Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Tera-Device Computing

D5.1 - Design Exploration of FDUs and Core-InternbFault-Detection

Due date of deliverable:
Actual Submission:

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: Universitaet Augsburg (UAU)

Revision See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortitntli{ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable nameDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 1 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# Author Organization Change History
0.1 Sebastian Weis} UAU Initial release
Arne Garbade,
Sebastian
Schlingmann and
Theo Ungerer
0.2 Avi Mendelson and| Microsoft OS and core-internal fault
Doron Shamia detection
1.0 Theo Ungerer UAU
1.1 Avi Mendelson and| Microsoft Preliminary review

Doron Shamia

InternalReview

Theo Ungerer UAU

Proofreading

InternalReview

Pedro Trancoso ucy

Overall review

1.2 — Release

Sebastian WeislUAU
Arne Garbade, Theo
Ungerer

Document finishing

Release Approval

Name

Role

Date

Theo Ungerer

Originator, WP Leader

Roberto Giorgi

Project Coordinator for formal deliv erable | 31.12.2010

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx

Page 2 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

GLOSSARY
EXECUTIVE SUMMARY
1 INTRODUCTION

1.1 DOCUMENT STRUCTURE
1.2 RELATION TO OTHER DELIVERABLES
1.3 ACTIVITIES REFERRED BY THISDELIVERABLE

2 TERMINOLOGY AND BASIC FAULT MODELS

2.1 FAULT, ERROR ANDFAILURE
2.2 FAULT MODELS

2.2.1 Core Fault Model

2.2.2 Inter-Core Fault Model

3 THE GENERAL SPECIFICATION OF THE FAULT DETECTION UN IT (FDU)

3.1 HIGH LEVEL TERAFLUX ARCHITECTURE
3.2 ScOPE OF THEFDU
3.3 FDU ORGANISATION

3.3.1 Monitoring

3.3.2 Analysis

3.3.3 Planning

3.3.4 Execution

4 FDU INTERFACE SPECIFICATION

4.1 HIGH LEVEL COMMUNICATION PROTOCOL FOR FAULT DETECTIN
4.1.1 Time-driven: Heartbeats
4.1.2 Event-driven: Alerts
4.2 HIGH LEVEL FDU INTERFACES
4.2.1 Interface: Request
4.2.2 Interface: Response
4.2.3 Interface: Alert
4.2.4 Interface: Notification
4.3 FDU INTERFACES TOCOMMUNICATION PARTNERS
4.3.1 FDUto Core
432 FDUtoTSU
4.3.3 FDU to Service Node with Operating System
4.3.4 FDU to FDU

5 CORE-INTERNAL FAULT DETECTION

51 MACHINE CHECK ARCHITECTURE
5.2 PERFORMANCESAMPLING
53 Low LEVEL INTERFACE OFAMD CORES TOFDU

6 OPERATING SYSTEM INVESTIGATIONS

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 3 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.1 OSAND CORETSU INTERFACE
7 CONCLUSION
8 REFERENCES

LIST OF FIGURES

FIGURE 1: EXAMPLES OF DEFECTIVE INTERCONNECTIONS ORPU INTERNAL WIRES TAKEN FROM[7]
FIGURE 2: TERAFLUX HIGH LEVEL ARCHITECTURE HERE WE DISTINGUISH BETWEEND-TSU, D-FDU, AND L-
TSU,BUT FOR EASY OF READING IN THIS DOCUMENT WE JUSTACL TSUTHE D-TSUAND FDU THE D-FDU.

FIGURE 3: SCHEMATIC VIEW ON THE COMMUNICATION PARTNER

FIGURE4: THE MAPE-CYCLE [15] — ADAPTATION FORFDU PURPOSES
FIGURE5: TIME-DRIVEN FAULT DETECTION WITHHEARTBEAT PUSH MESSAGES
FIGURE 6: EVENT-DRIVEN FAULT DETECTION

LIST OF TABLES
TABLE 1: DEFINITION OF THE PAYLOAD STRUCTUREREQUESTMESSAGE

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 4 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdleet the list of contributors to the writing ofdldocument.

Arne Garbade, Sebastian Weis, Sebastian Schlingmanfhheo Ungerer
Universitaet Augsburg

Avi Mendelson, Doron Shamia
Microsoft Research and Development

© 2009-11 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iryJtdr the TERAFLUX Consortium, on theww.teraflux.eu
web site and can be distributed to the Public.

The list of author does not imply any claim of owstép on the Intellectual Properties described his t
document. The authors and the publishers make pregsed or implied warranty of any kind and assame
responsibilities for errors or omissions. No liglgilis assumed for incidental or consequential dgasain
connection with or arising out of the use of thiimation contained in this document.

This document is furnished under the terms of tERAFLUX License Agreement (the "License") and may
only be used or copied in accordance with the tevfrihe License. The information in this documengaiwork

in progress, jointly developed by the members oRBELUX Consortium ("TERAFLUX") and is provided for
informational use only.

The technology disclosed herein may be protectedrigyor more patents, copyrights, trademarks ancdde
secrets owned by or licensed to TERAFLUX Partn@itse partners reserve all rights with respect tohsuc
technology and related materials. Any use of ttequted technology and related material beyondetas of
the License without the prior written consent ofRAEFLUX is prohibited. This document contains madethat

is confidential to TERAFLUX and its members ancefisors. Until publication, the user should assumaé all
materials contained and/or referenced in this desunmare confidential and proprietary unless othsewi
indicated or apparent from the nature of such risse(for example, references to publicly availafuems or
documents).

Disclosure or use of this document or any mater@itained herein, other than as expressly permiised
prohibited without the prior written consent of TER_UX or such other party that may grant permisgiomise

its proprietary material. The trademarks, logosl service marks displayed in this document arer¢léstered
and unregistered trademarks of TERAFLUX, its meraband its licensors. The copyright and trademarks
owned by TERAFLUX, whether registered or unregestermay not be used in connection with any product
service that is not owned, approved or distribuigdlERAFLUX, and may not be used in any manner that
likely to cause customer confusion or that dispasa§ERAFLUX. Nothing contained in this document o
be construed as granting by implication, estoppettherwise, any license or right to use any cighyrwithout
the express written consent of TERAFLUX, its licerssor a third party owner of any such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER:

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFKWSPECIFICATION IS PROVIDED
BY TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OFANY KIND, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPUED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE MD NONINFRINGEMENT OF
THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSO¥ER (INCLUDING, WITHOUT

LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE ORLOST BUSINESS, REVENUE,
PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WIH ANY INFRINGEMENT CLAIMS

BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN M\ ACTION IN CONTRACT, TORT,
STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY,EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 5 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

Cluster
COTSon
Core
FDU
MCA
Node
TAAL
TBM
TSU
UAU
MSFT

Electromigration

L4

Nanos

Service-OS A Linux OS that manages the I/O and other resouwtése system

Group of cores; synonymous of “node”
Simulator software provided under the MIT licengeHP-Labs
Processing element

Fault Detection Unit

Machine Check Architecture

Group of cores; synonymous of “cluster”
TERAFLUX Architecture

TERAFLUX Baseline Machine

Thread Scheduling Unit

University of Augsburg

Microsoft R&D Israel

Mechanical and matter wear out, often caused byimgoiectrons in integrated

circuits.
Microkernel being used to manage a cluster of caerpu

Alternative microkernel to be considered

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx

Page 6 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

The aim of WP5 is to establish a reliable systetmoduinreliable components, which can be cores and
interconnects. WP5 in DoW Task 5.1 (months 1 -“D8sign Exploration of FDUs and Core-Internal
Fault-Detection” states:

Design exploration of FDUs: UAU
oot $ % $!

& $ I'$ '
& $¢0 * ! % !
+) , (& $ $.

(/ 0 $%1) # S $ 2)
$ ' 3/ '3/
(/) $$ $ +45 $ $
% $) $
6

The work of UAU is focusing on inter-core fault detion techniques using Fault Detection Units
(FDU). Therefore UAU started with a design spacegl@ation of different FDU variants (push, pull,
alert mechanisms for heartbeat messages), FDU mngpiations, and interfaces.

The design space exploration has finally resultea proposal of a functional FDU specification lahse
on the MAPE (Monitoring, Analysis, Planning, ande€xtion) cycle of Autonomic Computing.
Abstract message interfaces of FDU to all commuitngartners (FDU-core, FDU-TSU, FDU-FDU,
FDU-operating system) were specified for push,, @it alert messages.

UAU and MSFT worked together on a preliminary sfieaiion of core-internal fault detection. The
result proposes how the performance measuremetdnsysnd the machine check architecture of
current AMD/Intel processor families can be exm@difor reliability in the TERAFLUX architecture.
Moreover, we propose to extend the heartbeat medsagat to transport additional temperature and
performance measures.

MSFT worked on the system level management of ressuincluding the loop between the different
levels of the systems in order to achieve loadrzaand fault tolerance to guarantee the perforenanc
and the reliability of a massive parallel systerhe Tontrol of scheduling and resources will be done
in hierarchical level, where distributed FDUs ased to guarantee the characteristics of the basic
nodes by accessing the different resources of glestiuster such as the cores, local memories, etc.
The FDU will be in charge on inquiring the executitate; e.g., faults and performance of each core.
The document will also define the bidirectional eoomication between the “system” and the FDU so
that the OS will be able to access the FDU andetotlie required information on the health of the
cluster. Later on, this information could be usedgart of the recovery and load balance mechanisms
on the system.

Hence, all goals of WPS5 for the first year wereiehd.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 7 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

It is expected that within the next ten years g ahill be able to host more than 1000 heterogeneous
cores [1]. With an ongoing decrease of the tranisize, the probability of physical flaws on thepc
induced by voltage swinging, natural cosmic ralgermal changes or variations in the manufacturing
process will increase [2]. Even though reliabibtyd fault tolerance have always been importanessu
for mission critical systems, they are now new fbe upcoming general-purpose many-core
processors, bringing up completely new challenges.

While in mission critical systems reliability habvays been essential at all cost, the architeabfire
general-purpose processors is strongly influengeddonomical constraints. This requires reliability
solutions which scale with the number of cores #redincreasing failure probability on a chip but
within a reasonable architectural effort [3].

A computer system is fault tolerant, if it providesfety and liveness even in the presence of faults
Safety means that a system never produces anyréotoesults, even if a fault occurs. It hides all
faults from the user. Besides that, it is requitest the system does something useful. Unplugdieg t
power supply will stop the faulty component frormgeating computation results, hence ensuring its
safety, but is often an unacceptable solution. Ehighere liveness comes in. Liveness means tkat th
system continues execution, despite of faults. hées combined with safety means that the system
makes forward progress, while assuring that no g/r@sults are produced. However, situations exist
where liveness and safety of a system cannot beugigged. In such scenarios it is at least necessary
maintain the safety of the system. As an exampt&iit be referred to an automatic teller machine
(ATM), which disables itself, instead of giving cutvrong amount of money [4].

The increasing transistor density makes errorsherchips in future many-core systems unavoidable.
For that reason, even current multicore processfies the ability to detect particular faults which
occurred within the cache, TLB or the core micrbi@sexcture [5]. In addition, the fault tolerance
literature documents different fault detection amgovery techniques, which extend the cores’
microarchitecture [4][6].

If a fault is not correctable by a core itself, @rent processor would raise an exception and the
operating system is likely to be shutdown. Progae future many-core processors, this would mean
an increase of catastrophic shutdowns of the camplestem due to the increasing failure rate.

Since the TERAFLUX architecture is planned to bepnsed of thousands of cores it would be likely
to suffer from such catastrophic processor shutdoamwell. Nevertheless, the dataflow architecture
offers in the case of fault tolerance certain athwges in comparison to architectures based on von-
Neumann’s execution model. In particular, the fiomal semantic of dataflow in conjunction with

a Thread Scheduling Unit (TSU - D6.1) supportsah#ity to restart the execution of a TERAFLUX-
thread on a more reliable core in the presencewfcorrectable faults.

Those techniques support the concept to distribERAFLUX-threads on reliable cores and exclude
defective cores dynamically at runtime.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 8 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The first objective to provide reliability withitné TERAFLUX architecture is the detection of faults
Whereas the distribution of TERAFLUX-threads isypded by a distributed Thread Synchronization
Unit (TSU), the fault detection of the cores is tilad by the Fault Detection Unit (FDU). The FDU's
primary goal is to monitor and detect faults on tleees over an unreliable communication channel
which may itself suffer from faults. While the firgoal is to detect faults, the second goal of B F

is to maintain the operability of a cluster, foraexple by dynamic clock and voltage scaling while
incorporating the monitored failure rate, heat, aog utilization.

Since the TSU is in charge of the thread assignmerthe cores, it has to keep the information about
interdependences between threads, the curreninassng of threads to cores, and the state of thread
execution. If a core suffers from a fault, whichghti affect the reliability of the core or the systdhe
FDU should detect this malfunction and inform tt&UTurgently.

This behaviour illustrates the basic requiremeatsah FDU. It is not only important that faults are
reliably detected; in addition, it is also necegsar locate and prevent problems and report such
information to other administrative units, like th8U and the Operating System.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 9 of 38

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.1 Document Structure

Section 2 describes the terminology of fault, eamod failure and provides basic fault models faeso
and interconnects. Section 3 specifies the intestraicture of the Fault Detection Unit (FDU) as
running a MAPE cycle of monitoring cores. Sectiodefines the communication protocols and the
interfaces of the FDU to the cores, the TSU, theyiSe Node with operating system, and to other
FDUs. Section 5 describes the core-internal faelection techniques of current cores and how they
can be exploited by the FDU. Section 6 presentsitbieresults of the TERAFLUX operating system
research.

1.2 Relation to Other Deliverables

Deliverable D6.1 provides the basic TERAFLUX arebtural description. D7.1 and D7.2 specify the
interfaces within the COTSon and the basic simomatimplementation of the TERAFLUX
architecture, which also includes details on theedaling unit. The Deliverable D5.1 is coherenthwit
all previously mentioned documents.

1.3 Activities Referred by this Deliverable

All activities described in this document concehe twork of UAU and MSFT done on Task 5.1
“Design Exploration of FDUs and Core-Internal FaultDetection” in WP5 covering months 1 to 12 of
the project:

Design exploration of FDUs: UAU
oot g $ % $!

& $ I'$ '
& $¢0 * ! % !
+) , (& $ $

(/ 0 $%1) # $ $ 2)
$ ' 3/ '3/
(/) $$ $ +45 $
% $) $
6

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 10 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

2 Terminology and Basic Fault Models

This section states the terminology used througdh document and introduces then the considered
higher level fault models. The fault models areuregfl as basis for fault injection as specified ask
7.3 of WP7.

2.1 Fault, Error and Failure

In the literature the ternfault, error andfailure are mixed up and are partly used synonymously. In
the fault tolerance domain, we distinguish betwdesse three terms by their occurrence in different
layers of the abstraction hierarchy.

rack Hillock

Wires

Figure 1: Examples of defective interconnections o€PU internal wires
taken from [7]

Low level faults may occur on the lowest physical level of the esystwhich are caused bigfectsof
the hardware. Some kinds of defects are showngrlLFrhe manifestation of a fault may then cause
anerror, which is shown up in one or more flipped bits.

Such an error may causdaalt at higher level, e.g. a core fault or an interconnect fault.

A failure is an incorrect computation result showing uphia software layer. The appearance of a
failure may finally lead to a system crash or aoimect output, which is usually visible to theuse

Faults, errors, and failures may differ in termgshadir duration. According to that, they can beidibd
in three subcategories:

Transient errors which are also known asoft errors [7] (or single-event upsets) appear and
disappear in an unpredictable way. Common causes fmansient error are cosmic rays,
which may disrupt the charge of a DRAM cell. Thes®rs are non-deterministic and because
of their unforeseeable behaviour hard (if not ingilgle) to locate. Therefore, the key metric
for this error type is a statistical number — Sadt Error Rate. This number describes the
statistical occurrence of an error. Transient erese usually handled in current processors by
error correction algorithms (such like backwardfamwvard-error-correction [8]).

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable nameDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 11 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Longer persistent faults can caugdgermittent errors [7] that can last from a few
milliseconds up to several minutes. They are mostlysed by temporary hot spots on the
processor’s die. As an example, during the manurfengf process a little metal sliver could be
left behind between two interconnection lines. Whthe temperature heats up the wire will
widen and the sliver can cause a short. When therrabcools down, the wires shrink back to
the normal size and the intermittent error disappda some cases the sliver can burn into the
material and produce a permanent error. In thie,cas intermittent error becomes permanent
and must be treated in a different way.

Permanent physical flaws can caysermanent errors [7], which are enduring for the
complete life time of the chip and do not disappdter its first occurrence. This type of error
arises out of defects in the manufacturing processardware aging during runtime due to
electromigration.

2.2 Fault Models

Fault models provide an abstraction between thecp&ar fault source and its manifestation in the
different layers of the abstraction hierarchy. Bessawe are mainly interested in higher level faults
we will use the terminology of transient, intermaitt, and permanent faults instead. To investigate
reliability and fault tolerance solutions for complmany-core processors, it is essential to alistrac
from single physical flaws or low level fault modgelike the often-cited stuck-at fault model [4}la¢
lowest hardware level.

This document combines two higher level fault medéirst, thecore fault model which abstracts
from low level microarchitectural core fault moddilee bridging fault model or delay fault model.
Second, thénter-core fault model, which considers an unreliable communication betwthe cores,
i.e. faulty interconnects and routers.

2.2.1 Core Fault Model

Considering the manifestation of core faults, watidguish further between total faults, partiallfau
and retarding faults.

A core suffers froma total fault if it is completely broken down and therefore mmder
responsive. This may result from a serious faulthencore (like a stuck-at-fault).

By contrast, if a core is reachable via the interaztion network and still responding to
requests, but the core’s internal hardware faulead®mn has identified an anomalous
behaviour, then the core is suffering fronpartial fault . Depending on the impact of the
fault, this may require that results from this ¢dike stores to memory or newly issued
threads, could no longer regarded as functionakcoand must be suspected incorrect.
Retarding faults are faults that do not directly impact the funetibcorrect execution, but the
performance capability of a core.

The core fault model of TERAFLUX covers all faults which are detected by the intveecfault
detection mechanisms and total faults of a cor ¢tive cannot answer anymore). Technically, we are
focusing on theAMD Opteron Machine Check Architecture [9] which is available in AMD

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 12 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

processors. Current implementations of the AMD @pteMachine Check Architecture detect faults
in the load/store unit, the data cache unit, tistrirction cache unit, the bus unit to the Northipeid
and the on-chip Northbridge itself, among othetse Machine Check Architecture itself distinguishes
between correctable and not correctable faultsc@vsider cores suffering from not correctable fault
as unreliable. If the core suffers from a speddinount of correctable faults it might be suspected
unreliable, too.

In complement, theAMD Opteron Instruction-Based Sampling and the AMD Performance
Counter Register [9][10] are used to identify performance degrauladi of a core. The Instruction-
Based Sampling is generally used for performanoélimg on the system and application level. We
utilize the Instruction-Based Sampling as well s Performance Counter Registers of the AMD
Opteron architecture to get runtime informatiorited executed code and thus information about the
probability of performance degradation due to ardihg core fault, which did not directly influence
the functional correct execution.

2.2.2 Inter-Core Fault Model

As mentioned before, the inter-core fault model oemgasses link faults in the interconnection
network. The faults in the inter-core fault moded durther classified by the intensity of the fault
Total faults are complete link faultspartial faults are among others a wire defect of links that
degrade link performance [11].

It is assumed that all fault types can be detected lower level by the connected routers. Thismaea
if a serial wire is suffering from timing issuessuiting from crosstalk or electromigration, which
causes a repeated or deferred packet transmissitre@hit layer we assume a retarding link fdtilt.
the wire or a router is completely broken down,refer to the total link fault.

The simulation model of the interconnection netwaikk be defined within WP7 and will be part of
the COTSon extensions.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 13 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 The General Specification of the Fault Detection Uih (FDU)

This section is meant to specify the general FDdkdalt describes in an informal way the objectives
of the FDU and depicts the internal behaviour oF&J. A detailed description and specification of
FDU’s interfaces is given in Section We further base our investigations in the follegvion the
TERAFLUX architecture, which is described in DéridaD7.2.

3.1 High level TERAFLUX Architecture

An FDU is responsible for the collection of headthtes of a cluster of cores (see Figure 2) witten
TERAFLUX processor. A more detailed instance of TBERAFLUX architecture could look like the
block diagram of Figure 3.

Top Level Architecture on Single Chip

Single Node (Logical Abstraction)

|

Figure 2: TERAFLUX High level Architecture. Here we distinguish between D-TSU, D-FDU, and L-TSU,
but for easy of reading in this document we just daTSU the D-TSU and FDU the D-FDU.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 14 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

r___________________________
<«
el
1
4
1
] =
|
1
D
1
]
1
' |
1
== =T
1
1
|
1
1
1
1
|
1
|
1
1
1
1
1
1
<«

Figure 3: Schematic view on the communication parter

The TERAFLUX-architecture will be divided into twaderarchical layers; at the higher level we will
have aService Nodehosting the main TERAFLUX operating system (elLgaux) and taking care of
I/O, Interrupts, and legacy code. At the lower lewe will have a set of clusters, which are called
Nodes in TERAFLUX terminology (see figures 2 and/Xxluster is comprised of a number of cores,
one TSU and one FDU. It is expected that due tddhture size and other process issues, the basic
hardware blocks such as processor, network, legic, may suffer from reliability issues. Thus, the
major challenge of the TERAFLUX hardware is hovbtold a reliable system out of many unreliable
components. As explained before, such hardware suffgr from transient faults, from permanent
faults and it is also assumed that some parts reegrbe faulty for a limited time and may “recover”
to a reliable state later on.

It is also expected that such a system may suffen process variability and similar effects thatyma
allow different parts of the system to run at diiet speeds (and with different power consumption).
Please note that from the system point of viewareeinterested in the effective performance ofra co
or even of a whole cluster.

Since our system is built in a hierarchical streetwe decided to manage the power, performance,
thermal conditions, and faults in a hierarchicahmex as well; at the top level, the Service Nods th
runs the operating system will manage resourcascatirse granularity, while each node will manage
the resources it consists of (the node affiliateiks). This structure allows us to manage resolatces
different scale and at different time granularigesswell. The lower level will take care on mostluoé
urgent considerations such as thermal issues et spontaneous response, while the top level can

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 15 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

handle most of the events at coarse timing comstrdiherefore, at the cluster level we devote gpeci
hardware modules, named TSU and FDU to controteéleurces. The TSU will be in charge of thread
scheduling and recovery. The FDU will be in chaofenonitoring the activesof all resources within
the cluster, handling faults and report to the T&w the OS manager at higher level. Power
management and other core control related actviti¢d be performed by the FDU as well. At the
service level, a special OS driver will be defitedmonitor the cluster activities. This driver will
communicate with the rest of the software in thetay through special APIs, defined as part of the
TERAFLUX architecture.

Although, at the beginning of the research we waller to the entire activities of the resource
management, power management and fault tolerantrely” hierarchical manager. Later on in the
research we will extend the model to allow somehef high level functionalities to be distributed.
Those will be implemented in a distributed manrikemang the FDUs to monitor each other, in order
to detect malfunction hardware components includingers and links.

At the cluster level the management is mainly dbgethree components; the core (as discussed
before), the FDU and the TSU.

3.2 Scope of the FDU

The tasks of an FDU are to gather, analyse, pldrrespectively react on the provided information of
its affiliated cores. It is additionally considerttht the cores themselves are only reachable aver
unreliable communication channel, which ultimateteans that interconnections can fail as well.
Every core within a TERAFLUX-cluster is monitore¢ lan FDU. The analysed and previously
filtered information supplied by the FDU may be did®y the TSU to decide how to distribute the
threads among the cores within a cluster, andsbinde, the FDU may also set the clock rate of each
individual core. We may decide to reduce the clatk of a core that has suffered many faults before
deciding to shut it down. The information may als® used for higher level decisions such as load
balancing and shutdown of clusters [13].

From the FDU point of view, each device (e.g. coreouter) is responsible for detecting certain
internal faults of its own. If it detects an errtiren it is not feasible to report the error in gveetail.
Especially if an error is correctable by the deviself, there is no immediate need to reportriechly

to the FDU. Of course, each occurrence of an eshmuld be logged, so the FDU can ask for
performance measures, which could consist of theuamof retries a device needed to finish a
computation correctly.

To limit the workload of a single FDU, we organige total number of cores into clusters. Each
cluster consists of a number of cores, an FDU ai&d. The number of cores per cluster, e.g. 16
cores per cluster, will result from the networkidasspace exploration (to be performed by UAU in
year 2 of the project).

! Sending messages

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 16 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

3.3 FDU Organisation

To achieve the main goal of ensuring the systemabilty and performance, we apply an
autonomic/organic computing approach [15][16] oiging the FDU operation principle into the
following four consecutive stepsnonitoring, analysing, planning, andexecuting (see Figure 4).
This MAPE-cycle is operating on a set of managedehts. These managed elements comprise intra-
cluster elements (the affiliated cores and the T&h inter-cluster elements (other FDUS) in other
clusters. In the following section we describeftha phases of the MAPE-cycle in detail.

——=d

Managed elements

DDD DO

Intra-cluster Inter-cluster

Cluster x

Figure 4. The MAPE-cycle [15] — Adaptation for FDUpurposes

3.3.1 Monitoring

As already mentioned, detecting faults is one magsk of the FDU and crucial for a reliable
TERAFLUX system. Therefore, the FDU hasnonitor all unreliable processor components within
its cluster that may influence the system stabditg that may suffer from faults. These components
are the cores within a cluster, their routers amicsl Additionally the FDU monitors its affiliateBSuU

and other FDUs from neighbouring clusters (seergigy.

The monitoring mechanism could be realized in tifecent ways: First, theull mechanismcan be
used as follows. The FDU sends request messagésetononitored core and awaits a response
message from that monitored core. Secondptish mechanismcan be established to ensure that the
monitored core periodically sends a message t&fig. In order to initialise the push mechanism the
FDU sends a request message, which contains awahtealue to the monitored device. This will

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable nameDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 17 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

instruct the core to send periodically a messagéhéndefined interval. Those messages are also
known as heartbeat messages.

Besides the two mechanisms that are initiated antraled by the FDU, there is another mechanism
that is decoupled from the instructions of the FIAd.already mentioned, the monitored devices are
able to detect errors for themselves. This willused to generatalert messageswhich are sent
asynchronously to the FDU to inform it about a faul

In later stages of the project, additional mechagsisnay be considered. One option would be to attach
a core’s status information to a normal applicatimssage

3.3.2 Analysis

After the FDU has received information from its ragad elements in the monitoring-phase, it makes
forward progress to the analysis phase, in whiehinformation is analysed.

In the analysis-phase the FDU aims for four défénargets:

Detecting faulty cores and other FDUs

Detecting unresponsive cores and other FDUs
Detecting broken interconnections

Determining the performance of cores and intercotsne

PwnNpE

In the following subsections, we describe those faljectives in more detail and derive different
tasks from the objectives. We ordered the fourdasgarding to their perceived importance.

3.3.2.1 Detecting faulty cores and other FDUs
At the current stage of the research, we considertéchnigues to detect faulty elements.

First, the FDU receives an alert message from @ aoan FDU. This means, the device has detected a
fault by itself and informs now the FDU. The FDUspacts the device to be faulty and informs the
TSU in its cluster.

Second, the FDU analyses the periodically receivedsages from the cores and FDUs. When a
determined threshold of a key metric is exceedwsl HDU suspects the core or FDU to be faulty and
informs the TSU.

3.3.2.2 Detecting unresponsive cores

The second most important target is the identificadf unresponsive cores, i.e. total faults ofesor
Those cores would not send any messages to the &fdldo not respond on requests. But those
behaviours are also well known symptoms for a ga@kfaulty interconnection (or a whole NoC's
region). To detect such unresponsive cores, we witllorporate process failure detector
implementations from the field of distributed syste which can exploit the periodically received
messages to detect unresponsive cores [12][17].

2 This is also known as piggybacking or lazy moriitgr

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 18 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Furthermore, the FDU will keep information about #xecution state for each core. The state will be
preliminary set to the state “suspected” and no wewkload should be assigned by the TSU until the
FDU was able to figure out, what the problem adyial[12][17].

The first step to identify the error is done bydiag a request message on a different route todre
That may bypass a faulty router or link and theuesj may reach the core. If so, within this message
the FDU orders the core to send its response welsame routing algorithm. As a result of this, the
FDU may receive heartbeats from the core agairs Ehan indicator for a changed interconnection
connectivity, which leads to the Planning task.

If the FDU still does not get any life signs frolmetcore, then it is assumed that there is a major
problem with the interconnection network or theec indeed suffering from a total fault. In any of
those cases, the core will be marked in the FDLcpeg table as faulty. The FDU's last option is now
a cluster wide broadcast message. If there isastibhnection to the core and the core is stilealhe
nature of a broadcast will guarantee that the wdlleeceive it. This is a drastic way to reach@e
due to its high load on the interconnection netwbik it is necessary to rule out a false positivee
response of a core should then also be send bagfohycast.

3.3.2.3 Detecting broken interconnects

As mentioned above, it is necessary to infer ther@onnection connectivity of a cluster, in order t
distinguish between errors in cores and errorsrdégg the communication. So it is desirable to have
a precise representation of the cluster networkfutare work, we may also want to know if a
communication path is completely broken or if istdl usable but with some degraded properties lik
lower bandwidth.

3.3.2.4 Determine the performance of cores and interconné¢s

This task is meant to maintain the inner clustefgomance. Let's say that some cores of the cluster
may suffer from electromigration earlier than otleerfrom the increased temperature of that chip
region. Those issues can be handled by decreasinglaock rate of the involved cores. While this
becomes a permanent solution to a core, its comgpuapability has to be rated differently in orter
support a smarter thread distribution by the TSU.

The new cluster status is a matter of particulaerast for the TSU and the higher level thread
management, as they decide which device or chifomegp appropriate for a given workload.
Therefore, the FDU collects the data from the coteartbeat messages and determines with this
information the current performance of each atfih core. The information may consist of the
amount of retries a core needed to execute a thiddsl gives a hint on how often a core suffersnfro
single event upsets (only not correctable erroescaunted). If this counter hits a threshold, tbaJF

will try to minimize the effect.

3.3.3 Planning

In addition to the semantic analysis of the reaivessages where already the first decisions oh wha
actions are taken will be made, we propose a funphenning instance. This long-term (strategic)
decisions are mainly related to the cluster heaiimagement. This means that essentially all of the

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 19 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

information, such as the state of the communicatiemvork or the computing capability of all cores i
used to infer the state of the cluster. Within thpproach appropriate opportunities may arise to
reconfigure a cluster in order to minimize congastand to enable the TSU to do a smarter task
placement. To ensure the clusters health we prapes®llowing three planning objectives.

The placement of the FDUThis will help to minimize the heartbeat induasmhgestions and
reduce response times for more distant cores. @sir dpproach to this objective is the
placement of FDU in the centre of the cluster. Thisot a trivial problem, however, since the
cluster is not necessarily symmetricand may have holes in the communication network.
Nevertheless, we expect the placement of the FDth@centroid to be an ideal decision.

The decreasing and increasing of the clock rate difie devices (cores, routers,
interconnection bandwidth). Using the adjustmentlotk rates can solve various problems
on the chip, which are associated with a raised $tesss. Since the devices may interact with
each other in terms of heat, the planning witheesfo changes in clock rates are thus carried
out at cluster level. Should the situation in astéu relax again, the clock rate of individual
devices can again be raised in the same way.

Rearrangement of the clustersEmerging permanent errors will be detected and emak
necessity of rearrangements of the clusters frora tb time. This reorganization is also a task
that is performed in the planning stage. Howeventrary to the above described planning
goals, here all the information is needed fromchlkters. In addition, there must be exactly
one FDU that sets this new order and picks ouwafeU core for each new cluster.

3.3.4 Execution

Depending on its analysis and planning results Fbe takes action to solve the consequences of a
fault in the cluster. At this point we distinguibbtween reactive behaviour and deliberative belavio
Thereactive behaviouris a result directly inferred from the analysiegess and does not do throw
any planning instances. This should facilitate st faaction on critical system states, reportethfeo
core. These fast reactions are needed to minirtiee probability that a corrupted core state
compromises a running thread, which then spreadmytvrong (starting) values for other threads.

Thedeliberative behaviour mentioned before does not have such strict canstiaterms of reaction
time. Deliberative behaviour uses the decisionsemiadthe planning phase and effectuates them.
Examples we foresee for those decisions are theplegiment of the FDU itself or the rearrangement
of cluster structures. Some of those decisions afey be made by a group of FDUs; however, this is
out of scope for this document and will follow hretnext project year.

No matter which action the FDU performs it also t@m@nform the other components of the system,
which may be interacting with the cores (such deduler for task placement). TR®U briefs the
other services which might depend on the gatheret pme-processed information. At the current
project state there are the following componentsgciwhave to be informed:

® The shape of a cluster may become convex or ceneehich can complicate the (re-)placement of th&JF

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 20 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

the affiliated TSU needs to know the core stateshieead placement and
the TERAFLUX OS running on the Service Node neeftsrination about the cluster states.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 21 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 FDU Interface Specification

This section describes the interface specificatbrihe FDU. We start by reviewing the types of
messages and the communication partners of the BBt then describing how the communication
should be implemented from the perspective of th&) ANote that this is a preliminary specification
with respect to the communication. Later in thejgrbit might be necessary to make changes to this
specification and adapt it to the needs of all comication partners.

First, the high level interfaces are defined. Thimderfaces define the communication partners from
the perspective of the FDU. The communication gjwation is then classified in two categories,
Time-Driven and Event-Drivenand briefly explained. The last part of this smttidescribes the
individual messages as they are anticipated b¥#ihg. It is not yet implemented as an API, but &rul
of how communication should proceed from the FDUtspective. The communication partners of an
FDU are the monitored cores, the TSU, the neighbgufDU (other cluster), and the Service Node
(respectively OS).

4.1 High level communication protocol for fault detecton

Since the cores are able to detect internal emolespendently and moreover can distinguish whether
there is a correctable or not correctable error,pn@pose a mixture of communication for fault
detection. The two communication mechanisms areritbesl below.

4.1.1 Time-driven: Heartbeats

On the one hand, the messages are sent periodiCaise messages contain a set of core health
information, which are predefined by the FDU. Oftjalar interest are errors that influence the
actual core performance. The performance is meadwdhe number of attempts a core needed to
execute a thread until the execution was finallyltfree. Moreover, these time-driven messages are
used as so-called Heartbeats, which support the EDtbnfirm that the core is still alive. If no
messages arrive within the expected duration afFiig, then the FDU loses the trust to the core. In
consequence the FDU considers the core as fauttyirdorms the TSU. Thus, the TSU takes all
necessary actions to isolate the faulty core. Heats can be implemented as push (the preferrgd one
or as pull mechanism.

Figure 5 shows a core sending periodic heartbeasages. After the first not received heartbeat, the
FDU regards the core as faulty and informs the TWtdch takes care for the correct thread execution.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 22 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

Figure 5: Time-driven fault detection with Heartbea push messages

4.1.2 Event-driven: Alerts

Another mechanism is when messages are automatsett by the core. This mechanism is used
when the core has detected an error that was negotable and a re-execution of the thread canmot b
done with safety. The message of the core is defasean alert message and sent with priority on the
network. The high priority of this message enstinas it arrives with low latency at the FDU and can
be handled immediately.

The FDU will inform the TSU immediately about théfeated core. Thereafter, the FDU sends
commands (reduce clock speed or turn off the coregequests (requests for information about the
core status) to the core. Figure 6 depicts an eetected by the core itself.

Figure 6: Event-driven fault detection

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable nameDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 23 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2 High Level FDU Interfaces

The FDU interfaces are highly dependent on the aV&iERAFLUX architecture. This makes it
essential to define a high level abstraction of FldJ communication specification first, which are
independent form the underlying network topologyheTfollowing is the complete list of the
communication partner:

A core within a cluster,

The affiliated TSU,

The Service Node with the OS (as a higher levelagament instance)
The neighbouring FDUs (future work).

From the compounds of the communication partnensnesult the interfaces of the FDU. As far as all
the communication partners of the FDU are hostedoom of the cores of the system, the
communication can be carried out to generic andgidzased messaging. The message structures of
the interfaces are described below.

4.2.1 Interface: Request

The pseudo function caRequest defines a query message from an FDU to a corannétltluster
(or to another FDU) in case of the pull mechaniSime definition of the parameter passed to the
pseudo function is as the following. The push maidm is used to initiate the heartbeat messages.

Message format:

Request(priority, core_id, timestamp, req_msg_id, req_code, data)

Field Descriptions

Thepriority field is used to access the interconnection ndtwdth one of four different privilege
levels. The usual value for this parameter is “@td&use most of the requests should be answered in
low latency. (0 = highest priority, ..., 3 = lowgstority)

Thecore_id field identifies the message destination. Eeste_id is unique and belongs to one
core on the TERAFLUX processor, which can be aezbss/er the interconnection network. The
core_id consists of two coordinates of the 2D mesh andessmts the place where the core is
located. Each coordinate is a positive 5 bit integdue. Together they build tlwore_id with the
x-coordinate in the lower 5 bit range and the yrdowate in the higher 5 bit range.

The fieldtimestamp holds the FDU’s local time at the moment of messagation. It may be used
to calculate the response time of the target cBugthermore, it may be used to gain a nearly
synchronous cluster time, which can be achieveavsrwriting the local core time with the local

* The sender core_id is omitted from the paramétesfiorten the messages. Since we use a relative

addressing, the target core determines the messagee by calculating the inverse of twe_id . This
approach is operational in all types of messagegich a response is expected.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 24 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

FDU time plus an approximation of the duration, thessage traversed through the communication
network.

Thereg_msg_id field is filled with a unique identification numhewhich is used to identify the
corresponding response message sent from a coegefdle the requesting device will store the
req_msg_id in its “Request Table”, which is correlated wittettarget core and a timestamp.

The fieldreq_code defines what a core is supposed to do, in ordesatisfy the FDU’s request.
Since all FDU requests are handled by the cor@begrthe thread execution will not be interruptgd b
this kind of message. However, the shutdown messaadljgerminate the thread execution, due to
shutting down the core by the probe.

The fielddata is a container, which holds the request informatma may be used application
specific. From FDU point of view, this containerused to hold the desired registers’ entries that t
FDU wants to read. To support maximal flexibilitewefined three different coding schemes, which
are shown in Table 1.

Payload section of data flits -

0] B =5 Description

0 0 [register address value] Request for one register value

0 1 [first register address value] [last register adgnealue] Defines a range of register addresses
1 0 [register address value #1] , ... , [register as&lk@lue #n]| Defines several register addresses

Table 1: Definition of the payload structure: Requst Message

4.2.2 Interface: Response

Response messages are the result of incoming tegessages. Response messages should therefore
be sent only if a request exists. Such requestdeahe request messages of the pull mechanism or
the initialising request message of the push meashamesulting in periodically sent response
messages.

Message format:

Response(priority, core_id, timestamp, req_msg_id, data)

Field Descriptions

The priority (0 = highest priority, ..., 3 = lowest priority)iefd is used to access the

interconnection network with one of four differgmtvilege levels. The usual value for this paramete
is “1” because most of the requests should be amesive low latency. We propose to copy the
priority from the request message, because at ¢t pf request message creation, we defined
already which priority the communication should édav

Thecore_id field identifies the message destination. Eeste_id is unique and belongs to one
core on the chip, which can be accessed over teeconnection network. Theore _id consists of
two coordinates of the 2D mesh and represent theepihere the core is located. For a response

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 25 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

message a look up of the targere_id is not necessary, because it is copied directlynftbe
request message field.

Thetimestamp is copied from the corresponding field of fleguest messagehis will allow the

FDU to estimate how long this communication tooks@ecial case is the heartbeat message. Those
are implicit responses derived from the massage hgartbeat notification and can also contain a
timestamp. For all other messages types this ifsetgbtional.

Thereq_msg_id field is a copy of the corresponding field frone tbrigin request messagemay
be used as a control field for the FDU to determivigich request this response message answers (see
alsoreq_msg_id description in the section above).

Thedata field contains the requested core state informaiioform of register entries. From the
FDU point of view, that means depending on the FB{luest message, this field holds either a single
register value or a set of register values. Thermaod this set is defined by the request messamma fr
the FDU. The requested data has to be writtendrséime order to the data field.

4.2.3 Interface: Alert

An alert message is used to send urgent messagesafcore to the FDU. The alert message contains
just a targeted IDcpre_id) of the monitoring FDU and the alert coderpr_type).

Message format:

Alert(core_id, error_type)

Field Descriptions

Thecore_id field holds the unique id of the FDU, which is &tivey a response of the responding
core. Likewise the request messagedhie id is used for routing the message and determiniag th
source of the message.

Theerror_type encodes which kind of problem the core is suffgfiom.

Depending on the router configuration and its rgitilecisions, this message may either be directly
routed to the FDU or indirectly via broadcastinigthle communication network is still intact, direct
routing may be reasonable. While the communicatietavork suffers from broken links it may make
sense to broadcast the Alert to ensure minimahégte

Unlike the request messages, response messageasptifithtion messages the alert message has the
priority O and will be handled with maximum prigrit
4.2.4 Interface: Notification

The pseudo function calotify defines a notification message from an FDU todfidiated TSU
within a cluster.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 26 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Message format:

Notify(priority, core_id, timestamp, data)

Field Descriptions

Priority is used to access the interconnection networkusrdystem with one of four different
priority privileges. The usual value for this paeter is “0” (highest priority) because most of the
requests should be answered with minimal latenoyvéver, there might be some cases where a high
priority is not necessary. Therefore we keep tpisom open and define the priority by hand.

The fieldcore_id identifies the message destination. Eecte_id belongs to one device on the
chip, which can be accessed over the communicat@work. For a mesh based interconnection
networkcore_id is used by the router to route the message todireat device. If a bus system is
used for the communication, there_id is directly snooped by the devices connectatigdous.

Thetimestamp holds the FDU'’s local time at the moment of thessage creation. It can be used to
infer the response time of the target core. Funtloeg, it may be used to gain a synchronous cluster
time. Synchronous cluster time can be achievedveywriting the local core time with the local FDU
time plus an approximation of the time, the messtageersed through the net communication
network.

Thedata field contains the information that is sent fronelaster internal core, a cluster external
FDU, or a TSU. The content of the information defseon the target device. A core may send core
internal health information (provided by model sfiecegisters, i.e. performance counter registers
machine check registers) to the FDU while the FBidsuthis message type to send cluster health
information (how many cores are still active andaware their performance capabilities) to the TSU
or to the Service Node.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 27 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.3 FDU Interfaces to Communication Partners

4.3.1 FDU to Core

The communication between the FDU and the coreseros heartbeat messages enhanced with core-
internal states (temperature etc.) and alert messtigt can be done either with the pull or with th
push mechanisms. Request with following responsssage pairs are used to implement the pull
mechanism. For the push mechanism a single isitigirequest message is followed by periodic
response messages.

Response messages contain core-internal states diata field. Moreover alert messages containing
error conditions can be sent asynchronously frarctire to its associated FDU in urgent cases.

The core-internal techniques to read a requestagesand to generate responses and alert messages
highly depend on the core to be used. In this st#gthe project we assume a message handler
activated by a request, reading the performancateoand generating response messages, running on
the core.

4.3.2 FDUto TSU

The functionalities between the FDU and TSU arditiared such that the FDU is responsible for the
core and link level and the TSU is responsibletfsead handling. Concerning fault tolerance that
means, the FDU detects node and link failures afadms the TSU, whereas the TSU is responsible
for recovery and thread restart. Moreover, thelimdications will be collected by the FDU and so the
decision to reduce the core frequency to meethbartal conditions will be implemented as part of
the FDU, but the load balance that results frorm deicision will be implemented by the TSU.

The FDU communicates with the TSU via command ngEssae. request, response, notify, and alert
messages. Please note that the communication betleel SU and the FDU can be bi-directional

since the TSU may request the FDU to change tlyérmecy of a core, or to shut it down in case of
low workload, while the FDU needs to report the T&Uthermal and error conditions.

One of the most complicated events in the systehow the core indicates to the TSU that a not
correctable fault happened. The TSU scheduledeadhto be executed on a core. In return, when the
thread completes its execution, the core needertd an indication that the execution was completed,
and that it is ready to execute the next threatstassociated TSU. When an error occurs, we cannot
trust the core to be able to send the indicatiotheffailure to the TSU, but we assume that thererr
detection hardware on the core will trigger antad@gnal indicating that something wrong happened.
In order to avoid race conditions, as soon as i Feceives the alert message on the fault, itsend
the indication to the TSU that in return first serh abort message to the core and second resetedul
the thread to be executed either on the same cane another core.

Please note that the current design of the partafdunctionality between the TSU and the FDU may
change while we start to further explore recoveechanisms in the next phases of the project.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 28 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.3.3 FDU to Service Node with Operating System

Similar to the communication between the FDU ane tlores, the communication between the
Service Node (OS) and the FDU can be done eithter tve pull or with the push mechanisms. If the
push mechanism will be used, the FDU will submst dggregated information about its cluster
(associated cores, TSU and the FDU itself) to tBe Which is executed on the TERAFLUX Service
Node. If the pull mechanism will be implementede(fhreferred option) the OS will monitor the state
of all FDUs periodically and save their statisticsmanaged tables. At a lower level the OS and the
FDU may communicate by using a shared memory sirtolahe way PCI configuration area works.
Regardless the exact mechanism being used (pyshilpwe can assume that the OS has a table that
represents the health state of each cluster. Pledsdhat the OS do not have to care about théhhea
state of each core, from its point of view, thengtarity it deals with is clusters.

4.3.4 FDU to FDU

Even whole clusters can fail. The fault of a wholaster can be detected by monitoring the FDUSs,
because a cluster consists of an FDU, a TSU andrdbér of cores. If the whole cluster fails, also it
associated FDU has failed. Therefore, we devidentques how FDUs are automatically organised in
groups that monitor each other (future work in ¢beond project year). The messages between FDUs
and monitoring techniques will be similar or thengaas between core and FDU. That will allow self-
organised FDUs and cluster over the whole NoC.

Currently we assume that the OS on the Service Ned@dically monitors the FDUs and detects
faults of clusters.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 29 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 Core-Internal Fault Detection

The TERAFLUX architecture is supposed to build upmmmodity x86-cores, which even today
incorporate limited hardware fault detection andgrenance measurement mechanisms.

With the aim to guarantee certain reliability atectevel and to exploit common and well-testedtbuil
in fault detection features, we encompass suchddilreliability features in our fault detection
approach. In this manner, information provided bgcemmodity x86-core about its current state,
which can be internally detected faults as wellkeag metrics about the current performance, are
fundamental measures for our Fault Detection Units.

The rest of this section will focus on features aaching schemes of the AMD 11h processor family,
but similar features can be found in processoth@intel P6 family as well [18].

5.1 Machine Check Architecture

The AMD processor family 10 is equipped with anhitectural subsystem callddachine Check
Architecture (MCA) [9] that is able to detect and correct certaintfain the processor logic. The
model specific registers used for the MCA are alsadable and writeable via the CPU debugger
interface within the SimNow simulator and therefalgo provided by COTSon [19]. For AMD family
10 processors the machine check architecture cagmeze faults in the data cache, the instruction
cache, the bus unit, the load-store unit, the NBridige, and the reorder buffers.

Since most space on current chips is occupiedrige lmmemory arrays, it is likely that in the casewof
error a memory cell will be affected, finally resng in a detected fault.

In the case of a fault the MCA distinguishes betwieo different types of faults:

1. Correctable faults can be repaired and hence pretven core suffering from data and
processor state corruption.

2. Non-correctable faults let the processor remairainorrupted state. Data corruption and
wrong processor states are likely. This may makedllzack necessary.

The number and the source of corrected faultsaygeld in model specific registers and the core can
make progress during logging. By contrast, nonaable faults can also be logged in a model

specific register but at the end the processor atamake further progress and usually generates a
machine check exception.

Since frequent occurrences of correctable and pomectable faults may be a direct indicator for
intermittent or permanent faults, or a permaneatkdown of the whole core, the FDU can use this
information to make predictions about the curretfiability of a core.

5.2 Performance Sampling

Not all intermittent or permanent errors can bescked by the build-in machine check architecture
encompassed in current processors, in particutarsethat impair the data paths of a core’s pigelin
On the other hand, such undetected errors mayffeat gper se the functional behaviour of the core.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 30 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

They may only lead to performance degradationhdytaffect complex performance accelerating
components like branch prediction circuits.

To enable the TERAFLUX FDU to periodically test fiotermittent or permanent faults, the model
specific performance counters are exploited. Swfopmance sampling can be used in two different
manners [10].

1. Caliper mode, in which the performance counter registers awe rbefore and after an
execution.

2. Sampling mode in which an event counter register is preloachwitthreshold value. If the
threshold is reached, an interrupt occurs and énfopnance counter registers are read by the
interrupt service routine.

5.3 Low Level Interface of AMD Cores to FDU

We base our mechanism on the current fault deteetial reporting mechanisms existing in AMD x86
cores but if needed, we will extend their interface

Current AMD X86-based cores use different mechasigndetect and report performance and errors,
such as:

At hardware level, most of the internal buses, néscand some of the logic is protected by
error detection and correction mechanisms [17][9][B most of the cases, the system can
detect up to N simultaneously errors in a unit, darrect only up to M out of them (W).
When an error is detected and corrected, a spenigdter is increased to allow the system to
track its health, but no other operation is triggerWhen an error is detected without the
ability to correct it, an exception is thrown tdoal the exception handler (SW) to decide how
to handle it.

AMD cores (similar to Intel cores as well) defineset of performance, power, and thermal
counters [10]. These counters can be operateddmtades of operations, (1) a polling mode,
where the software (part of the FDU) can accessetiieunters and read their values (request-
response messages), and (2) in a triggered moda (pade) [10]. Under this mode, the FDU
may defines an interval for each counter. When dbeta is exceeded, an exception or
interrupt is issued to transfer the control to #dwftware. We decided to base the FDU
capabilities on these counters and extend themeifiad.

We plan to define a set of “side-band” of alerinsilg that can be driven from the cores to the FBU s
that the indication could be received even whencibre is faulty and cannot issue the message for
itself. Such signals include:

Live signal: no forward progress, while the coredto be active.
Thermal limit exceeded: the core is too hot.
Internal link liveness information.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 31 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Core-local Fault Detection Probe:Both, the MCA and the performance sampling, mage of
interrupts in order to read the model specific segis [9]. Since frequent interrupts would degriuge
dataflow performance of the core, we consider a leardware probe per core, which is directly
connected to the model specific registers and dhal linterrupt controller. This allows the FDU to
read (via request and response messages) modélcspagisters and receive fault related interrypts
which not impair the functional behaviour withouaterrupting the current dataflow thread. The fault
detection probe may later also be used to calcuolade signatures to enable the FDU to detect faults
which remain undetected by the core itself. Thasdt$ would then be reported via alert messages to
the FDU.

In the current stage of TERAFLUX project we seermason to go deeper into the core-internal
implementation.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 32 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6 Operating System Investigations

In order to support massive number of cores, omgahinto clusters, we assume that the system
should provide, on one hand a uniform service ® ghogrammer but on the other hand, it is not
intended to implement a full-blown operating systemeh as Linux at each node. Thus, we assume
that the system is divided into service node an®RAB_UX clusters. Heterogeneous HW will fit
most to this assumption, but since our research doefocus on HW perspectives, we assume that all
clusters are the same, where one (or more) clistarnning a full Linux kernel (service cluster),
while the other clusters run a microkernel or peiel such as L4 or NANOS. From the user point of
view, all virtual shared memory of the applicatioging executed can be accessed by all cores (with
different access time for each) but there are sesvsuch as I/O system calls and more that can be
executed only by the Service core. Thus the maindof the OS related research is how this stractur
impacts the entire design of the system. For exanimw the system boots, how work is scheduled,
what is the minimal functionality the microkernehosild have in order to fulfil the system
requirements, etc., how the Service cluster comoattes with all other clusters (and between the
TERAFLUX cluster themselves and how to handle resesiin the case of imbalance due to workload
and/or faults.

In order to achieve that, we started implementipgaotype of a system that can run on the same chi
both Linux and the L4 micro-kernel (in parallel wee also looking at the use of NANOS to replace
the L4. The current system can demo the configumativen each microkernel emulates the TSU +
FDU per cluster and the Linux demo the Service OS.

So far we were successful to

1. boot the system with different OS on each clustelen virtualization layer,

2. use a virtual shared memory to communicate betwedifferent clusters (even if the
physical memory is not physically shared), and

3. develop a communication layer between the Linuxa@&the L4 micro-kernels.

The next step will be to start implementing theltfanierant and resource allocation algorithms into
the basic infrastructure. This step also dependa faw architectural decisions that need to bertake
by the WP6, such as the overall memory model ofitstéem and in particular the support we need to
provide for transactional memory. Independent eséhimportant decisions we will

1) continue to examine the best microkernel for thagmt (Currently we compare the NANOS
and the L4.),

2) run the system w/o virtualization, and

3) start implementing load balance algorithms basetherealth of different clusters.

As soon as we decide upon the open architectisadsswe will start implementing the fault tolerance
algorithms:

1) We will start with centralized algorithms.
2) Later we will distribute the algorithms'{3ear).

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 33 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6.1 OS and Core/TSU Interface

The TSU is in charge for maintaining the executtbthe TERAFLUX threads on the different cores
belonging to the same cluster. At this point weuass that the main OS assigns the threads to be
executed to the TSU and the TSU distribute thestaskong the cluster’s cores. In order to maintain
that, the TSU keeps ready queues to hold all tlsrgatito be executed. The TSU needs to take into
account the information provided by the FDU in ariteload balance between the different cores and
in order to react when a fault is detected durhmg éxecution of a core. We examine the possibility
that the TSU will be implemented as a hardware anrapt or as a local micro-kernel like L4.

For the simplicity (and we may decide to changktér on), let assume that (1) we are using two
phase commit; i.e. task has no side effects, lieeicomplete its operation or can be reschedule for
execution at any time, (2) a tasks are not pre-eeit is removed from the ready queue only when i
finishes executing the task or if it requests desyiscall such as 1/0, page fault, etc., and thusnadm

not correctable fault is detected, the system (H\@8ds to flush all its internal states, and indicat

the TSU that the task execution terminated unsgbtas The TSU will try to re-execute the task on
the same core or on a different core within theesahaster. Failing to execute the task on a differe
core may cause the TSU to ask the Service nodexdoute the task elsewhere (most like at the
service node itself.)

When tasks end its operation, the control goes batke TSU with a successful indication, and the
TSU needs to decide if to put the task at the gadtue, waiting for the execution of the operatibn a
the service node or to terminate its execution.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 34 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

7 Conclusion

This Deliverable started with a general specifamaif a Fault Detection Unit. The internal behaviou
was derived from the field of autonomic computimg@mpassing monitoring, analysing, planning,
and execution tasks. The then following design sgamloration of different FDU variants resulted in
a functional FDU specification using pull and pusblssages to detect core internal faults. The FDU
specification also includes the abstract interfdefnitions between the FDU and its affiliated core
and TSU. Furthermore, we described the way the RilUaccess the different cores to inquire their
execution state and the way the OS will acces&ig in order to get the required information on the
health of the cluster.

The Operating System was designed as Linux OS mgnom the Service Node of TERAFLUX and
being connected to L4 kernels running on clustelesoFDU interfaces are defined that allow the OS
on the Service Node to access the cluster infoonmatollected by the FDUSs.

Thus all objectives of Task 5.1 were achieved.

As enhancements to the original objective of fdeliection, we found out that the messages (response
and alert) from cores to FDUs could carry additignanformation on the temperature and internal
fault rates provided by the Machine Check Architeetof AMD/Intel cores. Such information can be
used to enhance the FDU functionality such thatRbB& can react on such messages to proactively
reduce voltage and frequency of the cores or tdyntbie TSU of partially faulty cores.

The work in the second project year will focus ba tnter-cluster fault detection mechanisms based
on the defined overall TERAFLUX architecture (aatestl in Task 5.2). This concerns the three
subtasks:

Development of clustering of cores: We will devekipategies to form cluster which means
that a set of cores is assigned to an FDU. The EX@dsponsible to monitor all cores within
its cluster.

Development of grouping strategies for FDUs: Adutitilly grouping strategies for FDUs are
needed. Such a group only consists of FDUs an&RUs within the same group monitor
each other. This allows the detection of fault$~BUs or whole clusters. After the detection
of faults restructuring of clusters and groups meyecessary.

Development of inter-cluster fault detection medbians: Based on the structure of the groups
of FDUs mechanisms will be developed which allow #domutual fault detection of FDUs
within the same group.

We will start with a NoC design space exploratiargéting to minimise the overhead of heartbeat
messages within the NoC by applying different mgitalgorithms. We have to enhance the routing
techniques to be more adaptive in case of faultigslior routers such that the cores can still be
reached.

Partner MSFT will focus on other parts of the systehich are not CPU, such as I/O, peripheral
devices etc. and examine how to detect errors fltmse sources and how we can recover from them.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 35 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

It will extend the work to include SW and HW prdiea (not HW only): It looks like that recover
from fault which are external to the core may regja new SW/HW interfaces.

Although the FDU will be optimized for a fast deten of faults, cases may occur in which even a
rapid response of the FDU and TSU cannot prevertisfaffecting other threads. This makes rollback
and recovery mechanisms necessary incorporating $tiés, which are in charge of the correct and
consistent thread execution. For the future we fanvestigate two alternative recovery techniques
to handle such situations.

One mechanism is based on “reliability by constamt This means, a thread is committed
using a two-phase algorithm. In the first phase,dy5stem can terminate the execution at any
point of execution, since it keeps its state, efibre execution is started and all writes are
written to local buffers at that phase. In the setcphase, the system guarantees to complete
the update operation as it was executed in an atoranner.

The second mechanism is based on an “optimisticoapgp” that assumes that the system
rarely fails. Thus, this mechanism relies on theqgokic stored system states. A rollback brings
the system, or parts of it, back in a stable camlitOn the one hand the rollback may affect
the overall performance. On the other hand, siheddw probability for an occurrence of a
fault is assumed, in most cases a rollback mighthHsaper compared to start over the whole
execution of the involved threads.

Additionally, we will consider for the future thevauation of dynamic temperature and voltage
variations. Hence, we will investigate how dynamidtage and frequency scaling (DVFS) managed
by the FDU influences the reliability and the penfiance of the system.

® Recovery is partly objective of Task 5.3 in ydaee.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 36 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

8 References

[1] S. Borkar, “Thousand core chipg7toceedings of the 44th annual conference on Design
automation - DAC '07 San Diego, California: 2007, p. 746.

[2] J. Srinivasan, S.V. Adve, P. Bose, and J.A.eRy “The Impact of Technology Scaling
on Lifetime Reliability,”IN DSN (2004), IEEE, IEEE COMPUTER SOCIER904, pp.
177--186.

[3] S. Borkar, “Designing reliable systems from ellable components: the challenges of
transistor variability and degradatiomMicro, IEEE, vol. 25, 2005, pp. 10-16.

[4] D.J. Sorin, “Fault Tolerant Computer Architeati Synthesis Lectures on Computer
Architecture vol. 4, 2009, pp. 1-104.

[5] R. lyer, N. Nakka, Z. Kalbarczyk, and S. Mitf&ecent advances and new avenues in
hardware-level reliability supportMicro, IEEE, vol. 25, 2005, pp. 18-29.

[6] S. Shyam, K. Constantinides, S. Phadke, V. &ex, and T. Austin, “Ultra low-cost
defect protection for microprocessor pipelineBroceedings of the 12th international
conference on Architectural support for programmiagguages and operating systems
- ASPLOS-XII San Jose, California, USA: 2006, p. 73.

[7] T. Lehtonen, J. Plosila, and J. Isoaho, “Ontféalerance techniques towards nanoscale
circuits and systems,” Turku Center for CS (TUCBEPT. OF INF. TECHNOL.,
UNIV. OF TURKU 2005.

[8] A. Mendelson, N. Suri, and O. Zimmerman, “Rfatward recovery: the bidirectional
cache approachFault-Tolerant Parallel and Distributed Systems949 Proceedings
of IEEE Workshop qri1994, pp. 59-68.

[9] AMD, “Bios and Kernel developer guide,” 2006.

[10] P.J. Drongowski, “Basic Performance Measurasidor AMD Athlon™ 64, AMD
Opteron™ and AMD Phenom™ Processors,” Sep. 2008.

[11] M. Palesi, S. Kumar, and V. Catania, “LeveragiPartially Faulty Links Usage for
Enhancing Yield and Performance in Networks-on-Ch{omputer-Aided Design of
Integrated Circuits and Systems, IEEE Transactmmsvol. 29, 2010, pp. 426-440.

[12] B. Satzger, A. Pietzowski, W. Trumler, andUngerer, “A new adaptive accrual failure
detector for dependable distributed syster®sgceedings of the 2007 ACM symposium
on Applied computingSeoul, Korea: ACM, 2007, pp. 551-555.

[13] S. Weis, A. Garbade, S. Schlingmann, and Tgeder, “Towards Fault Detection Units
as an Autonomous Fault Detection Approach for Futhfany-Cores,”ARCS 2011
Workshop Proceeding¥DE, 2011, pp. 20 - 23.

[14] Ching-Tien Ho and L. Stockmeyer, “A new appmbdo fault-tolerant wormhole routing
for mesh-connected parallel computersParallel and Distributed Processing
Symposium., Proceedings International, IPDPS 208&stracts and CD-ROM2002,
pp. 48-56.

[15] J. Kephart and D. Chess, “The vision of autarecomputing,”Computer vol. 36,
2003, pp. 41-50.

[16] H. Schmeck, “Organic Computing - A New Visitor Distributed Embedded Systems,”
Proceedings of the Eighth IEEE International Synirmson Object-Oriented Real-Time
Distributed ComputinglEEE Computer Society, 2005, pp. 201-203.

[17] W. Chen, S. Toueg, and M.K. Aguilera, “On tl@uality of Service of Failure
Detectors,TEEE TRANSACTIONS ON COMPUTER®I. 51, 2000, pp. 561--580.

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 37 &f 3

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

[18] Intel Corporation, “Intel® 64 and IA-32 Arcleittures Software Developer's Manual
Volume 3B: S]ystem Programming Guide, Part 2.”
[19] AMD SimNow'™ Simulator 4.4.1 User's Manual, 2007, Rev. 1.83

Deliverable number: D5.2 Dissemination Level: PU (Public)
Deliverable namebDesign Exploration of FDUs and Core-Internal FaultDetection(UAU, MSFT)
File name: TERAFLUX-D51-v12final.docx Page 38 &f 3

