Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D4.6 — Thorough evaluation of the compilation toolsproductivity and
performance portability

Due date of deliverable: 3December 2012
Actual Submission: 20December 2012

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntiding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable numbeiD4.6 — Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, prodativity and
performance portality

File name: TERAFLUX-D46-v4 Page 1 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

Change Control

Version# Author Organization | Change History

1.0 Albert Cohen INRIA First version

11 Mikel Lujan UNIMAN Scala compilation flow
1.2 Souad Koliai, Arne Garbade UDEL, UAU Correctiors, comments
1.3 Rosa Badia, Albert Cohen BSC, INRIA Correctiongprecisions
1.4 Albert Cohen, Roberto Giorgi INRIA, UNISI | Final corrections

Release Approval

Name Role Date

Albert Cohen Originator 04/12/2012
Albert Cohen WP Leader 12/12/2012
Roberto Giorgi Project Coordinator for formal deliv erable | 06/12/2012

Deliverable numbeiD4.6 — Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 2 of 28




Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

TABLE OF CONTENTS
1. GLOSSARY ..coiiiiienneitrenertreneesressesssansesssassessssssesssassesssassesssasssssssssssssnnsssssnssssssnssssssnnsssssnssssssnnsessssnsssssnnse 5
2. EXECUTIVE SUMMARY ......cccevvrenenee teesereeseressereserenseranatrasetanserasetenseranaranserasarensenarsennenanserananane 6
3. INTRODUCGTION ...c.uciittneetreneeerrenseeerenseesressessssssessssssessssssessssnssssssnssssssnssssssnsesssssssssssnssssssnssssssnssssssnssssane 7
3.0, DOCUMENT STRUCTURE ...cttttttieieieieteteteteteeeeteeeeeeestaesesesessseresesreereeerresttetertreeeeesteteseteseeeseseeessssssrerererrrrrresrrererrerens 7
3.2. RELATION TO OTHER DELIVERABLES ...vvvvvvtrrrrrerrereeeeereereeereseseseseseeeseessssessssssssssssssssssssssssessesssssesssesesesesesssssssssssssssen 7
3.3. ACTIVITIES REFERRED BY THIS DELIVERABLE ....eevvvvuunieeeeererersnnaeeeesesssssnnesessssssnneeesessssssssnnsesesssssssssnnsesessssssssnnnesssssses 8
4, EVALUATION OF THE BACK-END COMPILER FOR TERAFLUX ....cccueittencerrenncenrensecerensecsrensecesensesssnnsssans 9
4.1. FEED-FORWARD DATA-FLOW MODEL: INTERFACES AND CHALLENGES ..vvvvvvvvvrrrrrererererererererreeererereresesesssssssesessseseeees 9
4.2, COMPILING STREAMING TASKS TO DATA-FLOW THREADS ...eeeeeeteeeeeeeeeeeeeeeeieieeeieiesesesesesssssesessesassssssssesssssnsesssnees 10
4.3. TRANSACTIONS WITHIN DATA-FLOW THREADS. ..vvvvvverererrrerrerreerereerereeesesesesesesesssssssesssssessssssesesrssssererrsereresesesens 14
4.4, IIMPLEMENTATION 11vvvvvvvvvvvsesesesesesesesesesesesesssessssssssssssssssssssssssssssssssssssssssssssssssssesssssesesssssssssesssssssssssrssssrsrens 15
4.5, SYSTEMATIC PERFORMANCE EVALUATION. ....cciiiiiiiiiieieieieieieie it it ieieieieseseieieeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeseiesesesesesesenns 15
5. THOROUGH STUDY OF A RUNTIME FOR DATA-FLOW TASKS .....cctteuieitteneerrencenreneerrenseessensecssansesssnnes 17
6. COMPILATION OF STARSS APPLICATIONS .....ceuirieirenereenerencseesceessssessssssessssssssssssssssssssssssnssssssssnssssnsne 19
6.1. TRANSLATING STARSS INTO OPENSTREAM ..vvvvvererererererreereereerersrerereeereresesesesssssssssssssssssssssssssssesessrersrereeerererens 19
6.2. CORRECTNESS OF THE TRANSLATION ....eeetvtttuuneeeeereressnneeeeesssssssnnesessssnnsesesssssssssnesesssssssssnnnesessssssssnnnnessssses 21
6.3. IIMPLEIMENTATION 11vvvvvvtvuvssesesesesesesesesesesesesssesssssssssssssssssssssssssssssssssssssssssssssssssseresssesesssssssssessssssssssssssssrrren 22
7. SCALA TO C++ TRANSLATION ......ccuiieuirenirennirenereeseresesresssesssrassssssesssssssssssssssssssssssssssssssssassssssssnssssnsene 23
7.1. CURRENT STATUS et ttiiieieieiieeeeeeeeee e eeee e e e et e s e s et e seseses e e e e e e e e e e e e e e e e e e e e e eeeeeeeeaesesesesesesesasssasesaaaeaaeeeseeaeeeeenenenseennes 24
7.2. P AN e etttteee ettt et e et e ettt e et e e e et e et eeee e et a————eteeeteatbaa——ateeetetataa——eaeettnaaaeaeteraraaaaaaeeererrrtaaaaaeeerrrarann 25
8. CONGCLUSION .. cceutiitteneeerenneesrenseessessessssssesssassessssssessssssssssssssssssssessssnssssssnssssssnssssssnssssssnssssssnssssssnssssssn 26
9. REFERENCES ......ccutttuiteuereenirenertenteessreseressssesssessesesssesssssssssassssssssassssssssssssessesassssnsessssssnsssassesnssnsnsennnes 27

Deliverable numbeiD4.6 — Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, prodetivity and

performance portality

File name: TERAFLUX-D46-v4 Page 3 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

Albert Cohen, Francois Gindraud, Feng Li, Antoniu Pop
INRIA

Rosa Badia, Guillermo Miranda
BSC

lan Watson, Salman Khan, Daniel Goodman and Mikel ujan
UNIMAN

2009-13 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iryJtr the TERAFLUX Consortium, on thaww.teraflux.euveb
site and can be distributed to the Public.

The list of author does not imply any claim of owsiép on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressethbed warranty of any kind and assume no resibdites for errors
or omissions. No liability is assumed for incidéraconsequential damages in connection with isirag out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and malyde used or
copied in accordance with the terms of the Licefte. information in this document is a work in megsg, jointly
developed by the members of TERAFLUX Consortium ("RERUX") and is provided for informational use only.

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks ardide secrets owned
by or licensed to TERAFLUX Partners. The partnesgree all rights with respect to such technology eatated materials.
Any use of the protected technology and relateceriztbeyond the terms of the License without therpwritten consent

of TERAFLUX is prohibited. This document containaterial that is confidential to TERAFLUX and its migens and
licensors. Until publication, the user should assuihat all materials contained and/or referencetisidocument are
confidential and proprietary unless otherwise iathd or apparent from the nature of such matgfialexample,
references to publicly available forms or documgnts

Disclosure or use of this document or any matenatained herein, other than as expressly permitqatohibited without
the prior written consent of TERAFLUX or such otlparty that may grant permission to use its proarnematerial. The
trademarks, logos, and service marks displayelisndocument are the registered and unregisteadérmarks of
TERAFLUX, its members and its licensors. The coglytiand trademarks owned by TERAFLUX, whether tegésl or
unregistered, may not be used in connection withpraduct or service that is not owned, approvedistributed by
TERAFLUX, and may not be used in any manner thikédy to cause customer confusion or that dispasal ERAFLUX.
Nothing contained in this document should be comstras granting by implication, estoppel, or otleewany license or
right to use any copyright without the expresstemnitconsent of TERAFLUX, its licensors or a thirdtpawner of any
such trademark.

Printed in Sena, Italy, Europe.
Part numberplease refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFKIWGPECIFICATION IS PROVIDED BY TERAFLUX TO
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRISS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDINGWITHOUT LIMITATION, ANY DAMAGES ARISING
FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFIDATA OR GOODWILL) ARISING IN CONNECTION WITH
ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPEIFICATION, WHETHER IN AN ACTION IN CONTRACT,
TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER TIHORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 4 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

1.Glossary

OpenMP — Parallel programming pragma language on top, @- and Fortran. In this deliverable,
we refer to the OpenMP specification version 3.1.

http://www. openmp. org

OpenStream — Data-flow streaming extension of OpenMP, for Géanguage, implemented as a
patch to GCC and a dedicate runtime system forfttatatasks.

http://www. di. ens. fr/OpenStream

StarSs— StarSs is a task-based programming model tlailes the exploitation of the applications'
inherent parallelism at the task level. To markttsks in a StarSs application, annotations (pragma
similar to the OpenMP ones are used. A uniquené&tarSs tasks are the input, output or inout
clauses that applied to tasks' parameters enableitiime to track tasks' data dependences.

http://pm. bsc. es/ompss

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 5 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

2.Executive Summary

We report on the multiple advances that took placehe third year of the project towards the
construction of a complete tool chain for TERAFLUX.

In particular, we describe the complete compilafiow from the StarSs efficiency language down to
the TERAFLUX instruction set, and the associatattinbe system components. The tool flow uses
data-flow streaming extensions of OpenMP, callecer@3iream, as an intermediate step in the
adaptation of StarSs programs for the compilatiothe T* feed-forward data-flow execution model.

This tool flow is distributed as free software agpatch to GCC 4.7.1, with a complete set of
benchmarks selected from the comprehensive lisppfications characterized in WP2, and with 19
tutorial examples introducing the language constrat OpenStream.

We also report on the current state of the integradf the Scala tool flow with the TERAFLUX
back-end compiler (GCC generating T* instructions).

Experiments currently target a software runtimening on native hardware. These experiments
allowed us to perform a thorough validation of ¢lesign of the tool flow, comparing against state-of

the-art programming models and implementations. &kgeriments also helped identify missing

features and a precise roadmap for the complefitimecflow to enable the execution of larger StarSs
applications. The detailed results can be founthen associated papers published at IEEE Micro,
ACM TACO (HIPEAC 2013) and PPoPP.

Performance experiments on the TERAFLUX instructg®t simulator, scaling to multiple node
configurations, and with different timing modeld|lwe conducted in the fourth year of the project.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 6 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

3.Introduction

The overall objective of WP4 is the developmentapilation and runtime support tools tailored to
the TERAFLUX architecture and programming modelse Tompiler(s) need to map the parallelism
and locality as available from the source programd programming model to the target execution
model and architecture. The distribution of theesohmong the compilation tools and the runtime
tools is guided by the efficiency and robustnesbharfdling the challenges statically or dynamically,
respectively.

The source program exhibits high levels of conewye but it still has to be exploited effectivelg o
the target. The compiler tools need to coarsen ghan of synchronization, issue bulks of
communications, overlap communication and computatbalance computation with communication
bandwidth, and harness temporal locality of codg data, taking into account the features of the
memory hierarchy. It also needs to generate tightlgeduled, fine-grain vectorized computation
kernels, possibly targeting accelerators.

We report on major advances in the compilatiorhefdata-flow streaming extension of OpenMP
(now called OpenStream) to the TERAFLUX instructim, in the design, experimentation, on the
runtime support for this language, and on the amgjoihplementation of a systematic translation of
StarSs to OpenStream for execution on the TERAFIsuixulator.

3.1. Document structure

Section 4 reports on the back-end compiler, imptgeetin GCC, and mapping OpenStream to the
TERAFLUX instruction set. A complete flow includitbe code generation method, runtime support,
and experimental results are provided.

Section 5 reports on a formal and experimentalystfidhe data-flow runtime system supporting the
execution of data-flow tasks on conventional hamgwa&his thorough study will be useful for the
design and implementation of future software/hardviraterfaces.

Section 6 reports on the translation of StarSsgenStream and preliminary experiments in the
direction of a complete integration of the tooMiléor efficiency languages down to the TERAFLUX
instruction set.

Section 7 reports on the integration of the Saadaftow with the back-end compiler. While the main
research route for Scala is based on the Java Whhtegrated route has been hard to implement due
to technical limitations of the available tools. IMMN has been able to propose a new integration
path leveraging the TERAFLUX backend through aedéht set of tools.

3.2. Relation to other deliverables

This deliverable extends the compilation algorithdascribed in D4.1, D4.3 and D4.4, and evaluates
them on a range of representative benchmarkssdt@mplements D3.3 with an evaluation of the
compilation a runtime support to execute StarSécgipns on the TERAFLUX architecture.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 7 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

3.3. Activities referred by this deliverable

This deliverable is associated with and represtietsesults of Task 4.2 and Task 4.3. Most of the
work is related to Task 4.2. Indeed, during thersewf the project it became apparent that theetdrg
effort on transactional memory would be concentrate the language support and on the architecture
extensions (as reported in WP3 and WP6). Taskasdhken increasingly concentrating on compiler
engineering to combine the data-flow and transaatimemory compilation flow and runtime, with
little resources left for research on optimizations

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 8 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

4.Evaluation of the Back-End Compiler for TERAFLUX

We present a vastly remodeled compilation flowtfer TERAFLUX architecture, implemented as a
front- and middle-end extension to GCC 4.7.1, edpam streaming task directives into data-flow
threads and point-to-point communications. It ig first complete, fully automatic compilation
framework for OpenStream, the new name of the flata-streaming extensions of OpenMP
designed by INRIA in the TERAFLUX project.

We first recall the feed-forward data-flow execuatimodel we are targeting in the project, and discus
why it challenges the classical compilation methimadgparallel languages, and some constraints this
model imposes on our stream programming model. TWeedetail the code generation algorithm and
the main features of the implementation. The readay refer to [1] and [3] for details on the
compilation of OpenStream and on the automaticaekitn of fine-grain threads from arbitrary
procedural control flow, respectively.

4.1.Feed-forward data-flow model: interfaces and challenges

Our code generation pass targets an abstract ldatarterface, designed after DTA (the data-driven
execution model) [6] and the T* ISA [5] (as definadhe WP6 and WP7 deliverables). The interface
defines two main componentdata-flow threads, or simplythreads, when clear from the context,
together with their associatedta-flow frames, or frames.

The frame of a data-flow thread stores its inputi@s, and may also store local variables or thread
metadata. The address of this data-flow frame séswes as an identifier for the thread itself, to
synchronize producers with consumers. Communicatibatween threads are single-sided: the
producer thread knows the address of the data-fiames of its dependent, consumer threads. A
thread writes its output data directly into theadfibw frames of its consumers.

Each thread is associated witlsyachronization counter (SC) to track the satisfaction of producer-
consumer dependences: upon termination of a thtea&C of its dependent threads is decremented.
A thread may execute as soon as its SC reachehki€h way be determined immediately when the
producer decrements the SC. The initial value ef3 is equal to the amount of data that needs to b
externally written to its frame plus the numberooihsumer threads to which it connects. In our
implementation, the producer responsible of thedasrementation on a thread directly schedules the
consumer for execution. This token-less driven etien is one of the strengths of this form of peint
to-point synchronization.

In contrast, token-based approaches require chgdkia presence of the necessary tokens on
incoming edges. This means that either (1) a scamust periodically check the schedulability of
data-flow threads, or (2) data-flow threads arepeodable. The former poses performance and
scalability issues, while the latter requires execuunder complex stack systems (e.g., cactugstac
that may introduce artificial constraints on théestule. The SC aggregates the information on the
present and missing tokens for a thread’s execudiblowing producer threads to decide when a given
consumer is ready for execution.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 9 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

Four primitives manage threads and frames. Theingrlemented as compiler builtins, recognized as
primitive operations of the compiler's intermediapresentation. In this deliverable, performance
experiments use a software runtime for the timirepsurements. But code generation for actual T*
instructions and execution on COTSon is also supdoas reported in D7.4.

e void *df_tcreate(void (*¥func) (), int sc, int size); Creates a new data-flow
thread and allocates its associated frafac is a pointer to the argument-less function to
be executed by the data-flow thread; is the initial value of the thread’s synchronieati
counter, and ize is the size of the data-flow frame to be allocateteturns a pointer to the
allocated frame. Once created, a thread cannoabeeted. Collection of thread resources is
triggered by the completion of the thread’s exemuti

e void df_tdecrease(void *fp, int num); Marks the thread designated by frame pointer
fp to be decremented mum upon termination of the current thread.

e void df_tend () ; Terminates the current thread and deallocatésaitse.

e void *df_tget_cfp(); Returns the frame pointer of the current thread.

Due to the underlying data-flow execution model] &a semantic requirement of writing stream data
directly in the consumer’'s data-flow frame, we ndedimpose two simple restrictions on our
programming model for this compilation path: (1) argiven stream, the horizon of all consumer
tasks must be an integer multiple of the burstsroflucer tasks (i.e., a producer’s output windovaon
stream cannot be split between multiple consunmrtiwindows); and (2) the burst of a consumer is
always either 0 or equal to its horizon (i.e., wlzetask peeks on a stream, it cannot simultaneously
advance the stream’s read index).

The purpose of these restrictions is to ensureatmagiven output window on a stream cannot be spli
among multiple consumer windows. If a producer'dpati window must be split dynamically
between multiple consumers, then each write actte$se output window must be guarded by a
conditional expression or made through an indiogctiThis would prevent us from generating
optimized code where the producer writes its ogtgirectly in the data-flow frame of the consumer.

These constraints can be relaxed, but not withopgréormance overhead, or extending our target
abstract data-flow interface and execution mod¢he©compilation paths have been explored and
evaluated, where these restrictions do not ap@ydescribed in D4.1 (see the section on work-
streaming), but we preferred to focus on the cotepdeitomation of a compilation flow, supporting
all the features of the programming model, evenntlost dynamic ones, and delivering an efficient
execution on the TERAFLUX instruction set. Furthere) these restrictions only bear on some
advanced stream-oriented features of the langdikgethe ability to compute over sliding windows
on a stream of data. We plan to support theserfesgatand remove any restrictions, in future work.

4.2.Compiling streaming tasks to data-flow threads

The data-flow compilation path for OpenStream doesrely on streams for communication, but
rather as a meeting point for producers and consufedata. Streams record the production and
consumption schedules, matching each produceritsitonsumer(s)Before it can start executing, a

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 10 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

producer must acquire the locations, within itsstoners’ data-flow frames, where it needs to write
its output data. While this adds some overheat &n essential part of our execution model that
provides outweighing benefits, as evaluated innine section. To illustrate the compilation process
we rely on some trivial examples of streaming taskd exhibit the key characteristics required to
explain the important parts of the code generadigorithm.

For each data-flow thread (or task instance), wapkeack of the information required for the stream
matching scheme and for the synchronization algoritvith a metadata block embedded within the
thread’s frame. Figure 1 shows an example of tweasting tasks and the two key data structures we
use: theérames and theviews. The former hold the metadata and the input deqaired for executing

a data-flow thread, the latter are used to impldéregram access windows.

imt x __attribute__((stream));

#pragma omp task output (x) i i |
S

#pragma omp task input (x) output (y) // T2

y = foo (x);
struct view { struct frame {
// pointer to the data int synchronization_counter;
// accessed through the window view_t view_x;
void *data; view_t view_y;
// pointer to owner frame view_t
// (always the consumer thread)
frame_p owner; void *data_block;
} view_t, *view_p; } frame_t, *frame_p;
T T2
synchronization_counter; synchronization_counter;
view_t view_x; - view_t view _X;
view_t..; \ < view_tview_y;
view_t...;
. e
frame data block
frame data block of the consumer
of "y"

Figure 1: Streaming tasks communicating via data-flow frames

The top of Figure 1 shows an example where twostasknmunicate through streamTaskT1 is

the producer and?2 the consumer, both using an implicit window toesmscthe stream. The middle
section of the figure shows (on the left) theew data structure. It contains a pointer to the dctua
data that a data-flow thread, which is an instaoce given task, is allowed to access within a
conceptual stream through a window. In additioe, thew data structure contains a pointer to the

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, prodativity and
performance portality

File name: TERAFLUX-D46-v4 Page 11 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

data-flow frame of the owner of the data, whiclalisays the consumer thread. Indeed, for an output
window, the view’s “data” pointer gives access tm@ation within another thread’s frame, while for
an input window, this pointer points within the ébd’s own frame. On the right, tHerame data
structure shows a skeleton of what a frame migbk ltike. Depending on a thread’s inputs and
outputs, each frame has a possibly unique strydbutterespecting this layout: it always contains th
synchronization counter, a set of views correspuntlh the different stream access windows the task
annotation uses anddata block. The latter is not a pointer to a separately alled buffer, but is
just used as a marker for the beginning (offsethefdata block. The bottom of Figure 1 shows how
the data-flow frames for tasRdl andT2 will be chained at runtime, by means of theew metadata.
The frame ofT 1 contains a view for the (implicit) output window; which points to the data block
of its consumer, within the frame ®2. Furthermore, the frame dR2 contains a view for the input
window “x”, which points to its own data block, baiso a view for the output window “y” pointing to
its consumer’s frame data block once it is deteeahin

The following step, presented in Figure 2, showw like matching of producers and consumers is
orchestrated by the runtime. The figure illustratdbe work performed by the
stream match views runtime function.

int x __attribute__((stream)), prod_window[prod_burst], cons_window[cons_burst];
while ( ... ) {
#pragma omp task output (x >> prod w1ndow[prod burst]) // Task T1
prod_window[0. .prod_burst-1] =

#pragma omp task input (x << cons_window[cons_burst]) // Task T2
. = cons_window[0. .cons_burst-1];

}

| Dynamically matching producers to consumers and chaining frames through views |

prod_view ; —= =
l \ Ti<I>| synchronization counter;| T2<|>| synchronization counter;
=) o access q g . r ‘ .
Ti<lz, Tl<2> Computed access indexes view_t prod_view; —._| - view_L cons_view:
|
=

Y T VN T > e

,_)://’/‘ T2<X T1<2=| synchronization_counter;
cons_view ) . =t 5

view tprod view; _——"

Figure 2: General scheme to match producers and consumers at run time using streams

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, prodativity and
performance portality

File name: TERAFLUX-D46-v4 Page 12 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

int X[x_burst], Y[y_burst];

#pragma omp task input (x >> X[x_burst]) output (y << Y[y_burst])
foo (X, Y);

| Work function code generation |

void work_function (void) {
frame_type *fp = df_tget_cfp ();

foo (fp->view_X.data, fp->view_Y.data); // Typically inlined work-function

df _tdecrease (fp->view_Y.owner, y_burst); // Owned by the consumer of stream
df _tend ();
}
We rely here on a slightly more complex set ofatimg tasks (top) which communicate through a
streamx with explicit stream access windows, where thalpecer and the consumer bursts are non-
trivial. We conceptually represent the stream dmedstream accesses of both tasks on the bottom part
of Figure 2, instantiating for the sake of illusiba with prod_burst =2 andcons _burst =4. As shown
on the right side (bottom) of the figure, two ingtas of the producer task, represented by the two
framesT1l<1> andT1<2> are necessary to produce the data for one instanite consumer task.
The stream matching not only sets thener field of each view, but it also computes the appaie
offset in the frame of a consumer to ensure thatpitoducer’'s view always points directly to the
adequate memory location. For instance, thiebd2>, which is the second instance of the producer
taskT1, produces the second half of the data accesséaebfjrst instancd 2<1> of the consumer
taskT2 through its window.

Exp12
J

First, the work function of a task is generatedhvai streaming task that consumes data on a stteam
and produces data on an output strgarboth accessed through their respective windows. work
function (bottom) consists of the body of the tasknotation, outlined to a new function with no
arguments. The input parameters are all storedmatithread’s frame, which can be accessed through
the frame pointer returned by a call to the tget cfp runtime function. Within the body of the
original task, each stream access window is reglagth an indirection through thaiata field of the
corresponding view. Then, a calldd tdecrease is issued, at the function’s exit, for each output
frame. This call is used to implement the synclraton algorithm: it atomically decrements the
consumer’s (owner of the view) synchronization deuiby ay burst, which represents the amount
of data effectively produced and written for thisnsumer. This call further contains a test that
schedules the consumer thread on the ready (wedthsg) queue if the synchronization counter
reached zero. Finally, each work function contariast call to thelf tend function to deallocate
the frame and perform any necessary cleanup opesati

Finally, the code generation for the control progiia presented in Figure 3.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 13 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

fp = df_tcreate (work_function, x_burst + 1, sizeof (frame) + x_burst);

// input (x >> X[x_burst])
fp—>X_view.data = &fp->data_block;
fp->X_view.owner = fp;

stream_match_views (&fp->X_view, x, READ);

// output (y << Y[y_burst])

fp->Y_view.data = NULL; // Unknown for now: data stored within the consumer’s frame
fp->Y_view.owner = NULL; // Unknown for now: stream matching will determine this
stream_match_views (&fp->Y_view, y, WRITE);

Figure 3: Generated data-flow code from OpenStream pragmas

Figure 3 shows, on the same example, the code aedent the site of the originglragma
annotation to allocate and prepare the data-flamé&. We first issue a call tbf tcreate, which
allocates a data-flow frame for one instance oftdsk, passing a pointer to the work function, the
initial synchronization counter and the size of tlhame. The initial synchronization counter
corresponds to the amount of input data requirea finread’s execution (in this exampleburst,
plus the number of output views of this thread,eh&). This additional synchronization value is
decremented, by thetream match views function, every time a consumer view is matched to
one of this thread’'s output views. The size of fteene is computed by adding the size of the
application data stored in the frame, which is dneount of input data, to the size of the frame’s
metadata. After this, we generate, for each stnegutliause, initialization code for the views create
to implement the stream access windows. Finallyjssae, for each stream accessed by the task, a
call tostream match views, which implements the matching algorithm, by settihe metadata
for output views and decrementing the frame’s syorization counter by one for each output view
that has been properly matched to a consumer.

4.3.Transactions within data-flow threads.

The compilation flow described above also suppla$ed transactions, as long as they are restricted
to the scope of data-flow tasks. The baseline stppas implemented by recent versions of GCC,
following the ABI defined by Intel and standardizegtross multiple compilers and software
transactional memory libraries. A first implemeidatwas designed initially through the support of
the HIPEAC network, then redesigned and completatié context of the VELOX FP7 project, and
finally merged with the compilation flow and runensystem of TERAFLUX in the OpenStream
patch of GCC 4.7.1.

Preliminary evaluation confirmed the smooth intéigraof the two compilation flows and runtimes

(GCC's STM and OpenStream runtime). More extensipgmizations and experiments will be

conducted in the consolidated tool flow during therth year of the project, validating the potehtia
of combined data-flow and transactional memory s#ios in applications, languages, compilers,
runtime systems, and architectures.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 14 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

4.4.Implementation

A full implementation of the code generation passdufor lowering OpenStream annotations to the
data-flow runtime is publicly available, supportiadl features of the stream-computing extension
presented in this deliverable. This implementatiilds on top of the GCC compiler's OpenMP

expansion pass and targets a separate runtimeylibvhich implements stream dynamic matching
and the point-to-point synchronization scheme tketabove.

The compiler’s front-end is modified to parse stneéay annotations, as well as stream attributes, and
lower them to GCC's intermediate representatioes@rving stream typing information. This typing
information is used both to enable modular comipitgtwith a clean interface between translation
units, and to perform type checking providing cdeyiime feedback when stream types are
incompatible.

Frame and view data structures are fully constduated typed to facilitate debugging. This allows to
dump the intermediate representation, using thesidal GCC- fdump - tree- * flags, in a human-
readable format where each structure’s field aesease easily identifiable rather than just anedffs
This mitigates part of the drawback of not relyimg a source-to-source compiler where the output
can be directly checked.

On the OpenStream git repository, the code gemeriiintegrated in the OpenMP expansion pass in
the middle-end, and is activated with the same dlatgn flag, - fopenmp. The generated code
does not target GCCkibGOMP OpenMP runtime but our own runtime libratg bwstream df.

To target the TERAFLUX instructions and the COT®@ased simulation of the architecture, an
alternate branch of the OpenSteam tool flow mustdbemnloaded and compiled. It is called
OpenStream_TFXgit branch origin/OpenStream_TFX), developed also as part of WP7 (see
D7.4).

To facilitate the build, test, and performance eadbn of OpenStream benchmarks on the
TERAFLUX architecture simulator, a comprehensivekfjage has been set up on the main
repository of the tool flow:

http://sourceforge.net/p/open-stream/wiki/Home

More examples and automatic performance evaluatidpts will be added continuously until the end
of the project.

Note that transactional memory has been demondttatemoothly coexist with data-flow tasks in
OpensStream, but only in the context of the softwardime system implementation at this point.

4.5.Systematic performance evaluation

We evaluated the OpenStream tool flow targetinguiosoftware runtime implementation to compare
its performance (scalability and efficiency) agaiblk and native StarSs implementations on a
selection of benchmarks.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 15 of 28



Block size 16x16. OpenStream (solid) - StarSs (dashed) Block size 32x32. OpenStream (solid) - StarSs (dashed)

3.0 151
w2.5 @
T 253

E! 04 S 10 4
g g
w w
1.5 %
= =
o o

1.0 2 5]
o o
2 2
5 - @

D-O i T T T T T T T U L T T i T T T T T
16 64 256 1024 40096 65536 16 64 256 1024 4096 65536
Number of blocks Number of blocks
Block size 64x64. OpenStream (solid) - StarSs (dashed) Block size 128x128. OpenStream (solid) - StarSs (dashed)

25 25

S0+ S201
c { =t
5 g

815 g 151
o o
= =

210 210+
= =
2 &

& 57 a5

v —te
e T R e
== LR ~—
0 i T T T T T ----l_ T D L T T T T T T T
16 64 256 1024 4096 65536 16 B4 256 1024 4096 65536
Number of blocks Number of blocks

Figure 4: Sparse-LU benchmark using OpenSiream and T* vs. the conventional StarSs
runtime

Figure 4 compares an OpenStream-translated veddi@parseLU with the native StarSs version,
running with our runtime system on a 24 core Optero

Clearly, the benchmark scales much earlier withddta-flow execution model of TERAFLUX, even
using a software runtime. Blocks of size 32x32 sufficient, while StarSs using a more complex
suspendable lightweight threading runtime still Bealability problems with blocks of size 128x128.
This scalability penalty is by no means a limitatiof the StarSs language. On the contrary, the
experiment validates the benefits of converting rdgon-based task-to-task dependences of StarSs
into streamlined, T* primitives and data-flow thdsa

The generated code works on the COTSon implementafithe TERAFLUX instruction set.

We refer to [1] for additional and detailed perfamie experiments, including a systematic study of
Gauss-Seidel illustrating the compilation and exeou of a StarSs program with partially
overlapping regions.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 16 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

5.Thorough Study of a Runtime for Data-Flow Tasks

While designing a robust tool flow for the produti and efficiency languages in TERAFLUX, we
came across the challenge of designing and impliénger reliable, verified, and highly efficient
runtime to implement the baseline data-flow exexutnodel of the project. This runtime can be used
on conventional hardware or on the TERAFLUX arattitee (see D6.2), by supporting the TSU
underneath the COTSon simulator interfaces. In latbes, correctness and performance are of
utmost importance for the practicality of all thgoeriments and integration efforts.

At the time of writing, the TERAFLUX memory modebh$ made much progress, with a partial
implementation and formalization available for OWhdgions (see the WP3 deliverable for the
current status). Yet the state of the design aqdementation of the model is still too preliminadoy
perform a thorough study of the correctness ofexgcution model implementation. We thus decided
to focus on a very weak memory consistency mod@noéxisting architecture, as a first experiment
to validate our approach, and before moving to ftllescale implementation of the TERAFLUX
memory model. We selected the very similar, weaklgsistent memory models of the POWER and
ARMV7 instruction set architectures.

We demonstrate that a high degree of confidencebeaachieved for highly optimized, real-world

concurrent algorithms such as a lightweight dadarflask scheduler on a weak memory model. More
specifically, we study the Chase-Lev concurrentblipended queue, an essential component of
parallel programming language implementationshascornerstone of most work-stealing schedulers.

Until now, a formal correctness proof for a relaxe®mory model has been missing for this
concurrent algorithm. Furthermore, while work-fitep has met with wide success on x86, few
experiments target weaker memory models. This ignortant missing link for an implementation
supporting the TERAFLUX instruction set and memorydel.

We provide the first proof of correctness of thigpbrtant concurrent data structure for a relaxed
memory model. Specifically, the proof targets ayvescent, experimentally and expert-verified
axiomatic semantics for the POWER and ARMv7 memorgdels. This proof and the proof
technique constitute our first contribution. We qare our optimized implementation with an x86
version and two portable ISO C 2011 variants (Cad dhort): a canonical translation of the
algorithm's sequentially consistent accesses, aradjgressively optimized version making full use of
the acquire--release and relaxed semantics of Gi-ldvel atomics. We show that the
POWER/ARM proof can be simplified and tailored teese alternative implementations. We also
observe a slight mismatch between the C11 and PQOQWHRR memory models, noting
unrecoverable overheads in the interaction betvatemic operations and the non-cumulativity of
memory barriers. The study of similar possible naitthes and performance overheads in the context
of the TERAFLUX memory model will be of particuleaterest in the fourth year of the project.

We evaluate all four doubly-ended queue implemantatin the context of a work-stealing scheduler
with diverse worker/thief configurations, including synthetic benchmark with two different

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 17 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

workloads, and standard task-parallel kernels. €&xperiments demonstrate the impact of the
memory barrier optimization on the throughput of work-stealing runtime.

More details on the actual implementation of thguee on the formalization and proof, and on the
experimental results can be found in [2].

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 18 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

6.Compilation of StarSs Applications

StarSs relies on compiler directives for blockirsyrechronous operations into coroutines similar to
OpenMP tasks. It provides additional clauses tcriles the memory accesses of each task, from
which inter-task dependences are inferred. Inatissk evolution, accesses are specified dytiamic
array regions, providing a lot of flexibility to programmers arah incremental path to parallelize
existing programs. The price for this rich, imglidependence abstraction is paid through the reed f
a sophisticated runtime algorithm. rintime dependence resolver detects the effective overlaps
between the memory accesses of different tasknostaand the ordering constraints deriving from
the task creation order.

We briefly recall the syntax and informal semantidsthe StarSs programming model. We also
analyze the workings of the array region suppoptralvides. For more information, see the reference
on StarSs in this deliverable's glossary.

In the deliverable D2.3, we illustrate the trarislatof a StarSs implementation of the Gauss-Seidel
stencil kernel (e.g., heat transfer simulation)GpenStream. The deliverable also highlights how
partially overlapping regions (different array béscwith non-empty intersection) can be managed
through the implementation of a dependence resalapturing the exact data-flow dependences
between tasks. In the present deliverable, we dighdr into the systematic translation and
construction of such a resolver on top of Open&trédore technical details can be found in [1].

6.1. Translating StarSs into OpenStream

In this section, our objective is to show that Cfpeeam can form a common ground for the
convergence of different efficiency languages iatcommon tool flow targeting the TERAFLUX
instruction set. We show that OpenStream constroats be used to express the dependencies
between tasks working on shared data, using thendigmce information provided by the StarSs
resolver. We show that such an embedding can bkeimgnted at compilation time, generating the
adequate synchronizations with data-flow streamiogstructs. We use StarSs to illustrate this
embedding, but the same process applies more dignerany higher-level language for parallel-
programming that handles dynamic dependences betteesi&s. In particular, the other efficiency
languages studied in WP3, TFLUX from UCY and HMRghf CAPS, can be handled the same way.

Importantly, the resolver of dynamic dependencigsessedmplicitly in StarSs and other high-level
languages is a necessary component, provided bjaagyage where dependencies are not specified
by programmers. We do not address the design atiipgtion of such resolvers, but rather we use
this particular example to show that task grapmshmEabuilt dynamically. This allows expressing the
semantics of the dynamic constructs found in sugh-kevel languages. We show how tbatput
commonly available from such dependence resolvars e used to lower StarSs constructs to
OpenStream directives.

The key insight behind our translation scheme & 8tarSs array regions, or any memory location,
can be encoded by a stream as a sequence of wemsigarcing a form ofiynamic single assignment
on each version. To comply with the in-place upgaibicy of StarSs, we restrict the live range of

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 19 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

each stream to one single version/element: a singtance of the data is alive at any time in stare

memory. For example, the degenerated case whegy amgions are guaranteed (e.g., by
programming language semantics) to always eitir duerlap or be disjoint, which means that each

region can be assimilated to a scalar relatedstadépendencies, can be directly handled without
additional support from a dependence resolver.ddde our scheme, this case only requires of the
resolver to perform an identity function.

The StarSs dependence resolver is marginally neatitb attach a stream to each StarSs region and to
return two sets of streams for each dynamic tastiancer:

« The set of streams attached: (1) to any regiondheatlaps with the write regions of tagk
(output andinout); or (2) to any write region that overlaps witke tiead regions of task
(input andinout); or (3) to any of the own access regions of fRsWe will call this set
streams peek(T).

* The set of streams attached to the regions of Tagkespectively of their type. We call this
setstreams out(T).

Implicitly, each stream attached to a StarSs regdgomitialized with an element representing the
initial state of the region.

Figure 5 illustrates the translation of Gauss-3em®penStream.

for (iter = 0; iter < numiters; iter++)
for (i = 1; i < N-1; i += B)
for (j = 1; j < N-1; j +=B) {
starss_resolve_dependences (region_descriptors, &streams_peek, &streams_out,
&num_streams_peek, &num_streams_out);

#pragma omp task peek (streams_peek >> peek_view[num_streams_peek] [0]) \
output (streams_out << out_view[num_streams_out] [1])

{
for (k= 1i; k¥ < i + B; ++k)
for (1 = j; 1 < j + B; ++1)
datalk] [1] = 0.2 * (datalk][1] + datalk-1]1[1] + data[k+1][1]
+ datalk] [1-1] + datalk][1+1]1);
}

for (k = 0; k < num_streams_out; ++k) {
#pragma omp tick (streams_out[k] >> 1)

F
Figure 5: Example trandation of Star Ss to OpenStream: Gauss-Seidel

For each iteration of the outer loop on iteratibest the program first invokes the StarSs depetelen
resolver, passing a set of region descriptors huilthe same way as in the StarSs compilation
framework, and obtaining in return the two setstofamsstreams peek andstreams out as
defined above, as well as the number of streaneadéh set. We then replace the original StarSs task

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 20 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

annotation with our own task annotation with twaudes: (1) a variadigeek clause for all streams
in the streams peek array; and (2) a variadioutput clause for all streams in the
streams_out array. Finally, we issue®ick directive for each stream Bitreams out.

The semantics of the code we generate is quitealatbe peek clauses request reading the current
live version of a region, which enforces the ordethe current tasks execution after the last thak
invalidated that region, and tleitput clause generates a new version for each invatidaigions,
followed by atick directive to prevent any subsequent tasks fronessing the old version of the
region.

6.2.Correctness of the translation

Let us now verify that all dependencies are prgperiforced in our resulting code. Consider two
regionsA andB, accessed by two different taskg andTg . To andTg are created in this order by

the control program, such that the two regions lagefThere is a dependenge-B if at least one of
the accesses is a write operation, so if eithahefregions ioutput or inout on its respective
task. We distinguish flow-, anti- and output-depameks (respectively read-after-write, write-after-
read and write-after-write dependencies). As Stalk®s not expand shared data into private copies,
we enforce all of these dependencies.

Let sy andsg be the two streams attached to regidnand B. Streams inherently enforce flow

dependences between their producers and consuonexadh element, so in order for the dependence
A—B to be properly enforced, it is necessary and gefit for T, to be producer of an element, of a

streams, consumed byp.

If Tp writes to regiorA, then it generates a new version on stregniVe deduce that the dependence
resolver must returBy belongs tastreams peek(Tg), irrespectively of the nature of the access to
B, and therefor@py reads that element from the streggnpreventing the execution df beforeTp
completes. This means that both flow- and outppeddences are properly synchronized.

If Tp reads from regioi, then we only need to enforce the dependendg Wvrites toB. As by
definition sy belongs tostreams out(Tp), Ta produces a new version on streggn Similarly to
the previous case, the resolver must resiyrbelongs tast reams peek(Tg) becausd g writes toB
and we deduce thalg reads the element written By in sy, therefore synchronizing the anti-
dependence.

We can also verify that we do not over-synchromed-after-read dependencies by noting Haat
belongs tostreams peek(Tg), with one notable exception: A=B. Indeed, in that casg=sg and
we always havesg belongs tostreams peek(Tg). This exception is necessary to enforce anti-

dependencies transitively when successive readssesdo the same region discard older versions.
Consider, for example, three task instantgsTg and T such that all access the same redipiia

andTg read fromA andT¢ writes toA. In this case, enforcing the ordet happens beforég allows

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 21 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

guaranteeing thaiy happens beforés, which cannot be guaranteed otherwise as theorecseated
by Ta in sp is discarded byg's new version.

This over-synchronization can be avoided by crgaiimew region foflg, that overlaps witi\, but

with its own stream. However, our performance fsssihow no significant degradation without this
optimization.

6.3.Implementation
This translation scheme is much simpler than oneldvanticipate given the semantic gap between
dynamic array regions and data-flow streams. We tt®w in [1] that it is quite efficient.

Full automation is in process, in collaborationvimdn INRIA and BSC. The following steps have
been agreed upon by the partners. The first thrdeem have been completed at the time of writing:

1.

Multiple communications (phone meetings, projecetimgs) between all the involved people
at INRIA and BSC to establish a common, integrdtedl from StarSs to the TERAFLUX
architecture. The preliminary integration plan wa®sented at the second year project
review.

One-to-one exchanges between Antoniu Pop (INRIA) @uillermo Miranda (BSC),
allowing Antoniu Pop to perform systematic perfonoa experiments with different
compilation and translation strategies.

Revision of the integration plan, resulting in thbowing three steps listed below.

First implementation of a StarS€DpenStream translation in the OmpSs framework,
following the new integration plan. It will only hdle full region matches in the dependence
resolver, translating region descriptors to stredirectly. This is ongoing work at BSC.

Systematic experiments with StarSs applicatiorsjzed jointly between INRIA and BSC,
for the subset that matches the above mentionedctes). These experiments will aim to
demonstrate the practicality and performance ofithegrated flow on the TERAFLUX
architecture simulator (based on COTSon). A joinbligation could be aimed for in the
fourth year of the project.

Extension of the translation to handle more compjeactial region matches, as described
above in this section. Whether this step will bglemented in the OmpSs framework or in a
dedicated StarSs-inspired extension of OpenStreamains to be decided and will in any
case be implemented in collaboration between BRUNRIA.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and

performance portality

File name: TERAFLUX-D46-v4 Page 22 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

7.Scalato C++ Translation

To complete this deliverable, let us describe thtus of the integrated tool flow for the TERAFLUX
productivity language approach, which is basedhenScala language. Scala is normally compiled to
Java bytecode and run on a Java Virtual Machine. driginal TERAFLUX project plan envisaged
that we would use the GCJ version of the GCC canpd compile bytecode to native machine code.
This way, we would have been able to make useefuider project C++ compilation route tools as
well as achieve higher performance.

Initial experiments with GCJ, using simple Scalagoams, indicated that this route appeared viable.
However, in order to add extra functionality, peutarly Transactions, to the existing language we
needed to modify the bytecode emitted by the Socaapiler. At this point, we discovered that GCJ

was not able to handle general bytecode but wéarddi specifically to sequences emitted by a
particular Java compiler and would not handle oadifred code.

As an alternative, we investigated the use of J4xaal Machine (JVM) facilities which permit the
static generation of machine code. This allowscthfiguration of time critical parts of a program t
avoid the overhead of dynamic compilation each titme program runs. The WP2 and WP3
deliverable provide experimental results with goesnpilation flow and virtual execution environment
for the Scala extensions of the TERAFLUX projecth8ugh this route is still viable, it introduces
added complexity and does not have the benefibwipatibility with the rest of the TERAFLUX tool
chain.

We therefore have investigated the possibility @nslating Scala to C++ to overcome these
limitations. The Scala compiler permits the ingertof ‘plugins’ between stages of processing the
Abstract Syntax Tree (AST) so that compilation eipents can be performed. The intention was to
insert a plugin, in the final stages of AST proaggsvhich would traverse the AST and emit C++
code. During the initial stages of this investigatiwe discovered that one of the EPFL Scala team,
Miguel Garcia, had produced a plugin called ‘im@g] which transforms the AST into something
close to a three-address form with the speciftention of permitting compilation to high level
imperative languages.

However, it does not appear that this work has nesged to produce any usable tools. It was
therefore decided to make use of ‘imp’ but writeaatditional plugin to follow it and produce C++
code directly. Clearly any Scala program ultimatekecutes as low level machine instructions and
therefore it must be possible to generate anyrirgdiate form which is able to handle the complete
Scala language. However, the normal compilatiorteraiready makes heavy use of the support
provided within a JVM for Java, for example dynarbiading, and many complex issues are not
handled at the compiler level. For that reasonyats decided that the simplest route would be to
compile to a form mapping the Object Oriented (@®)cture of Scala onto the C++ one. However,
there are number of significant differences betwine OO structure of the two languages and it is
necessary to accept that some features of Scalaotde easily translated.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 23 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

The purpose of the productivity language route WiFERAFLUX is to demonstrate the feasibility of
using an advanced language to enable the produofiggrograms which use the Dataflow plus
Transactions model with minimal requirements onghegrammer to understand the complexities of
the underlying implantation. The project has dafiaeset of benchmarks to evaluate the approach and
it was considered that a compilation route whicls whle to handle these benchmarks, together with
some necessary runtime support code written inaSealuld be sufficient. This still requires support
for most of the major language features but advéis=ies such as reflection will not be addressed.

In addition, Scala has an extensive set of libsaged is also able to make use of all standard Java
libraries. It would clearly be a major task to poe/this and we intend to limit library supportttat
required for the benchmarks. Once the system g fyderational, it will be straightforward to add
library code when needed.

7.1.Current Status

A version of the translator is operational and thiéowing features are currently supported. They
have so far been validated mainly by test programs.

1 All standard basic data types.

2  Lists, Strings and Multi-Dimensional Arrays.
3 Basicl/O.

4  Simple control structures.

5 Classes and Inheritance (including Traits).
6 Package Structure.

7  Some higher order function support.

Some of the above may prove incomplete when momngptax programs are compiled and thus the
development is ongoing. The major issues which Ima¢eyet been tackled include:

* Generics.

* Threads.

» Transactions.
» Exceptions.

In addition garbage collection has not been comsilén any depth. It is possible that the facilitie

provided by GCC may be adequate. In the worst casemay be able to run reasonably sized
programs without GCC. However, Scala programs ikadyl to make significantly greater use of

dynamic object creation that C++.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 24 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

In order to both validate compilation and assegmlirperformance, a simplified version of our Lee

benchmark written in Scala has been used. Thislis @ two dimensional version of the algorithm

and is not parallel so does not require transastitins approximately 120 lines of Scala code. Whe

compiled to C++ and then to native code using GCprogram runs approximately 50x faster than
the standard bytecode version running on the HatSgil.

7.2.Plans
We intend to provide initial support for a versiwhich will run on conventional multi-core systems
(probably using pthreads). We also intend to predrade which will interface to the run time support
provided on the COTSon based TERAFLUX simulator.

This is ongoing work and there are still some caxpksues to be addressed. However, it has
progressed to a stage where we believe that it pvidvide a useful tool for evaluation of the
productivity language system.

Notice that this integration path is independentrirthe generic research track conducted on data-
flow and transactional memory programming in Scliles primarily intended at the validation of this
research on the TERAFLUX architecture.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 25 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

8.Conclusion

We presented the first integrated flow, combinirampilation methods and tools, and runtime
systems, mapping modern efficiency languages sachtarSs and OpenStream to the TERAFLUX
execution model and instruction set. A strong mattion output and open source tool distribution was
achieved as a result of the activities of WP4. W# am for direct scalability and efficiency
measurements on benchmarks and a few larger afpfisaselected and characterized in WP2 for the
final deliverable of WP4.

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 26 of 28



Project.: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmmu(ICT-2009.8.1)

9.References

[1] Antoniu Pop and Albert Cohen. OpenStream: Eggireeness and data-flow compilation of
OpenMP streaming program&CM Transactions on Architecture and Code Optimization (TACO),
selected for presentation at the HIPEAC 2013 Conf., January 2013.

[2] Nhat Minh L&, Antoniu Pop, Albert Cohen, ancaRcesco Zappa Nardelli. Correct and efficient
work-stealing for weak memory models. I8mp. on Principles and Practice of Paralle
Programming (PPoPP), Shenzhen, China, February 2013.

[3] Feng Li, Antoniu Pop, and Albert Cohen. Autoinaextraction of coarse-grained data-flow
threads from imperative program&EE Micro, 2012. Special issue on Parallelization of Seqakent
Code.

[4] “Moving Scala ASTs one step closer to C, byning them into three-address form”, Scala
Compiler Corner, http://lampwww.epfl.ch/~magarcizBCompilerCornerReloaded/

[5] Roberto Giorgi, "TERAFLUX: Exploiting Dataflowarallelism in TeradevicesACM Computing
Frontiers, Cagliari, Italy, May 2012, pp. 303-304.

[6] Roberto Giorgi, Zdravko Popovic, Nikola PuzavitDTA-C: A Decoupled multi-Threaded
Architecture for CMP SystemsProc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007, pp. 263-270

[7] COTSon official repository: http://cotson.soeforge.net/

Deliverable numbeiD4.6—-Dissemination Level: PU

Deliverable nameThorough evaluation of the compilation tools, produtivity and
performance portality

File name: TERAFLUX-D46-v4 Page 27 of 28



