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1. Glossary 

OpenMP – Parallel programming pragma language on top of C, C++ and Fortran. In this deliverable, 
we refer to the OpenMP specification version 3.1. 

http://www.openmp.org  

OpenStream – Data-flow streaming extension of OpenMP, for the C language, implemented as a 
patch to GCC and a dedicate runtime system for data-flow tasks. 

http://www.di.ens.fr/OpenStream 

StarSs – StarSs is a task-based programming model that enables the exploitation of the applications' 
inherent parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas) 
similar to the OpenMP ones are used. A uniqueness of StarSs tasks are the input, output or inout 
clauses that applied to tasks' parameters enable the runtime to track tasks' data dependences. 

http://pm.bsc.es/ompss 
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2. Executive Summary 

We report on the multiple advances that took place in the third year of the project towards the 
construction of a complete tool chain for TERAFLUX. 

In particular, we describe the complete compilation flow from the StarSs efficiency language down to 
the TERAFLUX instruction set, and the associated runtime system components. The tool flow uses 
data-flow streaming extensions of OpenMP, called OpenStream, as an intermediate step in the 
adaptation of StarSs programs for the compilation on the T* feed-forward data-flow execution model. 

This tool flow is distributed as free software as a patch to GCC 4.7.1, with a complete set of 
benchmarks selected from the comprehensive list of applications characterized in WP2, and with 19 
tutorial examples introducing the language constructs of OpenStream. 

We also report on the current state of the integration of the Scala tool flow with the TERAFLUX 
back-end compiler (GCC generating T* instructions). 

Experiments currently target a software runtime running on native hardware. These experiments 
allowed us to perform a thorough validation of the design of the tool flow, comparing against state-of-
the-art programming models and implementations. The experiments also helped identify missing 
features and a precise roadmap for the completion of the flow to enable the execution of larger StarSs 
applications. The detailed results can be found in the associated papers published at IEEE Micro, 
ACM TACO (HiPEAC 2013) and PPoPP. 

Performance experiments on the TERAFLUX instruction set simulator, scaling to multiple node 
configurations, and with different timing models, will be conducted in the fourth year of the project. 
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3. Introduction 

The overall objective of WP4 is the development of compilation and runtime support tools tailored to 
the TERAFLUX architecture and programming models. The compiler(s) need to map the parallelism 
and locality as available from the source program and programming model to the target execution 
model and architecture. The distribution of the roles among the compilation tools and the runtime 
tools is guided by the efficiency and robustness of handling the challenges statically or dynamically, 
respectively. 

The source program exhibits high levels of concurrency, but it still has to be exploited effectively on 
the target. The compiler tools need to coarsen the grain of synchronization, issue bulks of 
communications, overlap communication and computation, balance computation with communication 
bandwidth, and harness temporal locality of code and data, taking into account the features of the 
memory hierarchy. It also needs to generate tightly scheduled, fine-grain vectorized computation 
kernels, possibly targeting accelerators. 

We report on major advances in the compilation of the data-flow streaming extension of OpenMP 
(now called OpenStream) to the TERAFLUX instruction set, in the design, experimentation, on the 
runtime support for this language, and on the ongoing implementation of a systematic translation of 
StarSs to OpenStream for execution on the TERAFLUX simulator. 

3.1. Document structure 

Section 4 reports on the back-end compiler, implemented in GCC, and mapping OpenStream to the 
TERAFLUX instruction set. A complete flow including the code generation method, runtime support, 
and experimental results are provided. 

Section 5 reports on a formal and experimental study of the data-flow runtime system supporting the 
execution of data-flow tasks on conventional hardware. This thorough study will be useful for the 
design and implementation of future software/hardware interfaces. 

Section 6 reports on the translation of StarSs to OpenStream and preliminary experiments in the 
direction of a complete integration of the tool flow for efficiency languages down to the TERAFLUX 
instruction set. 

Section 7 reports on the integration of the Scala tool flow with the back-end compiler. While the main 
research route for Scala is based on the Java VM, an integrated route has been hard to implement due 
to technical limitations of the available tools. UNIMAN has been able to propose a new integration 
path leveraging the TERAFLUX backend through a different set of tools. 

3.2. Relation to other deliverables 

This deliverable extends the compilation algorithms described in D4.1, D4.3 and D4.4, and evaluates 
them on a range of representative benchmarks. It also complements D3.3 with an evaluation of the 
compilation a runtime support to execute StarSs applications on the TERAFLUX architecture. 
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3.3. Activities referred by this deliverable 

This deliverable is associated with and represents the results of Task 4.2 and Task 4.3. Most of the 
work is related to Task 4.2. Indeed, during the course of the project it became apparent that the largest 
effort on transactional memory would be concentrated on the language support and on the architecture 
extensions (as reported in WP3 and WP6). Task 4.3 has been increasingly concentrating on compiler 
engineering to combine the data-flow and transactional memory compilation flow and runtime, with 
little resources left for research on optimizations. 
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4. Evaluation of the Back-End Compiler for TERAFLUX 
We present a vastly remodeled compilation flow for the TERAFLUX architecture, implemented as a 
front- and middle-end extension to GCC 4.7.1, expanding streaming task directives into data-flow 
threads and point-to-point communications. It is the first complete, fully automatic compilation 
framework for OpenStream, the new name of the data-flow streaming extensions of OpenMP 
designed by INRIA in the TERAFLUX project. 

We first recall the feed-forward data-flow execution model we are targeting in the project, and discuss 
why it challenges the classical compilation methods for parallel languages, and some constraints this 
model imposes on our stream programming model. Then we detail the code generation algorithm and 
the main features of the implementation. The reader may refer to [1] and [3] for details on the 
compilation of OpenStream and on the automatic extraction of fine-grain threads from arbitrary 
procedural control flow, respectively. 

 4.1. Feed-forward data-flow model: interfaces and challenges 
Our code generation pass targets an abstract data-flow interface, designed after DTA (the data-driven 
execution model) [6] and the T* ISA [5] (as defined in the WP6 and WP7 deliverables). The interface 
defines two main components: data-flow threads, or simply threads, when clear from the context, 
together with their associated data-flow frames, or frames. 

The frame of a data-flow thread stores its input values, and may also store local variables or thread 
metadata. The address of this data-flow frame also serves as an identifier for the thread itself, to 
synchronize producers with consumers. Communications between threads are single-sided: the 
producer thread knows the address of the data-flow frames of its dependent, consumer threads. A 
thread writes its output data directly into the data-flow frames of its consumers. 

Each thread is associated with a synchronization counter (SC) to track the satisfaction of producer-
consumer dependences: upon termination of a thread, the SC of its dependent threads is decremented. 
A thread may execute as soon as its SC reaches 0, which may be determined immediately when the 
producer decrements the SC. The initial value of the SC is equal to the amount of data that needs to be 
externally written to its frame plus the number of consumer threads to which it connects. In our 
implementation, the producer responsible of the last decrementation on a thread directly schedules the 
consumer for execution. This token-less driven execution is one of the strengths of this form of point-
to-point synchronization. 

In contrast, token-based approaches require checking the presence of the necessary tokens on 
incoming edges. This means that either (1) a scanner must periodically check the schedulability of 
data-flow threads, or (2) data-flow threads are suspendable. The former poses performance and 
scalability issues, while the latter requires execution under complex stack systems (e.g., cactus stacks) 
that may introduce artificial constraints on the schedule. The SC aggregates the information on the 
present and missing tokens for a thread’s execution, allowing producer threads to decide when a given 
consumer is ready for execution. 
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Four primitives manage threads and frames. They are implemented as compiler builtins, recognized as 
primitive operations of the compiler’s intermediate representation. In this deliverable, performance 
experiments use a software runtime for the timing measurements. But code generation for actual T* 
instructions and execution on COTSon is also supported, as reported in D7.4. 

• void *df_tcreate(void (*func)(), int sc, int size); Creates a new data-flow 

thread and allocates its associated frame. func is a pointer to the argument-less function to 
be executed by the data-flow thread, sc is the initial value of the thread’s synchronization 
counter, and size is the size of the data-flow frame to be allocated. It returns a pointer to the 
allocated frame. Once created, a thread cannot be canceled. Collection of thread resources is 
triggered by the completion of the thread’s execution. 

• void df_tdecrease(void *fp, int num); Marks the thread designated by frame pointer 

fp to be decremented by num upon termination of the current thread. 

• void df_tend(); Terminates the current thread and deallocates its frame. 

• void *df_tget_cfp(); Returns the frame pointer of the current thread. 

Due to the underlying data-flow execution model, and its semantic requirement of writing stream data 
directly in the consumer’s data-flow frame, we need to impose two simple restrictions on our 
programming model for this compilation path: (1) on a given stream, the horizon of all consumer 
tasks must be an integer multiple of the bursts of producer tasks (i.e., a producer’s output window on a 
stream cannot be split between multiple consumer input windows); and (2) the burst of a consumer is 
always either 0 or equal to its horizon (i.e., when a task peeks on a stream, it cannot simultaneously 
advance the stream’s read index). 

The purpose of these restrictions is to ensure that any given output window on a stream cannot be split 
among multiple consumer windows. If a producer’s output window must be split dynamically 
between multiple consumers, then each write access to the output window must be guarded by a 
conditional expression or made through an indirection. This would prevent us from generating 
optimized code where the producer writes its outputs directly in the data-flow frame of the consumer. 

These constraints can be relaxed, but not without a performance overhead, or extending our target 
abstract data-flow interface and execution model. Other compilation paths have been explored and 
evaluated, where these restrictions do not apply, as described in D4.1 (see the section on work-
streaming), but we preferred to focus on the complete automation of a compilation flow, supporting 
all the features of the programming model, even the most dynamic ones, and delivering an efficient 
execution on the TERAFLUX instruction set. Furthermore, these restrictions only bear on some 
advanced stream-oriented features of the language, like the ability to compute over sliding windows 
on a stream of data. We plan to support these features, and remove any restrictions, in future work. 

 4.2. Compiling streaming tasks to data-flow threads 
The data-flow compilation path for OpenStream does not rely on streams for communication, but 
rather as a meeting point for producers and consumers of data. Streams record the production and 
consumption schedules, matching each producer with its consumer(s). Before it can start executing, a 
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producer must acquire the locations, within its consumers’ data-flow frames, where it needs to write 
its output data. While this adds some overhead, it is an essential part of our execution model that 
provides outweighing benefits, as evaluated in the next section. To illustrate the compilation process, 
we rely on some trivial examples of streaming tasks that exhibit the key characteristics required to 
explain the important parts of the code generation algorithm. 

For each data-flow thread (or task instance), we keep track of the information required for the stream 
matching scheme and for the synchronization algorithm with a metadata block embedded within the 
thread’s frame. Figure 1 shows an example of two streaming tasks and the two key data structures we 
use: the frames and the views. The former hold the metadata and the input data required for executing 
a data-flow thread, the latter are used to implement stream access windows. 

 

The top of Figure 1 shows an example where two tasks communicate through stream x. Task T1 is 
the producer and T2 the consumer, both using an implicit window to access the stream. The middle 
section of the figure shows (on the left) the view data structure. It contains a pointer to the actual 
data that a data-flow thread, which is an instance of a given task, is allowed to access within a 
conceptual stream through a window. In addition, the view data structure contains a pointer to the 

Figure 1: Streaming tasks communicating via data-flow frames 
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data-flow frame of the owner of the data, which is always the consumer thread. Indeed, for an output 
window, the view’s “data” pointer gives access to a location within another thread’s frame, while for 
an input window, this pointer points within the thread’s own frame. On the right, the frame data 
structure shows a skeleton of what a frame might look like. Depending on a thread’s inputs and 
outputs, each frame has a possibly unique structure, but respecting this layout: it always contains the 
synchronization counter, a set of views corresponding to the different stream access windows the task 
annotation uses and a data_block. The latter is not a pointer to a separately allocated buffer, but is 
just used as a marker for the beginning (offset) of the data block. The bottom of Figure 1 shows how 
the data-flow frames for tasks T1 and T2 will be chained at runtime, by means of the view metadata. 
The frame of T1 contains a view for the (implicit) output window “x”, which points to the data block 
of its consumer, within the frame of T2. Furthermore, the frame of T2 contains a view for the input 
window “x”, which points to its own data block, but also a view for the output window “y” pointing to 
its consumer’s frame data block once it is determined. 

The following step, presented in Figure 2, shows how the matching of producers and consumers is 
orchestrated by the runtime. The figure illustrates the work performed by the 
stream_match_views runtime function. 

 
Figure 2: General scheme to match producers and consumers at run time using streams 
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We rely here on a slightly more complex set of streaming tasks (top) which communicate through a 
stream x with explicit stream access windows, where the producer and the consumer bursts are non-
trivial. We conceptually represent the stream and the stream accesses of both tasks on the bottom part 
of Figure 2, instantiating for the sake of illustration with prod_burst =2 and cons_burst =4. As shown 
on the right side (bottom) of the figure, two instances of the producer task, represented by the two 
frames T1<1> and T1<2> are necessary to produce the data for one instance of the consumer task. 
The stream matching not only sets the owner field of each view, but it also computes the appropriate 
offset in the frame of a consumer to ensure that the producer’s view always points directly to the 
adequate memory location. For instance, thread T1<2>, which is the second instance of the producer 
task T1, produces the second half of the data accessed by the first instance T2<1> of the consumer 
task T2 through its window. 

First, the work function of a task is generated, with a streaming task that consumes data on a stream x 
and produces data on an output stream y, both accessed through their respective windows. The work 
function (bottom) consists of the body of the task annotation, outlined to a new function with no 
arguments. The input parameters are all stored within a thread’s frame, which can be accessed through 
the frame pointer returned by a call to the df_tget_cfp runtime function. Within the body of the 
original task, each stream access window is replaced with an indirection through the data field of the 
corresponding view. Then, a call to df_tdecrease is issued, at the function’s exit, for each output 
frame. This call is used to implement the synchronization algorithm: it atomically decrements the 
consumer’s (owner of the view) synchronization counter by a y_burst, which represents the amount 
of data effectively produced and written for this consumer. This call further contains a test that 
schedules the consumer thread on the ready (work-stealing) queue if the synchronization counter 
reached zero. Finally, each work function contains a last call to the df_tend function to deallocate 
the frame and perform any necessary cleanup operations. 

Finally, the code generation for the control program is presented in Figure 3. 
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Figure 3 shows, on the same example, the code generated at the site of the original pragma 
annotation to allocate and prepare the data-flow frame. We first issue a call to df_tcreate, which 
allocates a data-flow frame for one instance of the task, passing a pointer to the work function, the 
initial synchronization counter and the size of the frame. The initial synchronization counter 
corresponds to the amount of input data required for a thread’s execution (in this example x_burst, 
plus the number of output views of this thread, here 1). This additional synchronization value is 
decremented, by the stream_match_views function, every time a consumer view is matched to 
one of this thread’s output views. The size of the frame is computed by adding the size of the 
application data stored in the frame, which is the amount of input data, to the size of the frame’s 
metadata. After this, we generate, for each streaming clause, initialization code for the views created 
to implement the stream access windows. Finally, we issue, for each stream accessed by the task, a 
call to stream_match_views, which implements the matching algorithm, by setting the metadata 
for output views and decrementing the frame’s synchronization counter by one for each output view 
that has been properly matched to a consumer. 

 4.3. Transactions within data-flow threads. 
The compilation flow described above also support closed transactions, as long as they are restricted 
to the scope of data-flow tasks. The baseline support was implemented by recent versions of GCC, 
following the ABI defined by Intel and standardized across multiple compilers and software 
transactional memory libraries. A first implementation was designed initially through the support of 
the HiPEAC network, then redesigned and completed in the context of the VELOX FP7 project, and 
finally merged with the compilation flow and runtime system of TERAFLUX in the OpenStream 
patch of GCC 4.7.1. 

Preliminary evaluation confirmed the smooth integration of the two compilation flows and runtimes 
(GCC's STM and OpenStream runtime). More extensive optimizations and experiments will be 
conducted in the consolidated tool flow during the fourth year of the project, validating the potential 
of combined data-flow and transactional memory semantics in applications, languages, compilers, 
runtime systems, and architectures. 

Figure 3: Generated data-flow code from OpenStream pragmas 
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 4.4. Implementation 
A full implementation of the code generation pass used for lowering OpenStream annotations to the 
data-flow runtime is publicly available, supporting all features of the stream-computing extension 
presented in this deliverable. This implementation builds on top of the GCC compiler’s OpenMP 
expansion pass and targets a separate runtime library, which implements stream dynamic matching 
and the point-to-point synchronization scheme detailed above. 

The compiler’s front-end is modified to parse streaming annotations, as well as stream attributes, and 
lower them to GCC’s intermediate representation, preserving stream typing information. This typing 
information is used both to enable modular compilation, with a clean interface between translation 
units, and to perform type checking providing compile-time feedback when stream types are 
incompatible. 

Frame and view data structures are fully constructed and typed to facilitate debugging. This allows to 
dump the intermediate representation, using the classical GCC -fdump-tree-* flags, in a human-
readable format where each structure’s field accesses are easily identifiable rather than just an offset. 
This mitigates part of the drawback of not relying on a source-to-source compiler where the output 
can be directly checked. 

On the OpenStream git repository, the code generation is integrated in the OpenMP expansion pass in 
the middle-end, and is activated with the same compilation flag, -fopenmp. The generated code 
does not target GCC’s libGOMP OpenMP runtime but our own runtime library, libwstream_df. 

To target the TERAFLUX instructions and the COTSon-based simulation of the architecture, an 
alternate branch of the OpenSteam tool flow must be downloaded and compiled. It is called 

OpenStream_TFX (git branch origin/OpenStream_TFX), developed also as part of WP7 (see 
D7.4). 

To facilitate the build, test, and performance evaluation of OpenStream benchmarks on the 
TERAFLUX architecture simulator, a comprehensive Wiki page has been set up on the main 
repository of the tool flow: 

http://sourceforge.net/p/open-stream/wiki/Home 

More examples and automatic performance evaluation scripts will be added continuously until the end 
of the project. 

Note that transactional memory has been demonstrated to smoothly coexist with data-flow tasks in 
OpenStream, but only in the context of the software runtime system implementation at this point. 

 4.5. Systematic performance evaluation 
We evaluated the OpenStream tool flow targeting to our software runtime implementation to compare 
its performance (scalability and efficiency) against Cilk and native StarSs implementations on a 
selection of benchmarks. 
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Figure 4 compares an OpenStream-translated version of SparseLU with the native StarSs version, 
running with our runtime system on a 24 core Opteron.  

Clearly, the benchmark scales much earlier with the data-flow execution model of TERAFLUX, even 
using a software runtime. Blocks of size 32x32 are sufficient, while StarSs using a more complex 
suspendable lightweight threading runtime still has scalability problems with blocks of size 128x128. 
This scalability penalty is by no means a limitation of the StarSs language. On the contrary, the 
experiment validates the benefits of converting the region-based task-to-task dependences of StarSs 
into streamlined, T* primitives and data-flow threads. 

The generated code works on the COTSon implementation of the TERAFLUX instruction set. 

We refer to [1] for additional and detailed performance experiments, including a systematic study of 
Gauss-Seidel illustrating the compilation and execution of a StarSs program with partially 
overlapping regions. 

Figure 4: Sparse-LU benchmark using OpenStream and T* vs. the conventional StarSs 
runtime 
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5. Thorough Study of a Runtime for Data-Flow Tasks 
While designing a robust tool flow for the productivity and efficiency languages in TERAFLUX, we 
came across the challenge of designing and implementing a reliable, verified, and highly efficient 
runtime to implement the baseline data-flow execution model of the project. This runtime can be used 
on conventional hardware or on the TERAFLUX architecture (see D6.2), by supporting the TSU 
underneath the COTSon simulator interfaces. In both cases, correctness and performance are of 
utmost importance for the practicality of all the experiments and integration efforts. 

At the time of writing, the TERAFLUX memory model has made much progress, with a partial 
implementation and formalization available for OWM regions (see the WP3 deliverable for the 
current status). Yet the state of the design and implementation of the model is still too preliminary to 
perform a thorough study of the correctness of our execution model implementation. We thus decided 
to focus on a very weak memory consistency model of an existing architecture, as a first experiment 
to validate our approach, and before moving to the full-scale implementation of the TERAFLUX 
memory model. We selected the very similar, weakly consistent memory models of the POWER and 
ARMv7 instruction set architectures. 

We demonstrate that a high degree of confidence can be achieved for highly optimized, real-world 
concurrent algorithms such as a lightweight data-flow task scheduler on a weak memory model. More 
specifically, we study the Chase-Lev concurrent doubly-ended queue, an essential component of 
parallel programming language implementations, as the cornerstone of most work-stealing schedulers. 

Until now, a formal correctness proof for a relaxed memory model has been missing for this 
concurrent algorithm.  Furthermore, while work-stealing has met with wide success on x86, few 
experiments target weaker memory models. This is an important missing link for an implementation 
supporting the TERAFLUX instruction set and memory model. 

We provide the first proof of correctness of this important concurrent data structure for a relaxed 
memory model. Specifically, the proof targets a very recent, experimentally and expert-verified 
axiomatic semantics for the POWER and ARMv7 memory models. This proof and the proof 
technique constitute our first contribution. We compare our optimized implementation with an x86 
version and two portable ISO C 2011 variants (C11 for short): a canonical translation of the 
algorithm's sequentially consistent accesses, and an aggressively optimized version making full use of 
the acquire--release and relaxed semantics of C11 low-level atomics. We show that the 
POWER/ARM proof can be simplified and tailored to these alternative implementations. We also 
observe a slight mismatch between the C11 and POWER/ARM memory models, noting 
unrecoverable overheads in the interaction between atomic operations and the non-cumulativity of 
memory barriers. The study of similar possible mismatches and performance overheads in the context 
of the TERAFLUX memory model will be of particular interest in the fourth year of the project. 

We evaluate all four doubly-ended queue implementations in the context of a work-stealing scheduler 
with diverse worker/thief configurations, including a synthetic benchmark with two different 
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workloads, and standard task-parallel kernels.  Our experiments demonstrate the impact of the 
memory barrier optimization on the throughput of our work-stealing runtime. 

More details on the actual implementation of the deque, on the formalization and proof, and on the 
experimental results can be found in [2]. 
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6. Compilation of StarSs Applications 
StarSs relies on compiler directives for blocking asynchronous operations into coroutines similar to 
OpenMP tasks. It provides additional clauses to describe the memory accesses of each task, from 
which inter-task dependences are inferred. In its latest evolution, accesses are specified with dynamic 
array regions, providing a lot of flexibility to programmers and an incremental path to parallelize 
existing programs. The price for this rich, implicit dependence abstraction is paid through the need for 
a sophisticated runtime algorithm. A runtime dependence resolver detects the effective overlaps 
between the memory accesses of different task instances and the ordering constraints deriving from 
the task creation order. 

We briefly recall the syntax and informal semantics of the StarSs programming model. We also 
analyze the workings of the array region support it provides. For more information, see the reference 
on StarSs in this deliverable's glossary. 

In the deliverable D2.3, we illustrate the translation of a StarSs implementation of the Gauss-Seidel 
stencil kernel (e.g., heat transfer simulation) to OpenStream. The deliverable also highlights how 
partially overlapping regions (different array blocks with non-empty intersection) can be managed 
through the implementation of a dependence resolver capturing the exact data-flow dependences 
between tasks. In the present deliverable, we dig further into the systematic translation and 
construction of such a resolver on top of OpenStream. More technical details can be found in [1]. 

 6.1. Translating StarSs into OpenStream 
In this section, our objective is to show that OpenStream can form a common ground for the 
convergence of different efficiency languages into a common tool flow targeting the TERAFLUX 
instruction set. We show that OpenStream constructs can be used to express the dependencies 
between tasks working on shared data, using the dependence information provided by the StarSs 
resolver. We show that such an embedding can be implemented at compilation time, generating the 
adequate synchronizations with data-flow streaming constructs. We use StarSs to illustrate this 
embedding, but the same process applies more generally to any higher-level language for parallel-
programming that handles dynamic dependences between tasks. In particular, the other efficiency 
languages studied in WP3, TFLUX from UCY and HMPP from CAPS, can be handled the same way. 

Importantly, the resolver of dynamic dependencies expressed implicitly in StarSs and other high-level 
languages is a necessary component, provided by any language where dependencies are not specified 
by programmers. We do not address the design and optimization of such resolvers, but rather we use 
this particular example to show that task graphs can be built dynamically. This allows expressing the 
semantics of the dynamic constructs found in such high-level languages. We show how the output 
commonly available from such dependence resolvers can be used to lower StarSs constructs to 
OpenStream directives. 

The key insight behind our translation scheme is that StarSs array regions, or any memory location, 
can be encoded by a stream as a sequence of versions, enforcing a form of dynamic single assignment 
on each version. To comply with the in-place update policy of StarSs, we restrict the live range of 
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each stream to one single version/element: a single instance of the data is alive at any time in shared 
memory. For example, the degenerated case where array regions are guaranteed (e.g., by 
programming language semantics) to always either fully overlap or be disjoint, which means that each 
region can be assimilated to a scalar related to its dependencies, can be directly handled without 
additional support from a dependence resolver. Indeed, in our scheme, this case only requires of the 
resolver to perform an identity function. 

The StarSs dependence resolver is marginally modified to attach a stream to each StarSs region and to 
return two sets of streams for each dynamic task instance T:  

• The set of streams attached: (1) to any region that overlaps with the write regions of task T 
(output and inout); or (2) to any write region that overlaps with the read regions of task T 
(input and inout); or (3) to any of the own access regions of task T. We will call this set 
streams_peek(T).  

• The set of streams attached to the regions of task T, irrespectively of their type. We call this 
set streams_out(T).  

Implicitly, each stream attached to a StarSs region is initialized with an element representing the 
initial state of the region. 

Figure 5 illustrates the translation of Gauss-Seidel to OpenStream. 

 

For each iteration of the outer loop on iteration tiles, the program first invokes the StarSs dependence 
resolver, passing a set of region descriptors built in the same way as in the StarSs compilation 
framework, and obtaining in return the two sets of streams streams_peek and streams_out as 
defined above, as well as the number of streams in each set. We then replace the original StarSs task 

Figure 5: Example translation of StarSs to OpenStream: Gauss-Seidel 
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annotation with our own task annotation with two clauses: (1) a variadic peek clause for all streams 
in the streams_peek array; and (2) a variadic output clause for all streams in the 
streams_out array. Finally, we issue a tick directive for each stream in streams_out. 

The semantics of the code we generate is quite natural: the peek clauses request reading the current 
live version of a region, which enforces the order of the current tasks execution after the last task that 
invalidated that region, and the output clause generates a new version for each invalidated regions, 
followed by a tick directive to prevent any subsequent tasks from accessing the old version of the 
region. 

 6.2. Correctness of the translation 
Let us now verify that all dependencies are properly enforced in our resulting code. Consider two 
regions A and B, accessed by two different tasks TA and TB . TA  and TB are created in this order by 

the control program, such that the two regions overlap. There is a dependence A→B if at least one of 
the accesses is a write operation, so if either of the regions is output or inout on its respective 
task. We distinguish flow-, anti- and output-dependences (respectively read-after-write, write-after-
read and write-after-write dependencies). As StarSs does not expand shared data into private copies, 
we enforce all of these dependencies. 

Let sA and sB be the two streams attached to regions A and B. Streams inherently enforce flow 

dependences between their producers and consumers for each element, so in order for the dependence 
A→B to be properly enforced, it is necessary and sufficient for TA to be producer of an element, of a 

stream s, consumed by TB. 

If TA writes to region A, then it generates a new version on stream sA. We deduce that the dependence 

resolver must return SA belongs to streams_peek(TB), irrespectively of the nature of the access to 

B, and therefore TB reads that element from the stream sA, preventing the execution of TB before TA 

completes. This means that both flow- and output-dependences are properly synchronized. 

If TA reads from region A, then we only need to enforce the dependence if TB writes to B. As by 

definition sA belongs to streams_out(TA), TA produces a new version on stream sA. Similarly to 

the previous case, the resolver must return sA belongs to streams_peek(TB) because TB writes to B 

and we deduce that TB reads the element written by TA in sA, therefore synchronizing the anti-

dependence. 

We can also verify that we do not over-synchronize read-after-read dependencies by noting that sA 

belongs to streams_peek(TB), with one notable exception: if A=B. Indeed, in that case sA=sB and 

we always have sB belongs to streams_peek(TB). This exception is necessary to enforce anti-

dependencies transitively when successive read accesses to the same region discard older versions. 
Consider, for example, three task instances TA, TB and TC such that all access the same region A, TA 

and TB read from A and TC writes to A. In this case, enforcing the order TA happens before TB allows 
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guaranteeing that TA happens before TC, which cannot be guaranteed otherwise as the version created 

by TA in sA is discarded by TB's new version. 

This over-synchronization can be avoided by creating a new region for TB, that overlaps with A, but 

with its own stream. However, our performance results show no significant degradation without this 
optimization. 

 6.3. Implementation 
This translation scheme is much simpler than one would anticipate given the semantic gap between 
dynamic array regions and data-flow streams. We also show in [1] that it is quite efficient. 

Full automation is in process, in collaboration between INRIA and BSC. The following steps have 
been agreed upon by the partners. The first three of them have been completed at the time of writing: 

1. Multiple communications (phone meetings, project meetings) between all the involved people 
at INRIA and BSC to establish a common, integrated flow from StarSs to the TERAFLUX 
architecture. The preliminary integration plan was presented at the second year project 
review. 

2. One-to-one exchanges between Antoniu Pop (INRIA) and Guillermo Miranda (BSC), 
allowing Antoniu Pop to perform systematic performance experiments with different 
compilation and translation strategies. 

3. Revision of the integration plan, resulting in the following three steps listed below. 

4. First implementation of a StarSs→OpenStream translation in the OmpSs framework, 
following the new integration plan. It will only handle full region matches in the dependence 
resolver, translating region descriptors to streams directly. This is ongoing work at BSC. 

5. Systematic experiments with StarSs applications, realized jointly between INRIA and BSC, 
for the subset that matches the above mentioned restriction. These experiments will aim to 
demonstrate the practicality and performance of the integrated flow on the TERAFLUX 
architecture simulator (based on COTSon). A joint publication could be aimed for in the 
fourth year of the project. 

6. Extension of the translation to handle more complex, partial region matches, as described 
above in this section. Whether this step will be implemented in the OmpSs framework or in a 
dedicated StarSs-inspired extension of OpenStream remains to be decided and will in any 
case be implemented in collaboration between BSC and INRIA. 
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7. Scala to C++ Translation 
To complete this deliverable, let us describe the status of the integrated tool flow for the TERAFLUX 
productivity language approach, which is based on the Scala language. Scala is normally compiled to 
Java bytecode and run on a Java Virtual Machine. The original TERAFLUX project plan envisaged 
that we would use the GCJ version of the GCC compiler to compile bytecode to native machine code. 
This way, we would have been able to make use of the wider project C++ compilation route tools as 
well as achieve higher performance. 

Initial experiments with GCJ, using simple Scala programs, indicated that this route appeared viable. 
However, in order to add extra functionality, particularly Transactions, to the existing language we 
needed to modify the bytecode emitted by the Scala compiler. At this point, we discovered that GCJ 
was not able to handle general bytecode but was tailored specifically to sequences emitted by a 
particular Java compiler and would not handle our modified code. 

As an alternative, we investigated the use of Java Virtual Machine (JVM) facilities which permit the 
static generation of machine code. This allows the configuration of time critical parts of a program to 
avoid the overhead of dynamic compilation each time the program runs. The WP2 and WP3 
deliverable provide experimental results with this compilation flow and virtual execution environment 
for the Scala extensions of the TERAFLUX project. Although this route is still viable, it introduces 
added complexity and does not have the benefit of compatibility with the rest of the TERAFLUX tool 
chain. 

We therefore have investigated the possibility of translating Scala to C++ to overcome these 
limitations. The Scala compiler permits the insertion of ‘plugins’ between stages of processing the 
Abstract Syntax Tree (AST) so that compilation experiments can be performed. The intention was to 
insert a plugin, in the final stages of AST processing which would traverse the AST and emit C++ 
code. During the initial stages of this investigation, we discovered that one of the EPFL Scala team, 
Miguel Garcia, had produced a plugin called ‘imp’ [4] which transforms the AST into something 
close to a  three-address form with the specific intention of permitting compilation to high level 
imperative languages. 

However, it does not appear that this work has progressed to produce any usable tools. It was 
therefore decided to make use of ‘imp’ but write an additional plugin to follow it and produce C++ 
code directly. Clearly any Scala program ultimately executes as low level machine instructions and 
therefore it must be possible to generate any intermediate form which is able to handle the complete 
Scala language. However, the normal compilation route already makes heavy use of the support 
provided within a JVM for Java, for example dynamic binding, and many complex issues are not 
handled at the compiler level. For that reason, it was decided that the simplest route would be to 
compile to a form mapping the Object Oriented (OO) structure of Scala onto the C++ one. However, 
there are  number of significant differences between the OO structure of the two languages and it is 
necessary to accept that some features of Scala may not be easily translated. 
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The purpose of the productivity language route within TERAFLUX is to demonstrate the feasibility of 
using an advanced language to enable the production of programs which use the Dataflow plus 
Transactions model with minimal requirements on the programmer to understand the complexities of 
the underlying implantation. The project has defined a set of benchmarks to evaluate the approach and 
it was considered that a compilation route which was able to handle these benchmarks, together with 
some necessary runtime support code written in Scala, would be sufficient. This still requires support 
for most of the major language features but advanced issues such as reflection will not be addressed. 

In addition, Scala has an extensive set of libraries and is also able to make use of all standard Java 
libraries. It would clearly be a major task to provide this and we intend to limit library support to that 
required for the benchmarks. Once the system is fully operational, it will be straightforward to add 
library code when needed. 

 7.1. Current Status 
A version of the translator is operational and the following features are currently supported. They 
have so far been validated mainly by test programs. 

1 All standard basic data types. 

2 Lists, Strings and Multi-Dimensional Arrays. 

3 Basic I/O. 

4 Simple control structures. 

5 Classes and Inheritance (including Traits). 

6 Package Structure. 

7 Some higher order function support. 

Some of the above may prove incomplete when more complex programs are compiled and thus the 
development is ongoing. The major issues which have not yet been tackled include: 

• Generics. 

• Threads. 

• Transactions. 

• Exceptions. 

In addition garbage collection has not been considered in any depth. It is possible that the facilities 
provided by GCC may be adequate. In the worst case, we may be able to run reasonably sized 
programs without GCC. However, Scala programs are likely to make significantly greater use of 
dynamic object creation that C++. 
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In order to both validate compilation and assess initial performance, a simplified version of our Lee 
benchmark written in Scala has been used. This is only a two dimensional version of the algorithm 
and is not parallel so does not require transactions. It is approximately 120 lines of Scala code. When 
compiled to C++ and then to native code using GCC the program runs approximately 50x faster than 
the standard bytecode version running on the HotSpot JVM. 

 7.2. Plans 
We intend to provide initial support for a version which will run on conventional multi-core systems 
(probably using pthreads). We also intend to produce code which will interface to the run time support 
provided on the COTSon based TERAFLUX simulator. 

This is ongoing work and there are still some complex issues to be addressed. However, it has 
progressed to a stage where we believe that it will provide a useful tool for evaluation of the 
productivity language system. 

Notice that this integration path is independent from the generic research track conducted on data-
flow and transactional memory programming in Scala. It is primarily intended at the validation of this 
research on the TERAFLUX architecture. 
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8. Conclusion 
We presented the first integrated flow, combining compilation methods and tools, and runtime 
systems, mapping modern efficiency languages such as StarSs and OpenStream to the TERAFLUX 
execution model and instruction set. A strong publication output and open source tool distribution was 
achieved as a result of the activities of WP4. We will aim for direct scalability and efficiency 
measurements on benchmarks and a few larger applications selected and characterized in WP2 for the 
final deliverable of WP4. 
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