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Glossary  
Auxiliary Core  A core typically used to help the computation (any other core than service 

cores) also referred as “TERAFLUX core” 
BSD BroadSword Document – In this context, a file that contains the SimNow 

machine description for a given Virtual Machine 
CDG Codelet Graph 

Cluster Group of cores (synonymous of NODE) 
Codelet Set of instructions 

COTSon Software framework provided under the MIT license by HP-Labs 
DDM Data-Driven Multithreading 

DF-Thread A TERAFLUX Data-Flow Thread 
DF-Frame the Frame memory associated to a Data-Flow thread 

DVFS Dynamic Voltage and Frequency Scaling 
DTA Decoupled Threaded Architecture 
DTS Distributed Thread Scheduler 

D-TSU Distributed Thread Scheduling Unit 
Emulator Tool capable of reproducing the Functional Behavior; synonymous in this 

context of Instruction Set Simulator (ISS) 
D-FDU Distributed Fault Detection Unit 

L-Thread Legacy Thread: a thread consisting of legacy code 
L-FDU Local Fault Detection Unit 
L-TSU Local Thread Scheduling Unit 
MMS Memory Model Support 

NIU Network Interface Unit 
NoC Network on Chip 

Non-DF-Thread An L-Thread or S-Thread 
Node Group of cores (synonymous of Cluster) 

OWM  Owner Writeable Memory 
OS Operating System 

Per-Node-Manager A hardware unit including the DTS and the FDU 
PhyGAS Physical Global Address Space 

PK       Pico Kernel 
Sharable-Memory Memory that respects the FM,OWM,TM semantics of the TERAFLUX 

Memory Model 
S-Thread System Thread: a thread dealing with OS services or I/O 

StarSs A programming model introduced by Barcelona Supercomputing Center 
Service Core A core typically used for running the OS, or services, or dedicated I/O or 

legacy code 
Simulator Emulator that includes timing information; synonymous in this context of 

“Timing Simulator” 
TAAL  TERAFLUX Architecture Abstraction Layer 
TBM  TERAFLUX Baseline Machine 
TLPS Thread-Level-Parallelism Support 
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TLS Thread Local Storage 
TM  Transactional Memory 

TMS Transactional Memory Support 
TP Threaded Procedure 

UAS Unified Address Space (a.k.a. PhyGAS, Physical Global Address Space) 
Virtualizer  Synonymous of “Emulator” 

VCPU Virtual CPU or Virtual Core 
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Executive Summary (UCY) 
This document describes the work that was performed during the third year (M25-36) of the 
TERAFLUX project within the context of Task 6.4 (M25-48) “Fine-Tuned Execution Model”. Note 
that this task extends for one more year and thus the work here presented does not reflect the 
completed objectives for this task but limits itself to the achievements for the third year (M25-36). 
Notice also that Task 6.5 (M25-48) “Abstraction Layer” was also active during this year but the 
results of the work in that task are not reported for the first year and are instead described in D6.4 at 
the end of the project. Milestone M6.3 reports the advances regarding the work for Task 6.5 for the 
first year. 

The work in Task 6.4 was a collaboration work by the different partners involved and thus we report 
here the contribution of each partner. 

• UCY developed and evaluated a runtime dependency resolution mechanism for the 
DDM_style of the TERAFLUX execution model 

• UCY implemented and tested the execution of a DDM-style application on a multi-node 
system 

• UNISI designed and evaluated a multi-node TSU working thanks to the implementation of the 
T* ISE 

• BSC presented the evolution of the TaskSs implementation 
• UNIMAN showed the TM support for the TERAFLUX architecture 
• UCY presented a program analysis tool based on PARAVER 

 
Our achievements show that our goals for this period have been met.  
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1 Introduction (UCY) 
The basic TERAFLUX execution model was presented in the first two years of the project. This 
model is based on the dataflow concepts, where dataflow is used as the policy for scheduling threads 
(collections of instructions). Transactions are added to the dataflow threads as a way to explore more 
parallelism and improve the programmability. Several different types of dataflow threads were 
defined, as well as the memory model. In addition, we have adopted a template for the architecture 
proposed within the WP6, which is depicted in Figure 1. More details on the execution model and 
architecture can be found in D6.1 and D6.2. 

 

Figure 1: TERAFLUX Architecture Template 

In year 3 of the TERAFLUX project, within the context of the architecture work package (WP6), 
most work was done towards exploring optimizations to the basic model and the implementation and 
development of the hardware modules. This work was done as part of Task 6.4 (M25-48) “Fine-
Tuned Execution Model”.  

This year, the partners have proposed ways to extend the model as to allow for the efficient execution 
across different nodes of multi-cores. This required extensions to the D-TSU, which are reported in 
this deliverable. The implementation of the memory model proposed in previous years and the 
extension of the T* instruction set have also been part of the efforts performed during this year.  

While it is well known that the dataflow model is able to exploit the maximum available parallelism, 
making it efficient is a challenge. This is especially true for execution models that depend on the static 
definition of the dependencies. For this analysis programmers are many times faced with the task of 
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identifying the dependencies among threads. In some cases this might not be possible as dependencies 
may only be determined at runtime. Last year we have developed and tested the use of I-structures at 
the Node level. During this year we have experimented with an efficient mechanism to extend the 
execution for distributed systems. An alternative approach is to allow the use of dynamic dependence 
through the TSCHEDULE instruction as done in the T* approach (c.f. D7.1, D6.2), widely adopted 
and described in D4.6, D5.3 and D7.4. 

In terms of hardware modules to support the execution model, in addition to the Thread scheduling 
modules for the support of DTA- and DDM-style dataflow threads, which are reported in D7.4, during 
this year there was a special effort in developing the modules for support of coarse grain threads (the 
TaskSs module) and transactions (TM module). The former allows for the system to explore 
dynamically coarse-grain dataflow threads as a combined or alternate model to the fine-grain DTA- 
and DDM-style dataflow threads. The latter helps in the support of the efficient execution of 
transactions for exploring the access to shared modifiable variables within dataflow threads. 

Lastly, the successful execution of a parallel application depends also on the careful analysis of its 
execution and overcoming eventual bottlenecks in either the application or the runtime support for the 
proposed model. This year we have adopted an existing tool for the analysis of the execution of 
TERAFLUX applications. With this tool it is possible to analyze the status of the different queues in 
the runtime and the time spent in different routines of both the application and runtime. This analysis 
helps in tuning the runtime and also determining bottlenecks in the application.  

Overall, the work presented in this document reflects the work in improving the execution model 
proposed in the previous two years. This work was performed within Task 6.4 but it is relevant to note 
again that this task spawns for one more year and thus we still expect the evolution of the model to 
continue for the next year of the project. This upcoming evolution will be presented at the end of next 
year as an annex to this deliverable. 

1.1 Document structure 
This year we focused on fine tuning the execution model. The main work is on the optimizations and 
support for the execution model. This is presented in Section 2. The first optimization presented is the 
work on exploiting the runtime dependency resolution. Then we present the support for the model to 
allow the distributed execution of applications, the support for the memory model, the T* instruction 
execution, the coarse-grain execution under TaskSs, and the support for Transactional Memory (TM). 
The development of a program analysis tool is presented in Section 3. Section 4 presents the 
conclusions and future work, i.e. the work that is within the context of Task 6.4 but that will be 
completed within the next year.  

1.2 Relation to other deliverables 
The work here presented is based on the material presented in previous deliverables such as D6.1 
where we presented the basic TERAFLUX architecture and model, and D6.2 where we presented the 
advanced TERAFLUX architecture. In addition, aspects of the evolution of the model are closely 
related to the material presented other deliverables presented this year. In D5.3 we have the aspects 
related to the programming model and in particular the addition of transactions to the dataflow model. 
That work results in the TM support module reported in this deliverable.  Another evolution to the 
model is reported in D5.3 regarding the double execution of dataflow threads for the fault-tolerance 
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support. Finally, the modules reported in this deliverable are implemented into the COTSon platform 
and this effort is reported in D7.4. Some initial architectural decision was reported in D7.1. 

1.3 Previous activities referred by this deliverable 
The work reported in this deliverable is based on the work performed in Task 6.1 (Basic execution 
model) where we proposed the dataflow model for the TERAFLUX project and in Tasks 6.2 and 6.3 
(Basic and Advanced architecture definition) where we proposed the architecture for the TERAFLUX 
many-core processor. In this deliverable we present optimizations and implementation issues related 
to the execution model as to exploit the characteristics of the architecture proposed before.  

1.4 Activities referred by this deliverable 
The work performed in TERAFLUX in the context of WP6 in year three (M25-36) was according to 
its two active tasks: 

• Task 6.4 (M25-48) “Fine-Tuned Execution Model” and 
• Task 6.5 (M25-48) “Abstraction Layer”. 

This deliverable focuses on reporting the work from Task 6.4. Notice that this task extends for one 
more year and thus the work here presented does not reflect the completed objectives for this task but 
limits itself to the achievements for the third year (M25-36). The work performed for Task 6.5 is not 
reported in this deliverable but instead will be reported by the end of year four in deliverable D6.4. 
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2 Execution Model Support and Optimization 

2.1 Runtime Dependency Resolution (UCY) 
In this Section we describe the lightweight runtime dependency resolution mechanism using I-
structures. This mechanism was developed for the DDM-style execution model. 

2.1.1 I-Structures 
An I-Structure [1] is a type of storage controller that obeys the single-assignment semantics, i.e. each 
element is written only once but can be read multiple times. If a read request arrives for a data 
element that has not been written yet, the controller defers the read until the write arrives. This 
property of I-Structures provides the synchronization needed for exploiting producer-consumer 
parallelism without the risk of read-write races. The basic idea is to add status bits to the storage cells 
and a queue for holding deferred reads. Using the I-Structure idea is possible to discover the dataflow 
producer-consumer dependencies at runtime.  

The state of each element of the I-structure is depicted in the state diagram in Figure 2.  

and can be one of the bellow: 
• Absent: nothing has been written into the element yet and no attempt has been made to read it. 

A write operation is allowed. This is the entry state. 
• Present:  the element can be read but not written. 
• Waiting: nothing has been written into the element yet, but at least one read request was 

attempted (deferred read). When this cell is written all the deferred reads must be satisfied. 
• Error: a second write to the same element is not allowed thus it results in an error in the 

execution. 
 
 

 
Figure 2: State transition diagram for I-Structure Elements. A read operation referred to as an I-Fetch while a 

write operation as an I-Store 
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2.1.2 Runtime Dependency Resolution 
A typical DDM-style program is statically partitioned into a number of DF-threads. The producer 
consumer dependencies among the threads are also discovered statically. A problem arises when part 
or all of the threads perform read operation(s) on data items whose address is not known at compile 
time, i.e. it is resolved at runtime. In Figure 3 sketches our approach for dealing with runtime 
dependency. We apply the following algorithm for each Data-structure that has runtime dependencies: 

• For every thread t that performs at least one read operation on data items which address is 
resolved at run-time a proxy thread t' is introduced.  

o Thread t' replaces t in all the Consumer Lists of its explicit producer threads, i.e. 
threads that are identified as its producers at compile-time. 

• The RC (Ready Count) of t' is set to the number of explicit producers of t.  
o The RC of t is set to the number of read operations performed on data items with 

addresses resolved at runtime. 
o For every such read a special I-structure Fetch (I-Fetch) request is issued by t' with 

the parameters <address of the data to read, identifier of t, contexts of t>.  
o When the  I-structure receives an I-Fetch request it checks whether the data has been 

stored in that specific address 
�  if the data is present a request is sent to the TSU to decrement the RC of 

thread t,  
� if the data is not present, a request is added into a pending list inside the I-

Structure. 
• For every thread producing data that for is potentially read by t, a special I-structure Store (I- 

Store) request is issued  

 

Figure 3: The top part of the figure depicts a Threaded graph with a run time dependency A[?]. The bottom 

part illustrates our I-Structure approach for DDM 

2.1.3 Evaluation 

In order to study the effect of the performance overhead of the I-Structure operations we compare 
three versions that run on a single node. The first version (C-D) utilizes the Compile-time 
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Dependency resolution. The second version (RC-D) combines both approaches, i.e. part of the 
dependencies are resolved at Runtime (using I-Fetch and I-Store operations) and the rest are resolved 
at Compile-time The third version (R-D) utilizes the Runtime approach for resolving the 
dependencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
A quick description of the applications and their sample code is the following: 

• Cholesky: blocked Cholesky decomposition (SMPSs code examples 
http://www.bsc.es/plantillaH.php?cat_id=425) 

 

 

Figure 5: Speedup comparison: runtime-determined 

dependencies (R-D) vs. runtime & compile-time determined 

dependencies (RC-D) vs. compile-time determined 

dependencies (C-D) approaches 

Figure 4: Execution time comparison: execution time 

using the runtime-determined dependencies 

approach vs. the runtime-determined & compile-time 

determined dependencies approach normalized to 

the execution time using the compile-time 

determined dependencies approaches 
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• LU: blocked LU decomposition (CellSs code examples 
http://www.bsc.es/plantillaH.php?cat_id=421) 

• MatMult: blocked matrix multiplication  

 

Figure 5 depicts the comparison of the performance of the three versions for various thread sizes 
(16x16, 32x32 and 64x64 array decompositions) with input size for these examples two 4096x4096 
matrices. The execution time reported is from the native execution of the application using the DDM-
style model implementation of the TSU at user-level, on a 12-core machine composed of two 6-core 
AMD Opteron processors with 32GB of RAM.  
 
The results demonstrate that, as expected, the best performance is delivered by the version utilizing 
the compile-time approach (C-D), followed by the version utilizing the combination of the compile-
time and runtime approaches (RC-D). Note that for the MatMult benchmark, only the first and third 
versions are available, as the threads in this program have only one data dependency. 

Figure 4 illustrates the execution time of the R-D and RC-D versions normalized to the execution time 
of the C-D version. The results demonstrate that, as we increase the granularity of the threads by 
increasing the size of the blocks the threads operate on, the total number of blocks decreases and so 
does the total number of thread invocations. Consequently the number of I-Fetch and I-Store 
operations decreases, thus reducing the overheads. Moreover, increasing the granularity of the threads 
amortizes the I-Structure operations overheads. 

The results of these executions give us the motive to apply I-Structure to distributed systems as we 
observed good performance on single node execution.  

 

2.2 Multi-node Execution (UCY) 
The original implementation of the DDM-style execution model was for single Muli-core Node. In the 
context of Task 6.4 we have extended this to support the execution of applications across multiple 
Nodes. 

The inherent tolerance for latencies of the execution model allows extending the execution across 
multiple distributed nodes with lesser overhead than other approaches. This is achieved by tolerating 
inter-node latencies resulting from data and synchronization communications with the execution of 
threads. 

To facilitate the distributed multi-node execution: 

1) We developed the Network Interface Unit (NIU), which is a software extension module for 
the DDM-style runtime that allows the execution across an off-chip network. Each node is 
an independent multi-core machine running one D-TSU as many L-TSUs as the number of 
cores, on a conventional OS. 

2) We made changes to existing TSU data structures and created new ones to support the new 
functionality. 

3) We implemented a distributed memory mechanism that allows us to share data throughout a 
set of nodes running a TSU using Global Addressing Space. 
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4) We utilized the Dijkstra–Scholten termination detection algorithm. 
 

Distributed DDM-style programs are fundamentally the same as single-node ones except for:  

(1) the distribution of data across Nodes at startup and during execution, and  
(2) the gathering of data post-execution. 

 
The DDM-style runtime is extended to handle remote memory accesses, resulting from producer and 
consumer threads residing on different nodes. This is handled by forwarding the data to the node 
where the consumer is scheduled to run. DDM-threads enforce the single assignment semantics for 
data exchanged among threads. Thus, traditional coherence-management operations are not required 
for data movements among the nodes. For the distribution of threads across the cores of the system 
nodes we employ a static scheme, in which the mapping is determined at compile time and does not 
change during the execution. This simplifies the scheduling and data management tasks and, in the 
presence of an accurate knowledge of the threads execution loads, can lead to a very efficient and 
balanced parallel execution. It is important to note that a static distribution only specifies where the 
thread will be scheduled once its ready, however, when the thread is ready is decided based on data-
availability. 

The DDM-style runtime adopts a distributed organization consisting of multiple D-TSU units (one per 
node) communicating across the network to coordinate the overall DDM execution, as shown in the 
figure 6. 

 

Figure 6: The Distributed DDM-style Architecture 

Comparing to the original DDM-style architecture reported in the previous deliverables, for the 
support of the distributed execution we made some changes to a few TSU structures: 

• On the Graph Memory (GM), for each node, we only load the meta-data of the threads that 
are expected to execute on that node. 

• The Synchronization Memory (SM) requires extra attention as the allocation of SM entries of 
a thread is directly influenced by the assigned scheduling policy. If a thread is assigned to a 
core using a deterministic policy based on information that is static and shared to all nodes, 
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the TSU has enough information to handle the allocation for the SM implementation. On the 
other hand, if the thread is assigned a custom policy written by the application programmer, 
the SM implementation needs to be re-examined to avoid excessive redundant allocations. In 
the current implementation we allocate the entire range of the SM entries on each node, 
regardless which threads will execute on each node. In the future we need to improve this to 
reduce the amount of memory used by the TSU and build a mechanism that allocates SM 
entries in regards to the scheduling policy. 

 

The rest of the TSU structures remain unchanged. However, we have added two new structures to 
support distributed execution: 

• The Distributed Acknowledgement Queue (AQ): This queue holds the decrement RC requests 
coming from the TSUs on the remote nodes. 

• Forward Table (FT): This table holds the address and size of the data that will be forwarded to 
remote nodes. 

 

When a thread finishes its execution and its consumer is on the same node, an entry is inserted in the 
AQ of the local node D-TSU. If the consumer belongs to a remote node, a message containing the 
invocation (ThreadId, context) is sent to the remote node D-TSU. 

To support this communication a new software module is added to the TSU: The Network Interface 
Unit (NIU).  The NIU is a software module that relies on the underlying network hardware interface. 
We developed our own connectivity layer using non-blocking TCP sockets. The NIU is responsible 
for managing the network initialization, establishing connections with the other nodes in the system 
and providing communication services to the TSUs during the execution. The NIU also supports 
distributing/gathering data across the global address space in the system at startup and post-execution 
of the DDM-style program. Termination is detected using the Dijkstra–Scholten distributed 
termination algorithm. The current NIU implementation uses the available Ethernet network for the 
exchange of messages as it is used in the user-level DDM-style runtime. With the TSU integration 
with COTSon, the NIU will take advantage of the existing interconnection network for faster 
exchange of messages.  

2.2.1 Unified Address Space 
A Unified Address Space (UAS) is supported across all the nodes in the system. We employ data 
forwarding, in which the data produced by a thread is forwarded to the node where the consumer is 
scheduled to run. The distribution of program data in the UAS across the nodes occurs at startup and 
the gathering of the results after the program execution ends. An address referring to the UAS consists 
of the ordered pair (node id, local address). The first component refers to the node identifier and the 
second refers to a conventional main memory address on that node. Coherence-management 
operations are not required between the nodes. The mapping of the program data into the UAS 
depends on the assignment of the program threads. The data of a certain invocations is mapped to the 
part of the UAS belonging to the node where this invocation is scheduled to run. The movement of 
data between producers and consumers running on different nodes during the execution is managed 
automatically by the DDM-style runtime without the intervention of the programmer. 

2.2.2 Evaluation 
For the evaluation of the DDM-style distributed system we used 5 different applications. A quick 
description of these applications and their sample code is the following: 
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• Cholesky: blocked Cholesky decomposition (SMPSs code examples 
http://www.bsc.es/plantillaH.php?cat_id=425) 

• CONV2D: two-dimensional convolution, where a mask is applied to a 2D image (based on 
the code described in http://www.stanford.edu/group/sequoia/cgi-bin/node/185 and found the 
Sequoia SDK examples) 

• IDCT: inverse discrete cosine transform (based on the IDCT kernel in the mpeg library code 
similar to one found in 
http://www.irisa.fr/master/COURS/CAPS/CoursCD/HTML/Codes/ExercicesScap/exercice9/i
dct.c) 

• mult: blocked matrix multiplication  
• trapez: trapezoidal rule of integration 

For the evaluation we used two input data sets for most applications (Cholesky, CONV2D, Mult) and 
their sizes were 4096x4096 and 8192x8192. For IDCT we used 8192x8192 and 16384x16384 due to 
the small execution time of the application. For Trapez we used 657M and 1250M steps. 

.  

Figure 7: Speedup comparison: first two columns present the comparison between identical configurations 

with different input size. Following two columns present the comparison of the previous executions using a 

second identical node through an Ethernet network 

 

In Figure 7 we present the speedup obtained for the execution of four applications, Cholesky, 
CONV2D, IDCT, mult, and Trapez, implemented on the DDM-style model using the user-level 
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software TSU implementation. The speedup reported is compared to the sequential execution of the 
same application. The execution was done natively on two 32-core machines, each composed of four 
8-core AMD Opteron processors and 48GB of RAM. We can see that increasing the problem size 
does not necessarily give us better performance as applications like Cholesky that have "bottlenecks" 
in certain parts of the algorithm which result in performance degradation. Also, we can see that 
doubling the resources by using a second system always achieves better results than the single node 
execution even considering the unavoidable network delays. We can observe that the performance, for 
most applications, is not improved linearly but instead by a smaller rate.  Matrix Multiply and Trapez 
integration scale almost linearly due to the large parallelism available in their algorithms. 

 

 

2.2.3 Runtime Dependency Resolution on Distributed Systems 
To support runtime dependency resolution on distributed systems we employ the same approach to 
the UAS for the distribution the I-Structure entries across all the nodes in the system. When the I-
structure receives an I-Fetch for data that belongs to a remote node, the I-Fetch request is forwarded 
to the appropriate node. We employ data forwarding, in which the data produced by a thread is 
forwarded to the I-structure of the node where they were distributed at compile time.  If data belongs 
to the I-Structure of the current node, then the data is forwarded to all nodes that issued an I-Fetch for 
that data. 
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2.3 Fine-tuning the TERAFLUX Frame Memory for 1024 cores (UNISI) 
Within the Teraflux project, a general template for the architecture of the envisioned Data-Flow target 
machine has been defined (see deliverables D6.1 [2], D6.2 [3] and milestone M7.1 [4]). The template 
sets basic features that specific architectural implementations must have in order to efficiently execute 
Data-Flow threads. As detailed in deliverable D6.1 and D6.2, the target machine architecture is 
organized hierarchically into nodes, each of them clustering a set of cores, the last levels of cache 
memory, the TSU, the FDU, and one or more memory controllers. All the resources are connected 
through a dedicated interconnection system (e.g., a NoC), both at the intra-node level and at the inter-
node level. A picture of the reference architecture can be found in D6.2 (Figure 1 of page 12), and is 
reproduced in Figure 7 for completeness. 

With the aim of completely distributing both the thread scheduling and fault detection activities, the 
thread scheduler and the fault detection elements are split into a node-level unit, and a core-level unit 
(hereafter we will refer to the thread scheduler as the Distributed Thread Scheduler - DTS). The DTS 
is responsible for all the activities concerning the thread life-cycle. In particular it is responsible for 
allocating frames, keeping the list of waiting threads, keep the list of executable threads, and 
distributing executable threads among the available cores. All these activities are strictly related to the 
adopted memory model, supporting the thread execution model ([5,6,7,8]). 

In the following, we describe a first attempt to define a fine-tuned architectural support for executing 
Data-Flow threads based on T* ISA extension (T* is an extension of the x86-64 Instruction Set 
Architecture [9,10,11]). UNISI started evaluating the implementation of frame memory to manage 
DF-threads. As first test we verified that it is possible to execute the very same programs (e.g., 
Fibonacci and Matrix Multiply) both on: (i) single node machine with 32 cores, and (ii) multi-nodes 
machine with a total of 1024 cores (see also figure 7 and figure 8).  

Examples 

With the aim of developing and fine-tuning the frame memory support to DF-threads execution in a 
DTA-style, UNISI considered an implementation of the architectural template presented in D6.1 ([2]) 
and D6.2 ([3]). In particular, frame memory support for DF-threads has been implemented within the 
common simulation infrastructure (i.e., the COTSon simulator), and evaluated using two different 
simple benchmark applications: Fibonacci and Matrix Multiply. The purpose of these experiments is: 
(i) to demonstrate that the frame memory structure envisioned within the TERAFLUX consortium 
correctly works, and (ii) that the system supporting frame memory can scale almost linearly with the 
increase of the number of available cores (see also Figure 8 and Figure 9). 

Fibonacci (single- and multi-node) 

The Fibonacci benchmark application recursively computes the Fibonacci integer sequence, given the 
integer number for which the computation has to be performed. The benchmark exploits T* ISA 
extensions.  

The advantage of a T* like architecture is demonstrated by the fact that we are now able to distribute 
the computation of the same T* binary not only on the cores within a single node but also among the 
cores of several nodes. UNISI evaluated the benchmark both in the case of a 32 cores single-node 
TERAFLUX machine (i.e. following the template architecture described in D6.2, Section 2.1 – [3]), 
and in the case of a multi-nodes (with 32 cores per node) TERAFLUX machine with a total of 1024 
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cores. Figure 8 shows the results obtained running the Recursive Fibonacci benchmark calculating the 
40th element of the Fibonacci sequence. Left and right graphs in Figure 8 shows thespeedup, when 
considering respectively the single-node and multi-nodes simulated machine. As shown in the two 
graphs, the system performs with an almost linear scaling, demonstrating the correctness of the frame 
memory implementation and the ability too seamlessly distribute the computation across several 
nodes.  
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Figure 8: Speedup expressed on a log2 scale for the Recursive Fibonacci benchmark, computing the 40
th

 

element of the Fibonacci sequence. The T* ISA extension allows the benchmark to scale 

 almost perfectly both in the single-node and in the multi-node 

Matrix Multiply (single- and multi-node)  

Similarly to the previous case, Matrix Multiply allowed UNISI to evaluate the behaviour of a single- 
and multi- nodes machine with the support for the frame memory. The benchmark computes the 
multiplication of two square matrixes of the same size. UNISI has tested the benchmark with matrices 
of different sizes. The Matrix Multiply benchmark has been generated in the executable form, which 
exploits T* ISA extensions ([9,10,11]). Moreover, UNISI evaluated the benchmark both in the case of 
a 32 cores single-node TERAFLUX machine, and in the case of a multi-nodes TERAFLUX machine 
with a total of 1024 cores and 32-cores per node. Similarly to the previous example, Figure 9 shows 
the results obtained running the benchmark application computing the matrix multiplication for two 
square matrices with a size of 512x512. Left and right graphs in Figure 9 show the speedup, when 
considering respectively the single-node and multi-nodes simulated machine. As shown in the two 
graphs, again, the system performs with an almost linear scaling, demonstrating the correctness of the 
frame memory implementation and the advantage of T*. 
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Figure 9: Speedup expressed on log2 scale for the Matrix Multiply benchmark, using input matrices with a 

size of 512x512. The T* ISA extension allows the benchmark to scale almost perfectly  

both in the single-node and in the multi-node case 
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2.4 Instruction execution (UNISI) 
The architecture implementation directly supports the life-cycle of DF-threads, by means of the T* 
instruction set extension (T* ISA) [9,10,11]. Currently the ISA extension accounts for four 
instructions that are suited for allocating and deallocating frames during the initial and the final phases 
of DF-threads’ life (namely TSCHEDULE and TDESTROY, described in Section 3.3.1), and for 
accessing the frame memory during the DF-threads execution (namely TREAD and TWRITE, 
described in Section 3.3.2). From the architectural viewpoint, the management of frames accesses can 
be seen as mediated by the Memory Management Unit (MMU), whose functions are extended in 
order to correctly addressing the frame memory (the exact mechanisms for managing the memory 
virtualization are currently under research). 

 

2.4.1 DF-threads life cycle (TSCHEDULE, TDESTROY) 
The main Distributed Thread Scheduler (DTS) internal structures in the L-TSUs are (the area cost has 
been evaluated in the second year, D6.2, section 2.4): the Waiting List/Table (WL or WT ) and the 
Pre-Load Queue (PQ or PLQ).  

Assuming that each core has the capability of managing the information of nF frames: the WT holds 
up to nF DF-Thread continuations (i.e., a tuple <IP,FP,SC, …>, IP=Instruction Pointer, FP=Frame 
Pointer, SC=Synchronization Count), whose input frame is waiting for coming data; the PLQ queues 
up to nF DF-Thread continuations (in this case SC==0, so that field is not present), which are globally 
ready to be executed. 

Please note that the DTS still retains the possibility to assign the DF-threads as it retains productive 
(i.e. respecting the power/ temperature/performance/resilience envelope) until the last moment. 

The main Distributed Thread Scheduler (DTS) internal structures in the D-TSUs are (as evaluated in 
the second year, D6.2, section 2.4): the Free Frame Table (FFT) and the Pending Tschedule Request 
Queue (PTQ) are in the D-TSU. 

Assuming that each node contains m cores: the FFT holds m entries that, at any time and for each 
core, track the Free Frames Number (FFN); the PTQ queues up to nPTQ tuples consisting of the ID of 
the Core (CID) that issued a TSCHEDULE operation that cannot be served locally to such core or 
immediately (i.e., <CID, IP, SC> or the CID and the TSCHEDULE parameters). 

The Core Record (CR) is another per-core internal structure that maintains constantly updated 
information such as: Power, Temperature, Faultiness. This structure could be placed either at Core 
Level (as initially designed in D6.2), Node Level or globally. 

Table 1: Description of TSCHEDULE and TDESTROY T* instructions 

T* instruction Description 

TSCHEDULE 

1. At the execution stage in the pipeline of a Processing Unit, a frame request is sent to the L-
TSU (indicating also other associated info such as <TSCHEDULE, IP, SC>); 

2. The request is sent to the node’s D-TSU, via the local interconnect; 

3. The requests from any core arriving to such D-TSU are queued in the PTQ ; 

4. The D-TSU sees the node availability of frames through the FFT: after a FFT lookup the 
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frame request is served preferably in the requesting node or wherever there is frame 
availability (in this step an assignment policy can guide the decision); 

5. The D-TSU structures (FFT, PTQ) are updated; 

6. The L-TSU structures (WT, PLQ) are updated; 

7. The requesting core receives the FP to the available frame and the instruction execution 
terminates; 

Note: some implementation trick (virtual FPs or TIDs) could be used to make the above 
operations faster. 

TDESTROY 

1. At the execution stage in the pipeline of a Processing Unit, a frame deallocation (and 
DF-thread completion request) is sent to the L-TSU (indicating also other associated 
info such as <TDESTROY, FP>); 

2. The request is sent to the node’s D-TSU, via the local interconnect; 

3. The L-TSU structures (WT, PLQ) are updated; 

4. The D-TSU structure (FFT) is updated and the instruction execution terminates. 

 

2.4.2 DF-threads frame memory interaction (TREAD, TWRITE) 
Similarly to the previous sub-section, the following Table 2 shows the details about the interaction of 
the processing unit, the L-TSU, and the D-TSU during the execution of the TREAD and TWRITE 
instructions. The former allows a DF-thread to read data from its assigned frame, while the latter is 
used to write data in the frame of consumer(s) DF-thread. The interaction implements the architectural 
template described in D6.2, section 2.4 [3].  

Table 2: Description of TREAD and TWRITE T* instructions 

T* instruction Description 

TREAD 

1. At the execution stage in the pipeline of a Processing Unit, the PU sends a <TREAD, FP, 
Offset> request to the L-TSU; 

2. The L-TSU returns the value read from the frame memory pointed by FP, at the specified 
offset. 

TWRITE 

1. At the execution stage in the pipeline of a PU, a <TWRITE, FP, Offset, Data> request is 
sent to the L-TSU; 

2. The write operation can proceed along the memory hierarchy as any other write operation; 

3. The SC associated to the DF-Thread’s Frame (that is detected by the effective address being 
contained within such Frame address range) should be decremented: 

4. The core (either local or remote) that detects a write belonging to the Frames that it manages 
will be responsible to update the Frame’s SC. 
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2.5 TaskSs (BSC) 
Objectives 

The goal of this work is to implement a functional prototype of the Task Superscalar design presented 
by Etsion et al. [12,13]. To achieve this goal a simple but functional implementation of the hardware 
design has been selected. This prototype is shown in Figure 9. As it can be seen the Task Superscalar 
frontend employs a tiled design, and is managed by an asynchronous point-to-point protocol. It is 
composed of four different modules: Pipeline gateway (GW), task reservation stations (TRS), object 
renaming tables (ORT), and object versioning tables (OVT). 

The GW is responsible for pushing the flow of tasks into the pipeline including: allocating TRS space 
for new tasks, distributing tasks to the different modules, and blocking task generating threads 
whenever the pipeline fills.  

TRSs store the meta-data of the in-flight tasks and, for each task, track the readiness of its parameters. 
To do this, TRSs maintain the data dependency graph, communicating to each other in order to relate 
consumers to producers and notify consumers when data is ready.  

The ORTs match memory parameters to the most recent task accessing them, and thereby detect 
object dependencies. Furthermore, each ORT has exactly one OVT associated with it. The OVT 
tracks all the live versions of every parameter the associated ORT stores. That helps TRSs to maintain 
the data dependency graph. The functionality of the OVTs (and their associated ORT) therefore 
resembles that of a physical register file, but only to maintain meta-data of parameters. Effectively, 
the OVT also manages anti- and output-dependencies, either through parameter renaming, or by 
chaining different bidirectional (inout) parameters and unblocking them in-order. 

The implemented prototype is composed by the minimum number of modules that maintain the 
prototype functional and the Task Scheduler has been replaced by a Ready Queue (RQ) that will 
dispatch tasks following a simple Round-Robin protocol. 
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Figure 10: Implemented prototype of the Task Superscalar architecture 

Current Status 

Currently all the modules that compose the prototype are completely functional when simulated and 
isolated from the rest of the system. Also, all of them and their corresponding memories have been 
synthesized targeting commercial devices. To accomplish this goal the modules' design and VHDL 
code have been modified to accomplish the constraints imposed by such devices (as available free 
memory or registers). The next step is connecting all the modules and simulating the resulting system 
to verify its correct behavior. After that, the whole system will be synthesized and its performance 
will be measured. 

 

The improvements made this year are the following: 

 

• The functional simulation of all the modules has been finished. 
 

• The network has been optimized to decrease the number of packets and the number of 
connections needed between modules, while maintaining the same functionality. 
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• All the memories have been synthesized “standalone” targeting a commercial FPGA 
device. Their design (HDL code) has been tuned to better suit the constraints of real 
FPGA devices. 

 
• All modules have been synthesized “standalone” targeting a commercial FPGA 

device. 
 

• The Finite State Machines (FSM) of all the modules have been optimized in order to 
shorten the number of cycles needed to process the packets as shown in Table 1. 

 

Results 

At this point we can present the first results obtained by the hardware implementation of the 
prototype. Table 3 shows the processing time that the Finite State Machine (FSM) of every module 
needs to process an incoming packet. 

Table 3: Latencies of processing the packets. 

Packet Processing latency Responsible 
Unit 

Size (bits) 

ContIssue 2 cycles GW 24 

Create Version • 2 cycles if first time (input or output) 
• 3 cycles if Not first time and input 
• 4 cycles if Not first time and output 

OVT 240 

DataReady 2 cycles TRS 64 

DropParam 2 cycles OVT 40 

DropVersion • 2 cycles for deleting the last version 
• 3 cycles for deleting the last version 

and the previous one 

ORT 120 

Finish 4 cycles + 2 additional cycles for loading 
each parameter 

TRS 88 

Forming Execute 
packet 

1 cycle (for loading meta-data of a task) + 
2 cycles for loading each parameter + 1 
cycle for sending the task to the ready 
queue 

TRS 176+(#param*75) 

IssueAck 2 cycles GW 24 

Issue • 5 cycles for tasks without any 
parameter 

• 3 cycles for tasks with at least one 
parameter + 2 additional cycles for 
each parameter (using ParamTRS (200 
bits) or DirectParam (96 bits) packets) 

TRS 160 
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ParamORT 2 cycles ORT 168 

 

Also we have results from synthesis of each module isolated from the rest of the system (but including 
their local memories). Table 4 shows a selection of these results as maximum working frequency, 
slice logic utilization including the number of slice flip flops (FFs, the number of one-bit registers 
used in the whole FPGA) and slice look-up tables (LUTs) that are used as logic or distributed RAM or 
even as shift registers. Macro Statistics include the number of required resources such as registers (R), 
comparators (C), multiplexers (M), adders/subtracters (A), tri-state buffers (T) and xor gates (X). 
Finally, the table presents the % of use that every module represents in each target FPGA (the Xilinx 
xc7vh290t that has the smallest number of LUTs among the available devices of its family and the 
Xilinx xc7v2000t that is the biggest one in the family [14]). The table also includes the results for the 
FIFOs and Arbiters needed to implement the network connections and an estimation (total) of how 
many resources will use the whole system once all the modules are connected. 

Table 4: Synthesis result of main modules (R:registers, M:multiplexer, A:adder/subtractor, C:comparator , T:tristate 
buffers, X:xor). 

Component Freq. 
(MHz) 

#Slice 
LUTs 

#Slice 
FFs 

Macro Statistics Usage of 
xc7vh290t 

Usage of 
xc7v2000t 

GW 389.63 9756 600 455R,4A,198M 4.4% 0.8% 

TRS 142.93 39771 4800 1970R,9A,2C,945M, 

497X 

18% 3.2% 

OVT 297.40 26843 2917 919R,1A,266M 12.3% 2.2% 

ORT 201.57 28067 13654 8856R,21C,1137M, 

8427X 

13% 2.3% 

FIFOs 498.32 8190 4770 108R,54A,90M 3.7% 0.6% 

Arbiters 703.60 3102 2397 768R,771M,768T 1.4% 0.25% 

Total 142.93 115729 29138 13094R,3407M,68A, 

268T,8924X 

53% 9.5% 

 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D6.3 
Deliverable name: Fine-tuned TERAFLUX Execution Model 
File name: TERAFLUX-D63v14.docx Page 27 of 34 

2.6 TM Support (UNIMAN) 
Transactional Memory (TM) attempts to simplify concurrent programming by allowing a group of 
load and store operations to execute in an atomic way.  It is a concurrency control mechanism 
analogous to database transactions for controlling access to shared memory in concurrent computing. 
TM systems can exist in hardware, software or as hybrid implementations. This discussion is related 
to the hardware implementation of TM systems. 

TM hardware must perform a number of tasks. 

Transaction modifications are isolated from the rest of the system until commit time through data 
versioning. 

The system detects and resolves read-set and write-set conflicts. 

Transaction commits appear to occur atomically. 

In case of a conflict leading to an aborted transaction, a consistent state is reached after rewinding. 

Transactional mechanisms are being designed while keeping following requirements under 
consideration. 

Performance should be achievable without an undue burden on the programmer. 

The system should scale gracefully to a large size with large amounts of concurrency. 

The system should be able to cope with, and if possible exploit, a hierarchical organization of cores 
into nodes (clusters). 

Our research at Manchester University aims to answer following questions regarding TM hardware 
system. 

Is it better to exchange information about sharing between transactions as they go along or to do so 
only at the commit time? 

How can we leverage the node (clustered) architecture to provide good performance for transactions? 

Is it useful to have different local and global mechanisms? 

What sharing patterns exist across a broad range of workloads? 

What is the best balance between communication, storage and false sharing? 

We have developed a TM implementation on COTSon that performs lazy version management and 
lazy conflict detection. The initial implementation is similar to Stanford TCC implementation [15]. 

The programmer only marks TM-Begin() and TM-End() regions and the underlying system ensures 
that the transactions run concurrently while maintaining Atomicity, Consistency and Isolation 
properties. 
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This model has been extended and a scalable version of the system has been developed. The scalable 
system is also a purely lazy implementation but the commit process takes advantage of the 
hierarchical organization of cores into nodes (clusters). The committed changes are broadcast within 
the node (cluster) but outside the node the invalidations are sent only to the nodes that were actually 
sharing the committed data. In order to implement the scalable TM system we have used a directory 
based cache coherence protocol as a starting point for our baseline system. The directories are 
extended with information about sharing of transactional data across nodes. The implementation is 
available on [18], as described in D7.4. 

Figure 11 shows the diagram of the scalable model that we are evaluating. 

 

Figure 11: Clusters with extensions to cache and directory to support Transactional Memory 

In this system each core has its own private L1 and L2 cache. L1 is write-through while L2 is a write 
back cache. Within each node (cluster) there is a shared L3+remote cache, a directory and part of 
distributed memory. 

The directory tracks transactional memory regions and maintains information at cache line 
granularity. Each directory entry contains a bit vector to represent the sharers. Sharers are maintained 
at the cluster level. 

 

L1 and L2 caches are used to maintain data versioning. During commit, a transaction first occupies all 
the directories in its R/W-set and marks all the cache lines in its write-set. The occupy and mark 
process is similar to Scalable TCC [15]. After completing the occupy phase the transaction locks the 
L3 controller and then writes back all its modified TM lines to the shared L3. After writing back all its 
data, the transaction unlocks the L3 controller and then sends commit messages to all the directories 
in its write set so that they can send the relevant invalidations. The write back is required so that L3 
contains the most up to date copy and can respond to any requests to the cluster. 

 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D6.3 
Deliverable name: Fine-tuned TERAFLUX Execution Model 
File name: TERAFLUX-D63v14.docx Page 29 of 34 

There are many optimizations possible to our initial implementation. For example using bloom filters 
to reduce the size of our read/write-set and to lock directories at lower level of granularity [16]. 

 

We have developed a functional model of purely lazy TM support into SimNow (c.f. D7.4). This had 
to be done through a special mechanism, since COTSon  interfaces with SimNow in a manner such 
that functional modifications to execution are not possible. This included interacting with AMD as 
well as our partners at HP, with AMD extending some interfaces into SimNow to allow the 
implementation. A more sophisticated model for timing transaction commits is currently being 
developed [18]. 

 

For the purpose of evaluation, we have run two of the STAMP benchmarks on the scalable TM 
hardware. KMeans implements a clustering algorithm. This has a parallel phase to assign objects to 
clusters, and a serial phase to recalculate cluster centres. Vacation simulates a travel booking database 
for cars, hotels and flights. Each table (cars, hotels, flights) is represented as a transactional hash table. 
Reservations as performed as transactions, which change the availability of each booked item in the 
database. 

Figure 12. shows the performance results of these benchmarks. Both benchmarks are available in [18]. 

 

 

Figure 12: Performance results for Kmeans and Vacation Benchmarks 
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3 Program Analysis Tool (UCY) 
Paraver [17] offers a graphical representation useful in performance analysis of parallel applications. 
It supports a detailed qualitative and quantitative analysis of the performance bottlenecks of parallel 
applications. Using the Paraver tool the programmer has the ability to optimize the performance of the 
application by focusing on the main performance bottlenecks and to minimize the hardware 
requirements. Paraver imports trace files of the application that are produced by the EXTRAE tool. In 
general, Paraver offers detailed quantitative analysis of application performance, simultaneous 
comparative analysis of multiple trace files and quick analysis of large traces files. Originally, Paraver 
supports MPI, OpenMP, Pthreads, CUDA, and OmpSs applications. 

Through the Paraver tool the user can monitor the degree of parallelism of applications, the timeline 
of the processor during execution, the evolutionary process of changing the values of a specific 
(preselected) variable, monitor the load balance of different parallel loops and the instruction/cycle 
ratio of each thread. The Paraver tool can also be used for simultaneous analysis of different trace 
files that can help the programmer compare different versions of the same code, compare the behavior 
of the application on two different machines, find the differences between two different executions of 
the same application and finally determine the impact of the application problem size on the 
execution. 

For our work, we were interested in adapting this tool to the DDM-style runtime system. To produce 
performance results for a DDM-style application we embedded function calls to the EXTRAE API 
inside the application code. Passing then the application with the EXTRAE tool we generate the trace 
file for the application that will be used as input to the Paraver tool to produce performance analysis 
results for the original DDM-style application.  

In an attempt to analyze the performance of the TSU, we embedded EXTRAE API calls in the most 
important functions of the TSU.  

The calls added to the code are: (a) by the preprocessor tool and (b) to a version of the runtime 
system. An example of such calls is presented in Figure 13 bellow. 

 

 

Figure 13: Extrae calls added to DDM-style program to monitor events by Paraver 
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Figure 14: TSU performance analysis when executing MULT 

The use of such a tool is very important to the tuning of the model as it is possible to observe the 
bottlenecks of the execution in the different runtime functions and also the use of the most relevant 
data structures. 

In Figure 14 we present an example of the TSU performance analysis when running the MULT 
application. The results show the sizes of the Acknowledgement Queue (AQ), the Waiting Queue 
(WQ) and the Fire Queue (FQ). The first chart shows in color code the actions  which the TSU and 
the application were performing during the execution time (Some of the important colors for the first 
line, which represents the TSU, are following: White - Decrement Consumers, Yellow – Moving 
threads from WQ to FQ, Pink – Checking the sizes of the queues). The second chart shows the size of 
the AQ, the third the size of the WQ and the last one shows the size of the FQ. 

On the first chart we can see in cyan the idle time of the worker, which is the time spent until the TSU 
assigns work to the specific worker. If we follow a hypothetical vertical line to the next charts we can 
get a further understanding of the reasons for this fact. In the second chart, during the idle time we see 
the TSU serving AQ tasks and thus decreasing the remaining data in the queue. In the third chart we 
have the WQ which gets more entries as the AQ is being served, we can clearly see that there is a 
threshold were the TSU stops adding records. On the last chart we have the FQ where we can see 
again that the TSU assigns jobs to be executed for the current worker using again a threshold. From 
this information it is possible to infer that the threads being executed are too small for the processing 
speed of the TSU and that is the reason for the idle periods where the worker has no work to fetch 
from the FQ. 
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4 Conclusions and Future Work (UCY) 
In this document we have presented the achievements for the third year of the TERAFLUX project 
regarding Task 6.4. We have included extensions and optimizations of the model, description of 
modules to support the model, and analysis tools. The contributions reported are from the different 
partners that participate in this Task.  

We described techniques to improve the execution of applications such as the dynamic resolution of 
the dependencies. We also presented initial results from T* by executing an unmodified binary also 
on multiple nodes, and finally the Transactional Memory support. We closed with the presentation of 
a tool that allows for the monitoring of runtime execution and data structure utilization as to identify 
potential bottlenecks and performance issues in applications. 

As Task 6.4 extends for one more year, in the next year we will finalize some of the techniques 
mentioned in this report. In particular we plan to continue the work on prefetching, the use of 
scratchpad memories, explore more comprehensive scheduling policies, and the memory model. More 
details will also be explored concerning the implementation of the hardware modules such as their 
timing and power consumption.  
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