
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 1 of 28

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D4.6 – Thorough evaluation of the compilation tools, productivity and
performance portability

Due date of deliverable: 31st December 2012
Actual Submission: 20th December 2012

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 2 of 28

Change Control

Version# Author Organization Change History

1.0 Albert Cohen INRIA First version

1.1 Mikel Lujan UNIMAN Scala compilation flow

1.2 Souad Koliai, Arne Garbade UDEL, UAU Corrections, comments

1.3 Rosa Badia, Albert Cohen BSC, INRIA Corrections, precisions

1.4 Albert Cohen, Roberto Giorgi INRIA, UNISI Final corrections

Release Approval

Name Role Date

Albert Cohen Originator 04/12/2012

Albert Cohen WP Leader 12/12/2012

Roberto Giorgi Project Coordinator for formal deliv erable 06/12/2012

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 3 of 28

TABLE OF CONTENTS

1. GLOSSARY ... 5

2. EXECUTIVE SUMMARY .. 6

3. INTRODUCTION ... 7

3.1. DOCUMENT STRUCTURE ... 7

3.2. RELATION TO OTHER DELIVERABLES .. 7

3.3. ACTIVITIES REFERRED BY THIS DELIVERABLE .. 8

4. EVALUATION OF THE BACK-END COMPILER FOR TERAFLUX .. 9

4.1. FEED-FORWARD DATA-FLOW MODEL: INTERFACES AND CHALLENGES .. 9

4.2. COMPILING STREAMING TASKS TO DATA-FLOW THREADS .. 10

4.3. TRANSACTIONS WITHIN DATA-FLOW THREADS. ... 14

4.4. IMPLEMENTATION .. 15

4.5. SYSTEMATIC PERFORMANCE EVALUATION .. 15

5. THOROUGH STUDY OF A RUNTIME FOR DATA-FLOW TASKS ... 17

6. COMPILATION OF STARSS APPLICATIONS ... 19

6.1. TRANSLATING STARSS INTO OPENSTREAM .. 19

6.2. CORRECTNESS OF THE TRANSLATION .. 21

6.3. IMPLEMENTATION .. 22

7. SCALA TO C++ TRANSLATION .. 23

7.1. CURRENT STATUS ... 24

7.2. PLANS .. 25

8. CONCLUSION ... 26

9. REFERENCES .. 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 4 of 28

Albert Cohen, François Gindraud, Feng Li, Antoniu Pop
INRIA

Rosa Badia, Guillermo Miranda
BSC

Ian Watson, Salman Khan, Daniel Goodman and Mikel Lujan
UNIMAN

2009-13 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web
site and can be distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.

This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).

Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.

Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY TERAFLUX TO
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING
FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH
ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT,
TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 5 of 28

1. Glossary

OpenMP – Parallel programming pragma language on top of C, C++ and Fortran. In this deliverable,
we refer to the OpenMP specification version 3.1.

http://www.openmp.org

OpenStream – Data-flow streaming extension of OpenMP, for the C language, implemented as a
patch to GCC and a dedicate runtime system for data-flow tasks.

http://www.di.ens.fr/OpenStream

StarSs – StarSs is a task-based programming model that enables the exploitation of the applications'
inherent parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas)
similar to the OpenMP ones are used. A uniqueness of StarSs tasks are the input, output or inout
clauses that applied to tasks' parameters enable the runtime to track tasks' data dependences.

http://pm.bsc.es/ompss

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 6 of 28

2. Executive Summary

We report on the multiple advances that took place in the third year of the project towards the
construction of a complete tool chain for TERAFLUX.

In particular, we describe the complete compilation flow from the StarSs efficiency language down to
the TERAFLUX instruction set, and the associated runtime system components. The tool flow uses
data-flow streaming extensions of OpenMP, called OpenStream, as an intermediate step in the
adaptation of StarSs programs for the compilation on the T* feed-forward data-flow execution model.

This tool flow is distributed as free software as a patch to GCC 4.7.1, with a complete set of
benchmarks selected from the comprehensive list of applications characterized in WP2, and with 19
tutorial examples introducing the language constructs of OpenStream.

We also report on the current state of the integration of the Scala tool flow with the TERAFLUX
back-end compiler (GCC generating T* instructions).

Experiments currently target a software runtime running on native hardware. These experiments
allowed us to perform a thorough validation of the design of the tool flow, comparing against state-of-
the-art programming models and implementations. The experiments also helped identify missing
features and a precise roadmap for the completion of the flow to enable the execution of larger StarSs
applications. The detailed results can be found in the associated papers published at IEEE Micro,
ACM TACO (HiPEAC 2013) and PPoPP.

Performance experiments on the TERAFLUX instruction set simulator, scaling to multiple node
configurations, and with different timing models, will be conducted in the fourth year of the project.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 7 of 28

3. Introduction

The overall objective of WP4 is the development of compilation and runtime support tools tailored to
the TERAFLUX architecture and programming models. The compiler(s) need to map the parallelism
and locality as available from the source program and programming model to the target execution
model and architecture. The distribution of the roles among the compilation tools and the runtime
tools is guided by the efficiency and robustness of handling the challenges statically or dynamically,
respectively.

The source program exhibits high levels of concurrency, but it still has to be exploited effectively on
the target. The compiler tools need to coarsen the grain of synchronization, issue bulks of
communications, overlap communication and computation, balance computation with communication
bandwidth, and harness temporal locality of code and data, taking into account the features of the
memory hierarchy. It also needs to generate tightly scheduled, fine-grain vectorized computation
kernels, possibly targeting accelerators.

We report on major advances in the compilation of the data-flow streaming extension of OpenMP
(now called OpenStream) to the TERAFLUX instruction set, in the design, experimentation, on the
runtime support for this language, and on the ongoing implementation of a systematic translation of
StarSs to OpenStream for execution on the TERAFLUX simulator.

3.1. Document structure

Section 4 reports on the back-end compiler, implemented in GCC, and mapping OpenStream to the
TERAFLUX instruction set. A complete flow including the code generation method, runtime support,
and experimental results are provided.

Section 5 reports on a formal and experimental study of the data-flow runtime system supporting the
execution of data-flow tasks on conventional hardware. This thorough study will be useful for the
design and implementation of future software/hardware interfaces.

Section 6 reports on the translation of StarSs to OpenStream and preliminary experiments in the
direction of a complete integration of the tool flow for efficiency languages down to the TERAFLUX
instruction set.

Section 7 reports on the integration of the Scala tool flow with the back-end compiler. While the main
research route for Scala is based on the Java VM, an integrated route has been hard to implement due
to technical limitations of the available tools. UNIMAN has been able to propose a new integration
path leveraging the TERAFLUX backend through a different set of tools.

3.2. Relation to other deliverables

This deliverable extends the compilation algorithms described in D4.1, D4.3 and D4.4, and evaluates
them on a range of representative benchmarks. It also complements D3.3 with an evaluation of the
compilation a runtime support to execute StarSs applications on the TERAFLUX architecture.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 8 of 28

3.3. Activities referred by this deliverable

This deliverable is associated with and represents the results of Task 4.2 and Task 4.3. Most of the
work is related to Task 4.2. Indeed, during the course of the project it became apparent that the largest
effort on transactional memory would be concentrated on the language support and on the architecture
extensions (as reported in WP3 and WP6). Task 4.3 has been increasingly concentrating on compiler
engineering to combine the data-flow and transactional memory compilation flow and runtime, with
little resources left for research on optimizations.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 9 of 28

4. Evaluation of the Back-End Compiler for TERAFLUX
We present a vastly remodeled compilation flow for the TERAFLUX architecture, implemented as a
front- and middle-end extension to GCC 4.7.1, expanding streaming task directives into data-flow
threads and point-to-point communications. It is the first complete, fully automatic compilation
framework for OpenStream, the new name of the data-flow streaming extensions of OpenMP
designed by INRIA in the TERAFLUX project.

We first recall the feed-forward data-flow execution model we are targeting in the project, and discuss
why it challenges the classical compilation methods for parallel languages, and some constraints this
model imposes on our stream programming model. Then we detail the code generation algorithm and
the main features of the implementation. The reader may refer to [1] and [3] for details on the
compilation of OpenStream and on the automatic extraction of fine-grain threads from arbitrary
procedural control flow, respectively.

 4.1. Feed-forward data-flow model: interfaces and challenges
Our code generation pass targets an abstract data-flow interface, designed after DTA (the data-driven
execution model) [6] and the T* ISA [5] (as defined in the WP6 and WP7 deliverables). The interface
defines two main components: data-flow threads, or simply threads, when clear from the context,
together with their associated data-flow frames, or frames.

The frame of a data-flow thread stores its input values, and may also store local variables or thread
metadata. The address of this data-flow frame also serves as an identifier for the thread itself, to
synchronize producers with consumers. Communications between threads are single-sided: the
producer thread knows the address of the data-flow frames of its dependent, consumer threads. A
thread writes its output data directly into the data-flow frames of its consumers.

Each thread is associated with a synchronization counter (SC) to track the satisfaction of producer-
consumer dependences: upon termination of a thread, the SC of its dependent threads is decremented.
A thread may execute as soon as its SC reaches 0, which may be determined immediately when the
producer decrements the SC. The initial value of the SC is equal to the amount of data that needs to be
externally written to its frame plus the number of consumer threads to which it connects. In our
implementation, the producer responsible of the last decrementation on a thread directly schedules the
consumer for execution. This token-less driven execution is one of the strengths of this form of point-
to-point synchronization.

In contrast, token-based approaches require checking the presence of the necessary tokens on
incoming edges. This means that either (1) a scanner must periodically check the schedulability of
data-flow threads, or (2) data-flow threads are suspendable. The former poses performance and
scalability issues, while the latter requires execution under complex stack systems (e.g., cactus stacks)
that may introduce artificial constraints on the schedule. The SC aggregates the information on the
present and missing tokens for a thread’s execution, allowing producer threads to decide when a given
consumer is ready for execution.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 10 of 28

Four primitives manage threads and frames. They are implemented as compiler builtins, recognized as
primitive operations of the compiler’s intermediate representation. In this deliverable, performance
experiments use a software runtime for the timing measurements. But code generation for actual T*
instructions and execution on COTSon is also supported, as reported in D7.4.

• void *df_tcreate(void (*func)(), int sc, int size); Creates a new data-flow

thread and allocates its associated frame. func is a pointer to the argument-less function to
be executed by the data-flow thread, sc is the initial value of the thread’s synchronization
counter, and size is the size of the data-flow frame to be allocated. It returns a pointer to the
allocated frame. Once created, a thread cannot be canceled. Collection of thread resources is
triggered by the completion of the thread’s execution.

• void df_tdecrease(void *fp, int num); Marks the thread designated by frame pointer

fp to be decremented by num upon termination of the current thread.

• void df_tend(); Terminates the current thread and deallocates its frame.

• void *df_tget_cfp(); Returns the frame pointer of the current thread.

Due to the underlying data-flow execution model, and its semantic requirement of writing stream data
directly in the consumer’s data-flow frame, we need to impose two simple restrictions on our
programming model for this compilation path: (1) on a given stream, the horizon of all consumer
tasks must be an integer multiple of the bursts of producer tasks (i.e., a producer’s output window on a
stream cannot be split between multiple consumer input windows); and (2) the burst of a consumer is
always either 0 or equal to its horizon (i.e., when a task peeks on a stream, it cannot simultaneously
advance the stream’s read index).

The purpose of these restrictions is to ensure that any given output window on a stream cannot be split
among multiple consumer windows. If a producer’s output window must be split dynamically
between multiple consumers, then each write access to the output window must be guarded by a
conditional expression or made through an indirection. This would prevent us from generating
optimized code where the producer writes its outputs directly in the data-flow frame of the consumer.

These constraints can be relaxed, but not without a performance overhead, or extending our target
abstract data-flow interface and execution model. Other compilation paths have been explored and
evaluated, where these restrictions do not apply, as described in D4.1 (see the section on work-
streaming), but we preferred to focus on the complete automation of a compilation flow, supporting
all the features of the programming model, even the most dynamic ones, and delivering an efficient
execution on the TERAFLUX instruction set. Furthermore, these restrictions only bear on some
advanced stream-oriented features of the language, like the ability to compute over sliding windows
on a stream of data. We plan to support these features, and remove any restrictions, in future work.

 4.2. Compiling streaming tasks to data-flow threads
The data-flow compilation path for OpenStream does not rely on streams for communication, but
rather as a meeting point for producers and consumers of data. Streams record the production and
consumption schedules, matching each producer with its consumer(s). Before it can start executing, a

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 11 of 28

producer must acquire the locations, within its consumers’ data-flow frames, where it needs to write
its output data. While this adds some overhead, it is an essential part of our execution model that
provides outweighing benefits, as evaluated in the next section. To illustrate the compilation process,
we rely on some trivial examples of streaming tasks that exhibit the key characteristics required to
explain the important parts of the code generation algorithm.

For each data-flow thread (or task instance), we keep track of the information required for the stream
matching scheme and for the synchronization algorithm with a metadata block embedded within the
thread’s frame. Figure 1 shows an example of two streaming tasks and the two key data structures we
use: the frames and the views. The former hold the metadata and the input data required for executing
a data-flow thread, the latter are used to implement stream access windows.

The top of Figure 1 shows an example where two tasks communicate through stream x. Task T1 is
the producer and T2 the consumer, both using an implicit window to access the stream. The middle
section of the figure shows (on the left) the view data structure. It contains a pointer to the actual
data that a data-flow thread, which is an instance of a given task, is allowed to access within a
conceptual stream through a window. In addition, the view data structure contains a pointer to the

Figure 1: Streaming tasks communicating via data-flow frames

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 12 of 28

data-flow frame of the owner of the data, which is always the consumer thread. Indeed, for an output
window, the view’s “data” pointer gives access to a location within another thread’s frame, while for
an input window, this pointer points within the thread’s own frame. On the right, the frame data
structure shows a skeleton of what a frame might look like. Depending on a thread’s inputs and
outputs, each frame has a possibly unique structure, but respecting this layout: it always contains the
synchronization counter, a set of views corresponding to the different stream access windows the task
annotation uses and a data_block. The latter is not a pointer to a separately allocated buffer, but is
just used as a marker for the beginning (offset) of the data block. The bottom of Figure 1 shows how
the data-flow frames for tasks T1 and T2 will be chained at runtime, by means of the view metadata.
The frame of T1 contains a view for the (implicit) output window “x”, which points to the data block
of its consumer, within the frame of T2. Furthermore, the frame of T2 contains a view for the input
window “x”, which points to its own data block, but also a view for the output window “y” pointing to
its consumer’s frame data block once it is determined.

The following step, presented in Figure 2, shows how the matching of producers and consumers is
orchestrated by the runtime. The figure illustrates the work performed by the
stream_match_views runtime function.

Figure 2: General scheme to match producers and consumers at run time using streams

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 13 of 28

We rely here on a slightly more complex set of streaming tasks (top) which communicate through a
stream x with explicit stream access windows, where the producer and the consumer bursts are non-
trivial. We conceptually represent the stream and the stream accesses of both tasks on the bottom part
of Figure 2, instantiating for the sake of illustration with prod_burst =2 and cons_burst =4. As shown
on the right side (bottom) of the figure, two instances of the producer task, represented by the two
frames T1<1> and T1<2> are necessary to produce the data for one instance of the consumer task.
The stream matching not only sets the owner field of each view, but it also computes the appropriate
offset in the frame of a consumer to ensure that the producer’s view always points directly to the
adequate memory location. For instance, thread T1<2>, which is the second instance of the producer
task T1, produces the second half of the data accessed by the first instance T2<1> of the consumer
task T2 through its window.

First, the work function of a task is generated, with a streaming task that consumes data on a stream x
and produces data on an output stream y, both accessed through their respective windows. The work
function (bottom) consists of the body of the task annotation, outlined to a new function with no
arguments. The input parameters are all stored within a thread’s frame, which can be accessed through
the frame pointer returned by a call to the df_tget_cfp runtime function. Within the body of the
original task, each stream access window is replaced with an indirection through the data field of the
corresponding view. Then, a call to df_tdecrease is issued, at the function’s exit, for each output
frame. This call is used to implement the synchronization algorithm: it atomically decrements the
consumer’s (owner of the view) synchronization counter by a y_burst, which represents the amount
of data effectively produced and written for this consumer. This call further contains a test that
schedules the consumer thread on the ready (work-stealing) queue if the synchronization counter
reached zero. Finally, each work function contains a last call to the df_tend function to deallocate
the frame and perform any necessary cleanup operations.

Finally, the code generation for the control program is presented in Figure 3.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 14 of 28

Figure 3 shows, on the same example, the code generated at the site of the original pragma
annotation to allocate and prepare the data-flow frame. We first issue a call to df_tcreate, which
allocates a data-flow frame for one instance of the task, passing a pointer to the work function, the
initial synchronization counter and the size of the frame. The initial synchronization counter
corresponds to the amount of input data required for a thread’s execution (in this example x_burst,
plus the number of output views of this thread, here 1). This additional synchronization value is
decremented, by the stream_match_views function, every time a consumer view is matched to
one of this thread’s output views. The size of the frame is computed by adding the size of the
application data stored in the frame, which is the amount of input data, to the size of the frame’s
metadata. After this, we generate, for each streaming clause, initialization code for the views created
to implement the stream access windows. Finally, we issue, for each stream accessed by the task, a
call to stream_match_views, which implements the matching algorithm, by setting the metadata
for output views and decrementing the frame’s synchronization counter by one for each output view
that has been properly matched to a consumer.

 4.3. Transactions within data-flow threads.
The compilation flow described above also support closed transactions, as long as they are restricted
to the scope of data-flow tasks. The baseline support was implemented by recent versions of GCC,
following the ABI defined by Intel and standardized across multiple compilers and software
transactional memory libraries. A first implementation was designed initially through the support of
the HiPEAC network, then redesigned and completed in the context of the VELOX FP7 project, and
finally merged with the compilation flow and runtime system of TERAFLUX in the OpenStream
patch of GCC 4.7.1.

Preliminary evaluation confirmed the smooth integration of the two compilation flows and runtimes
(GCC's STM and OpenStream runtime). More extensive optimizations and experiments will be
conducted in the consolidated tool flow during the fourth year of the project, validating the potential
of combined data-flow and transactional memory semantics in applications, languages, compilers,
runtime systems, and architectures.

Figure 3: Generated data-flow code from OpenStream pragmas

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 15 of 28

 4.4. Implementation
A full implementation of the code generation pass used for lowering OpenStream annotations to the
data-flow runtime is publicly available, supporting all features of the stream-computing extension
presented in this deliverable. This implementation builds on top of the GCC compiler’s OpenMP
expansion pass and targets a separate runtime library, which implements stream dynamic matching
and the point-to-point synchronization scheme detailed above.

The compiler’s front-end is modified to parse streaming annotations, as well as stream attributes, and
lower them to GCC’s intermediate representation, preserving stream typing information. This typing
information is used both to enable modular compilation, with a clean interface between translation
units, and to perform type checking providing compile-time feedback when stream types are
incompatible.

Frame and view data structures are fully constructed and typed to facilitate debugging. This allows to
dump the intermediate representation, using the classical GCC -fdump-tree-* flags, in a human-
readable format where each structure’s field accesses are easily identifiable rather than just an offset.
This mitigates part of the drawback of not relying on a source-to-source compiler where the output
can be directly checked.

On the OpenStream git repository, the code generation is integrated in the OpenMP expansion pass in
the middle-end, and is activated with the same compilation flag, -fopenmp. The generated code
does not target GCC’s libGOMP OpenMP runtime but our own runtime library, libwstream_df.

To target the TERAFLUX instructions and the COTSon-based simulation of the architecture, an
alternate branch of the OpenSteam tool flow must be downloaded and compiled. It is called

OpenStream_TFX (git branch origin/OpenStream_TFX), developed also as part of WP7 (see
D7.4).

To facilitate the build, test, and performance evaluation of OpenStream benchmarks on the
TERAFLUX architecture simulator, a comprehensive Wiki page has been set up on the main
repository of the tool flow:

http://sourceforge.net/p/open-stream/wiki/Home

More examples and automatic performance evaluation scripts will be added continuously until the end
of the project.

Note that transactional memory has been demonstrated to smoothly coexist with data-flow tasks in
OpenStream, but only in the context of the software runtime system implementation at this point.

 4.5. Systematic performance evaluation
We evaluated the OpenStream tool flow targeting to our software runtime implementation to compare
its performance (scalability and efficiency) against Cilk and native StarSs implementations on a
selection of benchmarks.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 16 of 28

Figure 4 compares an OpenStream-translated version of SparseLU with the native StarSs version,
running with our runtime system on a 24 core Opteron.

Clearly, the benchmark scales much earlier with the data-flow execution model of TERAFLUX, even
using a software runtime. Blocks of size 32x32 are sufficient, while StarSs using a more complex
suspendable lightweight threading runtime still has scalability problems with blocks of size 128x128.
This scalability penalty is by no means a limitation of the StarSs language. On the contrary, the
experiment validates the benefits of converting the region-based task-to-task dependences of StarSs
into streamlined, T* primitives and data-flow threads.

The generated code works on the COTSon implementation of the TERAFLUX instruction set.

We refer to [1] for additional and detailed performance experiments, including a systematic study of
Gauss-Seidel illustrating the compilation and execution of a StarSs program with partially
overlapping regions.

Figure 4: Sparse-LU benchmark using OpenStream and T* vs. the conventional StarSs
runtime

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 17 of 28

5. Thorough Study of a Runtime for Data-Flow Tasks
While designing a robust tool flow for the productivity and efficiency languages in TERAFLUX, we
came across the challenge of designing and implementing a reliable, verified, and highly efficient
runtime to implement the baseline data-flow execution model of the project. This runtime can be used
on conventional hardware or on the TERAFLUX architecture (see D6.2), by supporting the TSU
underneath the COTSon simulator interfaces. In both cases, correctness and performance are of
utmost importance for the practicality of all the experiments and integration efforts.

At the time of writing, the TERAFLUX memory model has made much progress, with a partial
implementation and formalization available for OWM regions (see the WP3 deliverable for the
current status). Yet the state of the design and implementation of the model is still too preliminary to
perform a thorough study of the correctness of our execution model implementation. We thus decided
to focus on a very weak memory consistency model of an existing architecture, as a first experiment
to validate our approach, and before moving to the full-scale implementation of the TERAFLUX
memory model. We selected the very similar, weakly consistent memory models of the POWER and
ARMv7 instruction set architectures.

We demonstrate that a high degree of confidence can be achieved for highly optimized, real-world
concurrent algorithms such as a lightweight data-flow task scheduler on a weak memory model. More
specifically, we study the Chase-Lev concurrent doubly-ended queue, an essential component of
parallel programming language implementations, as the cornerstone of most work-stealing schedulers.

Until now, a formal correctness proof for a relaxed memory model has been missing for this
concurrent algorithm. Furthermore, while work-stealing has met with wide success on x86, few
experiments target weaker memory models. This is an important missing link for an implementation
supporting the TERAFLUX instruction set and memory model.

We provide the first proof of correctness of this important concurrent data structure for a relaxed
memory model. Specifically, the proof targets a very recent, experimentally and expert-verified
axiomatic semantics for the POWER and ARMv7 memory models. This proof and the proof
technique constitute our first contribution. We compare our optimized implementation with an x86
version and two portable ISO C 2011 variants (C11 for short): a canonical translation of the
algorithm's sequentially consistent accesses, and an aggressively optimized version making full use of
the acquire--release and relaxed semantics of C11 low-level atomics. We show that the
POWER/ARM proof can be simplified and tailored to these alternative implementations. We also
observe a slight mismatch between the C11 and POWER/ARM memory models, noting
unrecoverable overheads in the interaction between atomic operations and the non-cumulativity of
memory barriers. The study of similar possible mismatches and performance overheads in the context
of the TERAFLUX memory model will be of particular interest in the fourth year of the project.

We evaluate all four doubly-ended queue implementations in the context of a work-stealing scheduler
with diverse worker/thief configurations, including a synthetic benchmark with two different

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 18 of 28

workloads, and standard task-parallel kernels. Our experiments demonstrate the impact of the
memory barrier optimization on the throughput of our work-stealing runtime.

More details on the actual implementation of the deque, on the formalization and proof, and on the
experimental results can be found in [2].

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 19 of 28

6. Compilation of StarSs Applications
StarSs relies on compiler directives for blocking asynchronous operations into coroutines similar to
OpenMP tasks. It provides additional clauses to describe the memory accesses of each task, from
which inter-task dependences are inferred. In its latest evolution, accesses are specified with dynamic
array regions, providing a lot of flexibility to programmers and an incremental path to parallelize
existing programs. The price for this rich, implicit dependence abstraction is paid through the need for
a sophisticated runtime algorithm. A runtime dependence resolver detects the effective overlaps
between the memory accesses of different task instances and the ordering constraints deriving from
the task creation order.

We briefly recall the syntax and informal semantics of the StarSs programming model. We also
analyze the workings of the array region support it provides. For more information, see the reference
on StarSs in this deliverable's glossary.

In the deliverable D2.3, we illustrate the translation of a StarSs implementation of the Gauss-Seidel
stencil kernel (e.g., heat transfer simulation) to OpenStream. The deliverable also highlights how
partially overlapping regions (different array blocks with non-empty intersection) can be managed
through the implementation of a dependence resolver capturing the exact data-flow dependences
between tasks. In the present deliverable, we dig further into the systematic translation and
construction of such a resolver on top of OpenStream. More technical details can be found in [1].

 6.1. Translating StarSs into OpenStream
In this section, our objective is to show that OpenStream can form a common ground for the
convergence of different efficiency languages into a common tool flow targeting the TERAFLUX
instruction set. We show that OpenStream constructs can be used to express the dependencies
between tasks working on shared data, using the dependence information provided by the StarSs
resolver. We show that such an embedding can be implemented at compilation time, generating the
adequate synchronizations with data-flow streaming constructs. We use StarSs to illustrate this
embedding, but the same process applies more generally to any higher-level language for parallel-
programming that handles dynamic dependences between tasks. In particular, the other efficiency
languages studied in WP3, TFLUX from UCY and HMPP from CAPS, can be handled the same way.

Importantly, the resolver of dynamic dependencies expressed implicitly in StarSs and other high-level
languages is a necessary component, provided by any language where dependencies are not specified
by programmers. We do not address the design and optimization of such resolvers, but rather we use
this particular example to show that task graphs can be built dynamically. This allows expressing the
semantics of the dynamic constructs found in such high-level languages. We show how the output
commonly available from such dependence resolvers can be used to lower StarSs constructs to
OpenStream directives.

The key insight behind our translation scheme is that StarSs array regions, or any memory location,
can be encoded by a stream as a sequence of versions, enforcing a form of dynamic single assignment
on each version. To comply with the in-place update policy of StarSs, we restrict the live range of

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 20 of 28

each stream to one single version/element: a single instance of the data is alive at any time in shared
memory. For example, the degenerated case where array regions are guaranteed (e.g., by
programming language semantics) to always either fully overlap or be disjoint, which means that each
region can be assimilated to a scalar related to its dependencies, can be directly handled without
additional support from a dependence resolver. Indeed, in our scheme, this case only requires of the
resolver to perform an identity function.

The StarSs dependence resolver is marginally modified to attach a stream to each StarSs region and to
return two sets of streams for each dynamic task instance T:

• The set of streams attached: (1) to any region that overlaps with the write regions of task T
(output and inout); or (2) to any write region that overlaps with the read regions of task T
(input and inout); or (3) to any of the own access regions of task T. We will call this set
streams_peek(T).

• The set of streams attached to the regions of task T, irrespectively of their type. We call this
set streams_out(T).

Implicitly, each stream attached to a StarSs region is initialized with an element representing the
initial state of the region.

Figure 5 illustrates the translation of Gauss-Seidel to OpenStream.

For each iteration of the outer loop on iteration tiles, the program first invokes the StarSs dependence
resolver, passing a set of region descriptors built in the same way as in the StarSs compilation
framework, and obtaining in return the two sets of streams streams_peek and streams_out as
defined above, as well as the number of streams in each set. We then replace the original StarSs task

Figure 5: Example translation of StarSs to OpenStream: Gauss-Seidel

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 21 of 28

annotation with our own task annotation with two clauses: (1) a variadic peek clause for all streams
in the streams_peek array; and (2) a variadic output clause for all streams in the
streams_out array. Finally, we issue a tick directive for each stream in streams_out.

The semantics of the code we generate is quite natural: the peek clauses request reading the current
live version of a region, which enforces the order of the current tasks execution after the last task that
invalidated that region, and the output clause generates a new version for each invalidated regions,
followed by a tick directive to prevent any subsequent tasks from accessing the old version of the
region.

 6.2. Correctness of the translation
Let us now verify that all dependencies are properly enforced in our resulting code. Consider two
regions A and B, accessed by two different tasks TA and TB . TA and TB are created in this order by

the control program, such that the two regions overlap. There is a dependence A→B if at least one of
the accesses is a write operation, so if either of the regions is output or inout on its respective
task. We distinguish flow-, anti- and output-dependences (respectively read-after-write, write-after-
read and write-after-write dependencies). As StarSs does not expand shared data into private copies,
we enforce all of these dependencies.

Let sA and sB be the two streams attached to regions A and B. Streams inherently enforce flow

dependences between their producers and consumers for each element, so in order for the dependence
A→B to be properly enforced, it is necessary and sufficient for TA to be producer of an element, of a

stream s, consumed by TB.

If TA writes to region A, then it generates a new version on stream sA. We deduce that the dependence

resolver must return SA belongs to streams_peek(TB), irrespectively of the nature of the access to

B, and therefore TB reads that element from the stream sA, preventing the execution of TB before TA

completes. This means that both flow- and output-dependences are properly synchronized.

If TA reads from region A, then we only need to enforce the dependence if TB writes to B. As by

definition sA belongs to streams_out(TA), TA produces a new version on stream sA. Similarly to

the previous case, the resolver must return sA belongs to streams_peek(TB) because TB writes to B

and we deduce that TB reads the element written by TA in sA, therefore synchronizing the anti-

dependence.

We can also verify that we do not over-synchronize read-after-read dependencies by noting that sA

belongs to streams_peek(TB), with one notable exception: if A=B. Indeed, in that case sA=sB and

we always have sB belongs to streams_peek(TB). This exception is necessary to enforce anti-

dependencies transitively when successive read accesses to the same region discard older versions.
Consider, for example, three task instances TA, TB and TC such that all access the same region A, TA

and TB read from A and TC writes to A. In this case, enforcing the order TA happens before TB allows

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 22 of 28

guaranteeing that TA happens before TC, which cannot be guaranteed otherwise as the version created

by TA in sA is discarded by TB's new version.

This over-synchronization can be avoided by creating a new region for TB, that overlaps with A, but

with its own stream. However, our performance results show no significant degradation without this
optimization.

 6.3. Implementation
This translation scheme is much simpler than one would anticipate given the semantic gap between
dynamic array regions and data-flow streams. We also show in [1] that it is quite efficient.

Full automation is in process, in collaboration between INRIA and BSC. The following steps have
been agreed upon by the partners. The first three of them have been completed at the time of writing:

1. Multiple communications (phone meetings, project meetings) between all the involved people
at INRIA and BSC to establish a common, integrated flow from StarSs to the TERAFLUX
architecture. The preliminary integration plan was presented at the second year project
review.

2. One-to-one exchanges between Antoniu Pop (INRIA) and Guillermo Miranda (BSC),
allowing Antoniu Pop to perform systematic performance experiments with different
compilation and translation strategies.

3. Revision of the integration plan, resulting in the following three steps listed below.

4. First implementation of a StarSs→OpenStream translation in the OmpSs framework,
following the new integration plan. It will only handle full region matches in the dependence
resolver, translating region descriptors to streams directly. This is ongoing work at BSC.

5. Systematic experiments with StarSs applications, realized jointly between INRIA and BSC,
for the subset that matches the above mentioned restriction. These experiments will aim to
demonstrate the practicality and performance of the integrated flow on the TERAFLUX
architecture simulator (based on COTSon). A joint publication could be aimed for in the
fourth year of the project.

6. Extension of the translation to handle more complex, partial region matches, as described
above in this section. Whether this step will be implemented in the OmpSs framework or in a
dedicated StarSs-inspired extension of OpenStream remains to be decided and will in any
case be implemented in collaboration between BSC and INRIA.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 23 of 28

7. Scala to C++ Translation
To complete this deliverable, let us describe the status of the integrated tool flow for the TERAFLUX
productivity language approach, which is based on the Scala language. Scala is normally compiled to
Java bytecode and run on a Java Virtual Machine. The original TERAFLUX project plan envisaged
that we would use the GCJ version of the GCC compiler to compile bytecode to native machine code.
This way, we would have been able to make use of the wider project C++ compilation route tools as
well as achieve higher performance.

Initial experiments with GCJ, using simple Scala programs, indicated that this route appeared viable.
However, in order to add extra functionality, particularly Transactions, to the existing language we
needed to modify the bytecode emitted by the Scala compiler. At this point, we discovered that GCJ
was not able to handle general bytecode but was tailored specifically to sequences emitted by a
particular Java compiler and would not handle our modified code.

As an alternative, we investigated the use of Java Virtual Machine (JVM) facilities which permit the
static generation of machine code. This allows the configuration of time critical parts of a program to
avoid the overhead of dynamic compilation each time the program runs. The WP2 and WP3
deliverable provide experimental results with this compilation flow and virtual execution environment
for the Scala extensions of the TERAFLUX project. Although this route is still viable, it introduces
added complexity and does not have the benefit of compatibility with the rest of the TERAFLUX tool
chain.

We therefore have investigated the possibility of translating Scala to C++ to overcome these
limitations. The Scala compiler permits the insertion of ‘plugins’ between stages of processing the
Abstract Syntax Tree (AST) so that compilation experiments can be performed. The intention was to
insert a plugin, in the final stages of AST processing which would traverse the AST and emit C++
code. During the initial stages of this investigation, we discovered that one of the EPFL Scala team,
Miguel Garcia, had produced a plugin called ‘imp’ [4] which transforms the AST into something
close to a three-address form with the specific intention of permitting compilation to high level
imperative languages.

However, it does not appear that this work has progressed to produce any usable tools. It was
therefore decided to make use of ‘imp’ but write an additional plugin to follow it and produce C++
code directly. Clearly any Scala program ultimately executes as low level machine instructions and
therefore it must be possible to generate any intermediate form which is able to handle the complete
Scala language. However, the normal compilation route already makes heavy use of the support
provided within a JVM for Java, for example dynamic binding, and many complex issues are not
handled at the compiler level. For that reason, it was decided that the simplest route would be to
compile to a form mapping the Object Oriented (OO) structure of Scala onto the C++ one. However,
there are number of significant differences between the OO structure of the two languages and it is
necessary to accept that some features of Scala may not be easily translated.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 24 of 28

The purpose of the productivity language route within TERAFLUX is to demonstrate the feasibility of
using an advanced language to enable the production of programs which use the Dataflow plus
Transactions model with minimal requirements on the programmer to understand the complexities of
the underlying implantation. The project has defined a set of benchmarks to evaluate the approach and
it was considered that a compilation route which was able to handle these benchmarks, together with
some necessary runtime support code written in Scala, would be sufficient. This still requires support
for most of the major language features but advanced issues such as reflection will not be addressed.

In addition, Scala has an extensive set of libraries and is also able to make use of all standard Java
libraries. It would clearly be a major task to provide this and we intend to limit library support to that
required for the benchmarks. Once the system is fully operational, it will be straightforward to add
library code when needed.

 7.1. Current Status
A version of the translator is operational and the following features are currently supported. They
have so far been validated mainly by test programs.

1 All standard basic data types.

2 Lists, Strings and Multi-Dimensional Arrays.

3 Basic I/O.

4 Simple control structures.

5 Classes and Inheritance (including Traits).

6 Package Structure.

7 Some higher order function support.

Some of the above may prove incomplete when more complex programs are compiled and thus the
development is ongoing. The major issues which have not yet been tackled include:

• Generics.

• Threads.

• Transactions.

• Exceptions.

In addition garbage collection has not been considered in any depth. It is possible that the facilities
provided by GCC may be adequate. In the worst case, we may be able to run reasonably sized
programs without GCC. However, Scala programs are likely to make significantly greater use of
dynamic object creation that C++.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 25 of 28

In order to both validate compilation and assess initial performance, a simplified version of our Lee
benchmark written in Scala has been used. This is only a two dimensional version of the algorithm
and is not parallel so does not require transactions. It is approximately 120 lines of Scala code. When
compiled to C++ and then to native code using GCC the program runs approximately 50x faster than
the standard bytecode version running on the HotSpot JVM.

 7.2. Plans
We intend to provide initial support for a version which will run on conventional multi-core systems
(probably using pthreads). We also intend to produce code which will interface to the run time support
provided on the COTSon based TERAFLUX simulator.

This is ongoing work and there are still some complex issues to be addressed. However, it has
progressed to a stage where we believe that it will provide a useful tool for evaluation of the
productivity language system.

Notice that this integration path is independent from the generic research track conducted on data-
flow and transactional memory programming in Scala. It is primarily intended at the validation of this
research on the TERAFLUX architecture.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 26 of 28

8. Conclusion
We presented the first integrated flow, combining compilation methods and tools, and runtime
systems, mapping modern efficiency languages such as StarSs and OpenStream to the TERAFLUX
execution model and instruction set. A strong publication output and open source tool distribution was
achieved as a result of the activities of WP4. We will aim for direct scalability and efficiency
measurements on benchmarks and a few larger applications selected and characterized in WP2 for the
final deliverable of WP4.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.6 – Dissemination Level: PU

Deliverable name: Thorough evaluation of the compilation tools, productivity and
 performance portability

File name: TERAFLUX-D46-v4 Page 27 of 28

9. References
[1] Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and data-flow compilation of
OpenMP streaming programs. ACM Transactions on Architecture and Code Optimization (TACO),
selected for presentation at the HiPEAC 2013 Conf., January 2013.

[2] Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. Correct and efficient
work-stealing for weak memory models. In Symp. on Principles and Practice of Parallel
Programming (PPoPP), Shenzhen, China, February 2013.

[3] Feng Li, Antoniu Pop, and Albert Cohen. Automatic extraction of coarse-grained data-flow
threads from imperative programs. IEEE Micro, 2012. Special issue on Parallelization of Sequential
Code.

[4] “Moving Scala ASTs one step closer to C, by turning them into three-address form”, Scala
Compiler Corner, http://lampwww.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

[5] Roberto Giorgi, "TERAFLUX: Exploiting Dataflow Parallelism in Teradevices", ACM Computing
Frontiers, Cagliari, Italy, May 2012, pp. 303-304.

[6] Roberto Giorgi, Zdravko Popovic, Nikola Puzovic, "DTA-C: A Decoupled multi-Threaded
Architecture for CMP Systems", Proc. IEEE SBAC-PAD, Gramado, Brasil, Oct. 2007, pp. 263-270

[7] COTSon official repository: http://cotson.sourceforge.net/

