the allocation for the SM implementation. On the
other hand, if the thread is assigned a custom policy written by the application programmer,
the SM implementation needs to be re-examined to avoid excessive redundant allocations. In
the current implementation we allocate the entire range of the SM entries on each node,
regardless which threads will execute on each node. In the future we need to improve this to
reduce the amount of memory used by the TSU and build a mechanism that allocates SM
entries in regards to the scheduling policy.

The rest of the TSU structures remain unchanged. However, we have added two new structures to
support distributed execution:

• The Distributed Acknowledgement Queue (AQ): This queue holds the decrement RC requests
coming from the TSUs on the remote nodes.

• Forward Table (FT): This table holds the address and size of the data that will be forwarded to
remote nodes.

When a thread finishes its execution and its consumer is on the same node, an entry is inserted in the
AQ of the local node D-TSU. If the consumer belongs to a remote node, a message containing the
invocation (ThreadId, context) is sent to the remote node D-TSU.

To support this communication a new software module is added to the TSU: The Network Interface
Unit (NIU). The NIU is a software module that relies on the underlying network hardware interface.
We developed our own connectivity layer using non-blocking TCP sockets. The NIU is responsible
for managing the network initialization, establishing connections with the other nodes in the system
and providing communication services to the TSUs during the execution. The NIU also supports
distributing/gathering data across the global address space in the system at startup and post-execution
of the DDM-style program. Termination is detected using the Dijkstra–Scholten distributed
termination algorithm. The current NIU implementation uses the available Ethernet network for the
exchange of messages as it is used in the user-level DDM-style runtime. With the TSU integration
with COTSon, the NIU will take advantage of the existing interconnection network for faster
exchange of messages.

2.2.1 Unified Address Space
A Unified Address Space (UAS) is supported across all the nodes in the system. We employ data
forwarding, in which the data produced by a thread is forwarded to the node where the consumer is
scheduled to run. The distribution of program data in the UAS across the nodes occurs at startup and
the gathering of the results after the program execution ends. An address referring to the UAS consists
of the ordered pair (node id, local address). The first component refers to the node identifier and the
second refers to a conventional main memory address on that node. Coherence-management
operations are not required between the nodes. The mapping of the program data into the UAS
depends on the assignment of the program threads. The data of a certain invocations is mapped to the
part of the UAS belonging to the node where this invocation is scheduled to run. The movement of
data between producers and consumers running on different nodes during the execution is managed
automatically by the DDM-style runtime without the intervention of the programmer.

2.2.2 Evaluation
For the evaluation of the DDM-style distributed system we used 5 different applications. A quick
description of these applications and their sample code is the following:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 17 of 34

• Cholesky: blocked Cholesky decomposition (SMPSs code examples
http://www.bsc.es/plantillaH.php?cat_id=425)

• CONV2D: two-dimensional convolution, where a mask is applied to a 2D image (based on
the code described in http://www.stanford.edu/group/sequoia/cgi-bin/node/185 and found the
Sequoia SDK examples)

• IDCT: inverse discrete cosine transform (based on the IDCT kernel in the mpeg library code
similar to one found in
http://www.irisa.fr/master/COURS/CAPS/CoursCD/HTML/Codes/ExercicesScap/exercice9/i
dct.c)

• mult: blocked matrix multiplication
• trapez: trapezoidal rule of integration

For the evaluation we used two input data sets for most applications (Cholesky, CONV2D, Mult) and
their sizes were 4096x4096 and 8192x8192. For IDCT we used 8192x8192 and 16384x16384 due to
the small execution time of the application. For Trapez we used 657M and 1250M steps.

.

Figure 7: Speedup comparison: first two columns present the comparison between identical configurations

with different input size. Following two columns present the comparison of the previous executions using a

second identical node through an Ethernet network

In Figure 7 we present the speedup obtained for the execution of four applications, Cholesky,
CONV2D, IDCT, mult, and Trapez, implemented on the DDM-style model using the user-level

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 18 of 34

software TSU implementation. The speedup reported is compared to the sequential execution of the
same application. The execution was done natively on two 32-core machines, each composed of four
8-core AMD Opteron processors and 48GB of RAM. We can see that increasing the problem size
does not necessarily give us better performance as applications like Cholesky that have "bottlenecks"
in certain parts of the algorithm which result in performance degradation. Also, we can see that
doubling the resources by using a second system always achieves better results than the single node
execution even considering the unavoidable network delays. We can observe that the performance, for
most applications, is not improved linearly but instead by a smaller rate. Matrix Multiply and Trapez
integration scale almost linearly due to the large parallelism available in their algorithms.

2.2.3 Runtime Dependency Resolution on Distributed Systems
To support runtime dependency resolution on distributed systems we employ the same approach to
the UAS for the distribution the I-Structure entries across all the nodes in the system. When the I-
structure receives an I-Fetch for data that belongs to a remote node, the I-Fetch request is forwarded
to the appropriate node. We employ data forwarding, in which the data produced by a thread is
forwarded to the I-structure of the node where they were distributed at compile time. If data belongs
to the I-Structure of the current node, then the data is forwarded to all nodes that issued an I-Fetch for
that data.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 19 of 34

2.3 Fine-tuning the TERAFLUX Frame Memory for 1024 cores (UNISI)
Within the Teraflux project, a general template for the architecture of the envisioned Data-Flow target
machine has been defined (see deliverables D6.1 [2], D6.2 [3] and milestone M7.1 [4]). The template
sets basic features that specific architectural implementations must have in order to efficiently execute
Data-Flow threads. As detailed in deliverable D6.1 and D6.2, the target machine architecture is
organized hierarchically into nodes, each of them clustering a set of cores, the last levels of cache
memory, the TSU, the FDU, and one or more memory controllers. All the resources are connected
through a dedicated interconnection system (e.g., a NoC), both at the intra-node level and at the inter-
node level. A picture of the reference architecture can be found in D6.2 (Figure 1 of page 12), and is
reproduced in Figure 7 for completeness.

With the aim of completely distributing both the thread scheduling and fault detection activities, the
thread scheduler and the fault detection elements are split into a node-level unit, and a core-level unit
(hereafter we will refer to the thread scheduler as the Distributed Thread Scheduler - DTS). The DTS
is responsible for all the activities concerning the thread life-cycle. In particular it is responsible for
allocating frames, keeping the list of waiting threads, keep the list of executable threads, and
distributing executable threads among the available cores. All these activities are strictly related to the
adopted memory model, supporting the thread execution model ([5,6,7,8]).

In the following, we describe a first attempt to define a fine-tuned architectural support for executing
Data-Flow threads based on T* ISA extension (T* is an extension of the x86-64 Instruction Set
Architecture [9,10,11]). UNISI started evaluating the implementation of frame memory to manage
DF-threads. As first test we verified that it is possible to execute the very same programs (e.g.,
Fibonacci and Matrix Multiply) both on: (i) single node machine with 32 cores, and (ii) multi-nodes
machine with a total of 1024 cores (see also figure 7 and figure 8).

Examples

With the aim of developing and fine-tuning the frame memory support to DF-threads execution in a
DTA-style, UNISI considered an implementation of the architectural template presented in D6.1 ([2])
and D6.2 ([3]). In particular, frame memory support for DF-threads has been implemented within the
common simulation infrastructure (i.e., the COTSon simulator), and evaluated using two different
simple benchmark applications: Fibonacci and Matrix Multiply. The purpose of these experiments is:
(i) to demonstrate that the frame memory structure envisioned within the TERAFLUX consortium
correctly works, and (ii) that the system supporting frame memory can scale almost linearly with the
increase of the number of available cores (see also Figure 8 and Figure 9).

Fibonacci (single- and multi-node)

The Fibonacci benchmark application recursively computes the Fibonacci integer sequence, given the
integer number for which the computation has to be performed. The benchmark exploits T* ISA
extensions.

The advantage of a T* like architecture is demonstrated by the fact that we are now able to distribute
the computation of the same T* binary not only on the cores within a single node but also among the
cores of several nodes. UNISI evaluated the benchmark both in the case of a 32 cores single-node
TERAFLUX machine (i.e. following the template architecture described in D6.2, Section 2.1 – [3]),
and in the case of a multi-nodes (with 32 cores per node) TERAFLUX machine with a total of 1024

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 20 of 34

cores. Figure 8 shows the results obtained running the Recursive Fibonacci benchmark calculating the
40th element of the Fibonacci sequence. Left and right graphs in Figure 8 shows thespeedup, when
considering respectively the single-node and multi-nodes simulated machine. As shown in the two
graphs, the system performs with an almost linear scaling, demonstrating the correctness of the frame
memory implementation and the ability too seamlessly distribute the computation across several
nodes.

1

2

4

8

16

32

1 2 4 8 16 32

S
p

e
e

d
u

p
 (
lo

g
2

)

Number of cores

Speedup within a SINGLE-NODE FIB (40)

FIB (40)
16

32

64

128

256

512

1024

32 64 128 256 512 1024

S
p

e
e

d
u

p
 (
lo

g
2

)
Number of cores

Speedup on MULTI-NODE FIB(40)

FIB (40)

Figure 8: Speedup expressed on a log2 scale for the Recursive Fibonacci benchmark, computing the 40
th

element of the Fibonacci sequence. The T* ISA extension allows the benchmark to scale

 almost perfectly both in the single-node and in the multi-node

Matrix Multiply (single- and multi-node)

Similarly to the previous case, Matrix Multiply allowed UNISI to evaluate the behaviour of a single-
and multi- nodes machine with the support for the frame memory. The benchmark computes the
multiplication of two square matrixes of the same size. UNISI has tested the benchmark with matrices
of different sizes. The Matrix Multiply benchmark has been generated in the executable form, which
exploits T* ISA extensions ([9,10,11]). Moreover, UNISI evaluated the benchmark both in the case of
a 32 cores single-node TERAFLUX machine, and in the case of a multi-nodes TERAFLUX machine
with a total of 1024 cores and 32-cores per node. Similarly to the previous example, Figure 9 shows
the results obtained running the benchmark application computing the matrix multiplication for two
square matrices with a size of 512x512. Left and right graphs in Figure 9 show the speedup, when
considering respectively the single-node and multi-nodes simulated machine. As shown in the two
graphs, again, the system performs with an almost linear scaling, demonstrating the correctness of the
frame memory implementation and the advantage of T*.

1

2

4

8

16

32

1 2 4 8 16 32

S
p

e
e

d
u

p
 (
lo

g
2

)

Number of cores

Speedup within a SINGLE-NODE MMUL(512)

MMUL(512)
16

32

64

128

256

512

1024

32 64 128 256 512 1024

S
p

e
e

d
u

p
 (
lo

g
2

)

Number of cores

Speedup on MULTI-NODE MMUL(512)

MMUL(512)

Figure 9: Speedup expressed on log2 scale for the Matrix Multiply benchmark, using input matrices with a

size of 512x512. The T* ISA extension allows the benchmark to scale almost perfectly

both in the single-node and in the multi-node case

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 21 of 34

2.4 Instruction execution (UNISI)
The architecture implementation directly supports the life-cycle of DF-threads, by means of the T*
instruction set extension (T* ISA) [9,10,11]. Currently the ISA extension accounts for four
instructions that are suited for allocating and deallocating frames during the initial and the final phases
of DF-threads’ life (namely TSCHEDULE and TDESTROY, described in Section 3.3.1), and for
accessing the frame memory during the DF-threads execution (namely TREAD and TWRITE,
described in Section 3.3.2). From the architectural viewpoint, the management of frames accesses can
be seen as mediated by the Memory Management Unit (MMU), whose functions are extended in
order to correctly addressing the frame memory (the exact mechanisms for managing the memory
virtualization are currently under research).

2.4.1 DF-threads life cycle (TSCHEDULE, TDESTROY)
The main Distributed Thread Scheduler (DTS) internal structures in the L-TSUs are (the area cost has
been evaluated in the second year, D6.2, section 2.4): the Waiting List/Table (WL or WT) and the
Pre-Load Queue (PQ or PLQ).

Assuming that each core has the capability of managing the information of nF frames: the WT holds
up to nF DF-Thread continuations (i.e., a tuple <IP,FP,SC, …>, IP=Instruction Pointer, FP=Frame
Pointer, SC=Synchronization Count), whose input frame is waiting for coming data; the PLQ queues
up to nF DF-Thread continuations (in this case SC==0, so that field is not present), which are globally
ready to be executed.

Please note that the DTS still retains the possibility to assign the DF-threads as it retains productive
(i.e. respecting the power/ temperature/performance/resilience envelope) until the last moment.

The main Distributed Thread Scheduler (DTS) internal structures in the D-TSUs are (as evaluated in
the second year, D6.2, section 2.4): the Free Frame Table (FFT) and the Pending Tschedule Request
Queue (PTQ) are in the D-TSU.

Assuming that each node contains m cores: the FFT holds m entries that, at any time and for each
core, track the Free Frames Number (FFN); the PTQ queues up to nPTQ tuples consisting of the ID of
the Core (CID) that issued a TSCHEDULE operation that cannot be served locally to such core or
immediately (i.e., <CID, IP, SC> or the CID and the TSCHEDULE parameters).

The Core Record (CR) is another per-core internal structure that maintains constantly updated
information such as: Power, Temperature, Faultiness. This structure could be placed either at Core
Level (as initially designed in D6.2), Node Level or globally.

Table 1: Description of TSCHEDULE and TDESTROY T* instructions

T* instruction Description

TSCHEDULE

1. At the execution stage in the pipeline of a Processing Unit, a frame request is sent to the L-
TSU (indicating also other associated info such as <TSCHEDULE, IP, SC>);

2. The request is sent to the node’s D-TSU, via the local interconnect;

3. The requests from any core arriving to such D-TSU are queued in the PTQ ;

4. The D-TSU sees the node availability of frames through the FFT: after a FFT lookup the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 22 of 34

frame request is served preferably in the requesting node or wherever there is frame
availability (in this step an assignment policy can guide the decision);

5. The D-TSU structures (FFT, PTQ) are updated;

6. The L-TSU structures (WT, PLQ) are updated;

7. The requesting core receives the FP to the available frame and the instruction execution
terminates;

Note: some implementation trick (virtual FPs or TIDs) could be used to make the above
operations faster.

TDESTROY

1. At the execution stage in the pipeline of a Processing Unit, a frame deallocation (and
DF-thread completion request) is sent to the L-TSU (indicating also other associated
info such as <TDESTROY, FP>);

2. The request is sent to the node’s D-TSU, via the local interconnect;

3. The L-TSU structures (WT, PLQ) are updated;

4. The D-TSU structure (FFT) is updated and the instruction execution terminates.

2.4.2 DF-threads frame memory interaction (TREAD, TWRITE)
Similarly to the previous sub-section, the following Table 2 shows the details about the interaction of
the processing unit, the L-TSU, and the D-TSU during the execution of the TREAD and TWRITE
instructions. The former allows a DF-thread to read data from its assigned frame, while the latter is
used to write data in the frame of consumer(s) DF-thread. The interaction implements the architectural
template described in D6.2, section 2.4 [3].

Table 2: Description of TREAD and TWRITE T* instructions

T* instruction Description

TREAD

1. At the execution stage in the pipeline of a Processing Unit, the PU sends a <TREAD, FP,
Offset> request to the L-TSU;

2. The L-TSU returns the value read from the frame memory pointed by FP, at the specified
offset.

TWRITE

1. At the execution stage in the pipeline of a PU, a <TWRITE, FP, Offset, Data> request is
sent to the L-TSU;

2. The write operation can proceed along the memory hierarchy as any other write operation;

3. The SC associated to the DF-Thread’s Frame (that is detected by the effective address being
contained within such Frame address range) should be decremented:

4. The core (either local or remote) that detects a write belonging to the Frames that it manages
will be responsible to update the Frame’s SC.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 23 of 34

2.5 TaskSs (BSC)
Objectives

The goal of this work is to implement a functional prototype of the Task Superscalar design presented
by Etsion et al. [12,13]. To achieve this goal a simple but functional implementation of the hardware
design has been selected. This prototype is shown in Figure 9. As it can be seen the Task Superscalar
frontend employs a tiled design, and is managed by an asynchronous point-to-point protocol. It is
composed of four different modules: Pipeline gateway (GW), task reservation stations (TRS), object
renaming tables (ORT), and object versioning tables (OVT).

The GW is responsible for pushing the flow of tasks into the pipeline including: allocating TRS space
for new tasks, distributing tasks to the different modules, and blocking task generating threads
whenever the pipeline fills.

TRSs store the meta-data of the in-flight tasks and, for each task, track the readiness of its parameters.
To do this, TRSs maintain the data dependency graph, communicating to each other in order to relate
consumers to producers and notify consumers when data is ready.

The ORTs match memory parameters to the most recent task accessing them, and thereby detect
object dependencies. Furthermore, each ORT has exactly one OVT associated with it. The OVT
tracks all the live versions of every parameter the associated ORT stores. That helps TRSs to maintain
the data dependency graph. The functionality of the OVTs (and their associated ORT) therefore
resembles that of a physical register file, but only to maintain meta-data of parameters. Effectively,
the OVT also manages anti- and output-dependencies, either through parameter renaming, or by
chaining different bidirectional (inout) parameters and unblocking them in-order.

The implemented prototype is composed by the minimum number of modules that maintain the
prototype functional and the Task Scheduler has been replaced by a Ready Queue (RQ) that will
dispatch tasks following a simple Round-Robin protocol.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 24 of 34

Figure 10: Implemented prototype of the Task Superscalar architecture

Current Status

Currently all the modules that compose the prototype are completely functional when simulated and
isolated from the rest of the system. Also, all of them and their corresponding memories have been
synthesized targeting commercial devices. To accomplish this goal the modules' design and VHDL
code have been modified to accomplish the constraints imposed by such devices (as available free
memory or registers). The next step is connecting all the modules and simulating the resulting system
to verify its correct behavior. After that, the whole system will be synthesized and its performance
will be measured.

The improvements made this year are the following:

• The functional simulation of all the modules has been finished.

• The network has been optimized to decrease the number of packets and the number of
connections needed between modules, while maintaining the same functionality.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 25 of 34

• All the memories have been synthesized “standalone” targeting a commercial FPGA
device. Their design (HDL code) has been tuned to better suit the constraints of real
FPGA devices.

• All modules have been synthesized “standalone” targeting a commercial FPGA

device.

• The Finite State Machines (FSM) of all the modules have been optimized in order to
shorten the number of cycles needed to process the packets as shown in Table 1.

Results

At this point we can present the first results obtained by the hardware implementation of the
prototype. Table 3 shows the processing time that the Finite State Machine (FSM) of every module
needs to process an incoming packet.

Table 3: Latencies of processing the packets.

Packet Processing latency Responsible
Unit

Size (bits)

ContIssue 2 cycles GW 24

Create Version • 2 cycles if first time (input or output)
• 3 cycles if Not first time and input
• 4 cycles if Not first time and output

OVT 240

DataReady 2 cycles TRS 64

DropParam 2 cycles OVT 40

DropVersion • 2 cycles for deleting the last version
• 3 cycles for deleting the last version

and the previous one

ORT 120

Finish 4 cycles + 2 additional cycles for loading
each parameter

TRS 88

Forming Execute
packet

1 cycle (for loading meta-data of a task) +
2 cycles for loading each parameter + 1
cycle for sending the task to the ready
queue

TRS 176+(#param*75)

IssueAck 2 cycles GW 24

Issue • 5 cycles for tasks without any
parameter

• 3 cycles for tasks with at least one
parameter + 2 additional cycles for
each parameter (using ParamTRS (200
bits) or DirectParam (96 bits) packets)

TRS 160

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 26 of 34

ParamORT 2 cycles ORT 168

Also we have results from synthesis of each module isolated from the rest of the system (but including
their local memories). Table 4 shows a selection of these results as maximum working frequency,
slice logic utilization including the number of slice flip flops (FFs, the number of one-bit registers
used in the whole FPGA) and slice look-up tables (LUTs) that are used as logic or distributed RAM or
even as shift registers. Macro Statistics include the number of required resources such as registers (R),
comparators (C), multiplexers (M), adders/subtracters (A), tri-state buffers (T) and xor gates (X).
Finally, the table presents the % of use that every module represents in each target FPGA (the Xilinx
xc7vh290t that has the smallest number of LUTs among the available devices of its family and the
Xilinx xc7v2000t that is the biggest one in the family [14]). The table also includes the results for the
FIFOs and Arbiters needed to implement the network connections and an estimation (total) of how
many resources will use the whole system once all the modules are connected.

Table 4: Synthesis result of main modules (R:registers, M:multiplexer, A:adder/subtractor, C:comparator , T:tristate
buffers, X:xor).

Component Freq.
(MHz)

#Slice
LUTs

#Slice
FFs

Macro Statistics Usage of
xc7vh290t

Usage of
xc7v2000t

GW 389.63 9756 600 455R,4A,198M 4.4% 0.8%

TRS 142.93 39771 4800 1970R,9A,2C,945M,

497X

18% 3.2%

OVT 297.40 26843 2917 919R,1A,266M 12.3% 2.2%

ORT 201.57 28067 13654 8856R,21C,1137M,

8427X

13% 2.3%

FIFOs 498.32 8190 4770 108R,54A,90M 3.7% 0.6%

Arbiters 703.60 3102 2397 768R,771M,768T 1.4% 0.25%

Total 142.93 115729 29138 13094R,3407M,68A,

268T,8924X

53% 9.5%

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 27 of 34

2.6 TM Support (UNIMAN)
Transactional Memory (TM) attempts to simplify concurrent programming by allowing a group of
load and store operations to execute in an atomic way. It is a concurrency control mechanism
analogous to database transactions for controlling access to shared memory in concurrent computing.
TM systems can exist in hardware, software or as hybrid implementations. This discussion is related
to the hardware implementation of TM systems.

TM hardware must perform a number of tasks.

Transaction modifications are isolated from the rest of the system until commit time through data
versioning.

The system detects and resolves read-set and write-set conflicts.

Transaction commits appear to occur atomically.

In case of a conflict leading to an aborted transaction, a consistent state is reached after rewinding.

Transactional mechanisms are being designed while keeping following requirements under
consideration.

Performance should be achievable without an undue burden on the programmer.

The system should scale gracefully to a large size with large amounts of concurrency.

The system should be able to cope with, and if possible exploit, a hierarchical organization of cores
into nodes (clusters).

Our research at Manchester University aims to answer following questions regarding TM hardware
system.

Is it better to exchange information about sharing between transactions as they go along or to do so
only at the commit time?

How can we leverage the node (clustered) architecture to provide good performance for transactions?

Is it useful to have different local and global mechanisms?

What sharing patterns exist across a broad range of workloads?

What is the best balance between communication, storage and false sharing?

We have developed a TM implementation on COTSon that performs lazy version management and
lazy conflict detection. The initial implementation is similar to Stanford TCC implementation [15].

The programmer only marks TM-Begin() and TM-End() regions and the underlying system ensures
that the transactions run concurrently while maintaining Atomicity, Consistency and Isolation
properties.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 28 of 34

This model has been extended and a scalable version of the system has been developed. The scalable
system is also a purely lazy implementation but the commit process takes advantage of the
hierarchical organization of cores into nodes (clusters). The committed changes are broadcast within
the node (cluster) but outside the node the invalidations are sent only to the nodes that were actually
sharing the committed data. In order to implement the scalable TM system we have used a directory
based cache coherence protocol as a starting point for our baseline system. The directories are
extended with information about sharing of transactional data across nodes. The implementation is
available on [18], as described in D7.4.

Figure 11 shows the diagram of the scalable model that we are evaluating.

Figure 11: Clusters with extensions to cache and directory to support Transactional Memory

In this system each core has its own private L1 and L2 cache. L1 is write-through while L2 is a write
back cache. Within each node (cluster) there is a shared L3+remote cache, a directory and part of
distributed memory.

The directory tracks transactional memory regions and maintains information at cache line
granularity. Each directory entry contains a bit vector to represent the sharers. Sharers are maintained
at the cluster level.

L1 and L2 caches are used to maintain data versioning. During commit, a transaction first occupies all
the directories in its R/W-set and marks all the cache lines in its write-set. The occupy and mark
process is similar to Scalable TCC [15]. After completing the occupy phase the transaction locks the
L3 controller and then writes back all its modified TM lines to the shared L3. After writing back all its
data, the transaction unlocks the L3 controller and then sends commit messages to all the directories
in its write set so that they can send the relevant invalidations. The write back is required so that L3
contains the most up to date copy and can respond to any requests to the cluster.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 29 of 34

There are many optimizations possible to our initial implementation. For example using bloom filters
to reduce the size of our read/write-set and to lock directories at lower level of granularity [16].

We have developed a functional model of purely lazy TM support into SimNow (c.f. D7.4). This had
to be done through a special mechanism, since COTSon interfaces with SimNow in a manner such
that functional modifications to execution are not possible. This included interacting with AMD as
well as our partners at HP, with AMD extending some interfaces into SimNow to allow the
implementation. A more sophisticated model for timing transaction commits is currently being
developed [18].

For the purpose of evaluation, we have run two of the STAMP benchmarks on the scalable TM
hardware. KMeans implements a clustering algorithm. This has a parallel phase to assign objects to
clusters, and a serial phase to recalculate cluster centres. Vacation simulates a travel booking database
for cars, hotels and flights. Each table (cars, hotels, flights) is represented as a transactional hash table.
Reservations as performed as transactions, which change the availability of each booked item in the
database.

Figure 12. shows the performance results of these benchmarks. Both benchmarks are available in [18].

Figure 12: Performance results for Kmeans and Vacation Benchmarks

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 30 of 34

3 Program Analysis Tool (UCY)
Paraver [17] offers a graphical representation useful in performance analysis of parallel applications.
It supports a detailed qualitative and quantitative analysis of the performance bottlenecks of parallel
applications. Using the Paraver tool the programmer has the ability to optimize the performance of the
application by focusing on the main performance bottlenecks and to minimize the hardware
requirements. Paraver imports trace files of the application that are produced by the EXTRAE tool. In
general, Paraver offers detailed quantitative analysis of application performance, simultaneous
comparative analysis of multiple trace files and quick analysis of large traces files. Originally, Paraver
supports MPI, OpenMP, Pthreads, CUDA, and OmpSs applications.

Through the Paraver tool the user can monitor the degree of parallelism of applications, the timeline
of the processor during execution, the evolutionary process of changing the values of a specific
(preselected) variable, monitor the load balance of different parallel loops and the instruction/cycle
ratio of each thread. The Paraver tool can also be used for simultaneous analysis of different trace
files that can help the programmer compare different versions of the same code, compare the behavior
of the application on two different machines, find the differences between two different executions of
the same application and finally determine the impact of the application problem size on the
execution.

For our work, we were interested in adapting this tool to the DDM-style runtime system. To produce
performance results for a DDM-style application we embedded function calls to the EXTRAE API
inside the application code. Passing then the application with the EXTRAE tool we generate the trace
file for the application that will be used as input to the Paraver tool to produce performance analysis
results for the original DDM-style application.

In an attempt to analyze the performance of the TSU, we embedded EXTRAE API calls in the most
important functions of the TSU.

The calls added to the code are: (a) by the preprocessor tool and (b) to a version of the runtime
system. An example of such calls is presented in Figure 13 bellow.

Figure 13: Extrae calls added to DDM-style program to monitor events by Paraver

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 31 of 34

Figure 14: TSU performance analysis when executing MULT

The use of such a tool is very important to the tuning of the model as it is possible to observe the
bottlenecks of the execution in the different runtime functions and also the use of the most relevant
data structures.

In Figure 14 we present an example of the TSU performance analysis when running the MULT
application. The results show the sizes of the Acknowledgement Queue (AQ), the Waiting Queue
(WQ) and the Fire Queue (FQ). The first chart shows in color code the actions which the TSU and
the application were performing during the execution time (Some of the important colors for the first
line, which represents the TSU, are following: White - Decrement Consumers, Yellow – Moving
threads from WQ to FQ, Pink – Checking the sizes of the queues). The second chart shows the size of
the AQ, the third the size of the WQ and the last one shows the size of the FQ.

On the first chart we can see in cyan the idle time of the worker, which is the time spent until the TSU
assigns work to the specific worker. If we follow a hypothetical vertical line to the next charts we can
get a further understanding of the reasons for this fact. In the second chart, during the idle time we see
the TSU serving AQ tasks and thus decreasing the remaining data in the queue. In the third chart we
have the WQ which gets more entries as the AQ is being served, we can clearly see that there is a
threshold were the TSU stops adding records. On the last chart we have the FQ where we can see
again that the TSU assigns jobs to be executed for the current worker using again a threshold. From
this information it is possible to infer that the threads being executed are too small for the processing
speed of the TSU and that is the reason for the idle periods where the worker has no work to fetch
from the FQ.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 32 of 34

4 Conclusions and Future Work (UCY)
In this document we have presented the achievements for the third year of the TERAFLUX project
regarding Task 6.4. We have included extensions and optimizations of the model, description of
modules to support the model, and analysis tools. The contributions reported are from the different
partners that participate in this Task.

We described techniques to improve the execution of applications such as the dynamic resolution of
the dependencies. We also presented initial results from T* by executing an unmodified binary also
on multiple nodes, and finally the Transactional Memory support. We closed with the presentation of
a tool that allows for the monitoring of runtime execution and data structure utilization as to identify
potential bottlenecks and performance issues in applications.

As Task 6.4 extends for one more year, in the next year we will finalize some of the techniques
mentioned in this report. In particular we plan to continue the work on prefetching, the use of
scratchpad memories, explore more comprehensive scheduling policies, and the memory model. More
details will also be explored concerning the implementation of the hardware modules such as their
timing and power consumption.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 33 of 34

References
[1] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. 1989. I-structures: data structures for

parallel computing. ACM Trans. Program. Lang. Syst. 11, 4 (October 1989), 598-632.

[2] S. Arandi, P. Trancoso, P. Evripidou, R. Mameesh, R. Giorgi, I. Watson, Y. Etsion, T.
Ungerer, Basic TERAFLUX Architecture and Basic Execution Model (internal use),
TERAFLUX Deliverable – D6.1.

[3] S. Arandi, C. Kyriacou, G. Michael, G. Matheou, N. Masrujeh, P. Trancoso, P. Evripidou, R.
Giorgi, Z. Yu, S. Collange, A. Scionti, B. Khan, S. Khan, M. Lujan, I. Watson, Y. Etsion, T.
Ungerer, B. Fechner, A. Garbade, S. Weis, Advanced TERAFLUX Architecture, TERAFLUX
Deliverable – D6.2.

[4] R. Giorgi, R. Mameesh, Y. Etsion, N. Navarro, R. Badia, M. Valero, F. Bodin, P. Faraboschi,
A. Cohen, A. Mendelson, D. Shamia, S. Yehia, S. Girbal, P. Bonnot, A. Garbade, S. Weiss,
T. Ungerer, S. Evripidou, P. Trancoso, I. Watson, M. Lujan, C. Kirkham, List of architecture
requirements, TERAFLUX Milestone – M7.1.

[5] R. Giorgi, A. Scionti, A. Portero, P. Faraboschi, Architectural Simulation in the Kilo-core Era,
Architectural Support for Programming Languages and Operating Systems (ASPLOS 2012),
poster presentation, London, UK, March 3–7 2012, ISBN 978-1-4503-0759-8.

[6] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro, A. Garbade, S. Weis, T.
Ungerer, R. Giorgi, Simulating the Future kilo-x86-64 core Processors and their
Infrastructure, 2012 Spring Simulation Multiconference (SpringSim'12), March 26 - 29, 2012;
Orlando, FL, USA.

[7] H. Nam, A. Portero, A. Scionti, R. Giorgi, A Novel Architecture and Simulation for Executing
Decoupled Threads in Future 1-Kilo-Core Chip, ACACES Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems. July 11, 2012. p.83-86.
Academia Press, Ghent (Belgium) ISBN 978-90-382-19.

[8] A. Portero, A. Scionti, M. Solinas, H. Nam, R. Giorgi, Simulation infrastructure for the next
kilo x86-64 Chips, ACACES Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems. July 11, 2012. p.87-90. Academia Press, Ghent
(Belgium) ISBN 978-90-382-19.

[9] A. Portero, Z. Yu, R. Giorgi, T-Star (T*): An x86-64 ISA Extension to support thread
execution on many cores, HiPEAC ACACES-2011, ISBN:978 90 382 17987, Fiuggi, Italy,
July 2011, pp. 277-280.

[10] R. Giorgi, TERAFLUX: Exploiting Dataflow Parallelism in Teradevices, ACM International
Conference on Computing Frontiers - 2012 (CF’12), May 15–17, 2012, Cagliari, Italy. ACM
978-1-4503-1215-8/12/05.

[11] R. Giorgi, A. Portero, C. Concatto, R. Mameesh, Z. Yu, Y. Etsion, L. Villanova, N. Navarro,
R. Badia, M. Valero, P. Faraboschi, A. Cohen, D. Shamia, A. Mendelson, A. Garbade, S.
Weiss, T. Ungerer, P. Trancoso, S. Evripidou, B. Khan, S. Khan, M. Lujan, C. Kirkham, I.
Watson, Definition of ISA extensions and custom devices and External COTSon API
extensions, TERAFLUX Deliverable – D7.2.

[12] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M.
Valero. Task Superscalar: An out-of-order task pipeline. pages 89-100, 2010.

[13] Y. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M. Valero. Task

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D6.3
Deliverable name: Fine-tuned TERAFLUX Execution Model
File name: TERAFLUX-D63v14.docx Page 34 of 34

Superscalar: Using processors as functional units. 2010.

[14] http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm, visited December
2012.

[15] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh, W. Baek, C. Kozyrakis,
and K. Olukotun. A scalable, non-blocking approach to transactional memory. Proceedings
of the International Symposium on High Performance Computer Architecture, February
2007.

[16] Xuehai Qian, Wonsun Ahn, and Josep Torrellas. Scalablebulk: Scalable cache coherence for
atomic blocks in a lazy environment. Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 447–458, 2010.

[17] Barcelona Supercomputing Center. Paraver: Performance Analysis Tool: Details and
Intelligence. http://www.bsc.es/computer-sciences/performance-tools/paraver

[18] http://cotson.svn.sourceforge.net/viewvc/cotson/

