
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D4.5 – Optimized version of the compilation tools, with the
 invitation of third-party contributors

Due date of deliverable: 31/12/2011
Actual Submission: 31/12/2011

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 1 of 16

Change Control

Version# Author Organization Change History

1.0 Albert Cohen INRIA First version

1.1 Albert Cohen INRIA Revision with feedback
from Pedro Trancoso

1.2 Albert Cohen INRIA Integrated corrections
from Salman Khan

Release Approval

Name Role Date

Albert Cohen Originator 23/12/2011

Albert Cohen WP Leader 23/12/2011

Roberto Giorgi Project Coordinator for formal delive rable 30/12/2011

TABLE OF CONTENTS

1GLOSSARY .. 6

2EXECUTIVE SUMMARY ... 7

3INTRODUCTION ... 8

4COMPILATION TOOLS .. 9

5SCALA COMPILATION AND SUPPORT LIBRARIES .. 10

6STARSS TOOL CHAIN .. 13

7TERAFLUX GCC BACKEND COMPILER .. 15

8CONCLUSION AND INTEGRATION PLAN ... 16

The following list of authors will be updated to reflect the list of contributors to the writing of the
document.

Riyadh Baghdadi, Albert Cohen, Feng Li, Antoniu Pop

INRIA

Rosa Badia

BSC

François Bodin, Laurent Morin

CAPS

Daniel Goodman, Salman Khan, Ian Watson, Mikel Luján
University of Manchester

Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.

This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).

Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.

Printed in Siena, Italy, Europe.

Part number: please refer to the File name in the document footer.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 4 of 16

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 5 of 16

1 Glossary

Nothing specific for this deliverable.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 6 of 16

2 Executive Summary

The tool flow for the TERAFLUX project has been evolving throughout the second year. The
rationale for this evolution, and the associated semantic and algorithmic contributions have been
reported in D4.4 (exploitation of multi-level parallelism, locality optimizations). This deliverable
surveys the most important design and implementation information regarding the main components of
the tool chain, and links to the online resources about the prototype component themselves. These
components are being integrated following the communication scheme between the efficiency
programming models' source-to-source compilers and the TERAFLUX GCC back-end, and the
complete integrated flow will be demonstrated in the third year.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 7 of 16

3 Introduction

The overall objective of WP4 is the development of compilation tools which are tailored to the
TERAFLUX architecture and programming models.

This deliverable describes the design and implementation of the first version of the tool flow,
mapping the productivity and efficiency programming layers to the TERAFLUX architecture. This
flow is composed of fully operational components dealing with all aspects of the code generation,
optimization and runtime support. It performs locality optimizations and handles multi-level
parallelism as described in D4.4. But the different components are not yet integrated. The integration
plans for the 3rd year will be discussed in the last part of this document.

3.1. Document structure

Section 4 outlines the main developments conducted on the TERAFLUX tool flow in the 2nd year of
the project. These developments fill many gaps and complement the baseline tool flow presented in
D4.1 and D4.3. A complete integration will take place in the 3rd year of the project. Section 5 surveys
the design and implementation challenges and choices of the Scala component of the flow. Section 6
and 7 report on the StarSs and GCC backend implementation respectively. Section 7 summarizes our
achievements and presents the plans for an integrated flow.

3.2. Relation to other deliverables

This deliverable extends the compilation tools described in D4.1 and D4.3. It complements D4.4,
covering design and implementation aspects of the tool flow.

3.3. Activities referred by this deliverable

Work and software reported in this document corresponds to the current, intermediate progress status
of Task 4.2. Implementation of the methods being investigated in Task 4.3 will take place in the 3rd
year.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 8 of 16

4 Compilation Tools
The prototypes available at the end of the second year can be sorted in 3 categories.

1. The first one is Scala-specific. It is based on run-time libraries from UNIMAN, described in
D3.3. The departure from an integration of the Scala tool flow through GCJ is presented in
this document. In the future, it is possible that some of this library-based support may be
enhanced and implemented into the Java virtual machine itself.

Technical information and code are available online and updated regularly:
http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS

2. The different efficiency programming models all come with their source-to-source
compilation framework. The TFlux model and tools have been extended to support
transactions (see D3.3). Several locality optimizations and multi-level parallel programming
extensions have been implemented in the HMPP Workbench 3.0. The Mercurium compiler
for StarSs is now embedded into a comprehensive tool suite within the OmpSs infrastructure.
Enhancements for multi-level parallelization have been integrated to the OmpSs tool flow,
including the support libraries and code generators for different devices. Note that OmpSs and
HMPP models the TERAFLUX architecture as an accelerator device.

Technical information and code are available online and updated regularly:
http:// nanos.ac.upc.edu

3. The TERAFLUX back-end compiler is currently a collection of three independent patches to
the mainline of GCC (development version 4.7). The first patch supports the direct
compilation of OpenMP dataflow streaming pragmas to T* intrinsic functions, themselves
compiled to the T* ISA (cf. Deliverable 6.2). The second one converts sequential programs
through static analysis only. The original flow is modified, replacing pragma expansion with
the automatic extraction of threads from arbitrary control flow; the run-time library may also
be replaced with T* intrinsic functions. A paper will be presented at the MULTIPROG
workshop in January 2012. The third one experiments with the late expansion of OpenMP
pragmas, as a double attempt to facilitate the optimization of OpenMP streaming programs
(task-level optimizations) and to combine the features of the two previous patches. The goal
in the third year is to support a hybrid programming model with pragmas for coarse-grain
parallelism and complex dependence patterns, and automatic parallelization for the finest
grain of parallelism and scalar dependence patterns.

Technical information and code are available online and updated regularly:

http://www.di.ens.fr/TerafluxProject

The rest of this deliverable surveys the most important aspects and describes the current status of
these tools. The Scala tool chain is discussed in greater detail given the important progress made in
understanding its integration in a complete tool flow targeting a hardware-supported dataflow
execution model with transactions.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 9 of 16

5 Scala compilation and support libraries
Currently Scala and all the associated libraries that we have produced execute on the Java Virtual
Machine. To tie this work to the work with lower level languages and to allow this code to execute on
the simulations of the proposed hardware we have considered several approaches. While we are yet to
decide the exact approach to be undertaken we will now detail the different approaches considered.

5.1 Running a JVM on the simulator
The simulated hardware will need to expose functionality to the software. In our case, this
functionality is in two parts: the transactional memory mechanisms and the dataflow scheduler. In
COTSon, this is done by expanding the instruction set by using the cpuid instruction. As JVM based
languages cannot directly use native instructions the standard way of performing system-specific
operations is through the Java Native Interface (JNI). This allows the program to link with native
methods, which may be implemented in C or assembly. However, JNI calls come with a high
overhead. This is mostly related with the passing of arguments and allowing native method to access
process state. For small transactions, this overhead becomes unacceptably high. An alternative to this
is modifying the JVM itself. The Hotspot virtual machine includes intrinsic methods. These are
methods that, whenever they are called, are replaced by the JVM. This means, that with small
modifications to Hotspot, calls to transactional memory or dataflow mechanisms can be replaced with
the appropriate C and assembly code.

For transactions, another issue is that during execution on a JVM, events that should not be
transactional may occur. For instance, class loading, recompilation of classes or garbage collection.
The JVM must therefore be made aware of transactional execution, and either ensure that these events
do not occur during transactions, or exclude their execution from the transactional mechanism.
Separating the JVM code from the transactional code in the program becomes more complex if the
code is interpreted. In this case, the interpreter must be differentiated by the hardware from the
operations of the interpreted code. One option here is to not allow transactions in interpreted code and
force compilation of any methods that include or are included in transactions. This issue needs to be
explored further.

The JVM also requires modifications to interact with hardware dataflow scheduling. The dataflow
scheduler, as proposed, relies on receiving a pointer to the section of code that is the computation in a
dataflow thread. In C or C++, this is achieved through passing a function pointer to the scheduler
device along with the directive to create a thread. When a thread is ready to execute, the associated
code is invoked. However, the JVM may have compiled or recompiled the method code since the time
of thread creation, meaning the code’s location may have changed. This can be addressed by
introducing a level of indirection that involves calling into the JVM to locate the right method using
some consistent identifier other than the address. This need not involve changes to the hardware if the
code invoked is always the handler in the JVM, the method identifier may be included as a token to
the thread. This will add a small additional overhead to the scheduling process.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 10 of 16

Finally this approach is also dependent on the underlying operating system for TERAFLUX being
able to support a JVM. Possible solutions will be further explored in cooperation with WP6 and WP7
leaders and participants during the first half of the third year.

5.2 Compilation to other codes
If the code is not run directly on a JVM, then some form of compilation to either machine code or a
language that is supportable by the other elements of the tool chain will be required. There are several
ways this could be achieved.

Modifying Scalac

The last phase of the Scala compiler converts an abstract syntax tree into either JVM byte code or
somewhat less well supported CLR byte code. These phases are plug-able and this raises the
possibility of producing another backend that will produce either assembly or C++. Currently such a
backend would have to operate without garbage collection, and because of its interface with the
compiler this phase would be required to handle all the other features of Scala.

While the construction of such a phase is possible, the poor documentation of the compilers internal
data structures would make it challenging and additional support would be required to replace the
Java libraries and JNI calls. An alternative that overcome many of these issues would be to transform
the resultant byte code as discussed next.

Byte code transformation

A more targeted and better documented approach is to convert Java byte code into either C++ or
assembly. This approach has the advantage that we can avoid handing all cases by selectively
deciding which classes we are going to convert, and avoid issues between Scala and Java code as all
the code will be the same at this stage. It would be simplest to target C++ and then work on being able
to feed this into the rest of the system tool chain. Again this approach would require the loss of the
garbage collector in a basic implementation and how to handle JNI calls would need further thought,
but we feel that this approach is worth further examination.

Compiling through GCJ

GCJ is an ahead-of-time compiler for the Java. It can compile Java source code to Java byte code or
directly to native machine code. It can also compile Java byte code to native machine code. To avoid
using a JVM, we considered the option of using GCJ to compile class files generated by the Scala
compiler to native code. On examination we decided that this approach is not feasible for the
following reasons:

1. GCJ is not yet fully compatible with Java 1.5 while Scala is dependent on Java 1.6 features.

2. GCJ relies on the byte code being compiled with the Eclipse Compiler and makes
assumptions about the class files based on this. This means that GCJ does not accept every
correct class file including most non-trivial class files generated by the Scala compiler.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 11 of 16

We also evaluated a commercial tool, Excelsior JET. This, like GCJ, is an ahead of time compiler
coupled with an interpreter for any portions of code that fail to compile. This tool has better
compatibility, and can support Java 1.6, but it still fails to compile large parts of the Scala libraries to
native code.

5.3 Summary
To summarize we feel that there is potential in both the JVM and the bytecode transformation options.
The GCJ and the Scala compiler modifications are less likely to work for a sensible amount of effort
so will not be pursued further at this point.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 12 of 16

6 StarSs tool chain
BSC is currently devoting efforts to the OmpSs infrastructure, which combines the OpenMP standard
with the StarSs ideas. OmpSs is composed of Mercurium compiler that converts the source code and
links it to the NANOS++ runtime. The OmpSs infrastructure is depicted in Illustration1.

The compiler recognizes the constructs and transforms them into calls to the runtime library. The
input/output/inout clauses are transformed by generating a set of expressions that are evaluated
when the application is executed. These expressions generate addresses of memory that will be passed
to the runtime library.

The target clause is used to indicate that a task is targeting a specific device, like a dataflow thread

of the TERAFLUX architecture, or a CUDA GPU. When the compiler generates the code for a task

construct, it looks if it is annotated with a target directive or if another target directive is linked

to this task construct by means of an implement clause. If so, the AST of the task is passed onto the
Nanox tool, in charge of dispatching code generation to a device-specific provider and wrapping the
device-specific compilation and linking flow for each non-SMP device.

Device providers generate the device-dependent code and metadata that must go associated with the
task. They also, if necessary, generate a specialized outline, for the device which may need to be

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 13 of 16

generated in a separated file. This additional file is reintroduced in the compiler pipeline, following
usually a different compilation profile that will invoke different backend tools (e.g., the TERAFLUX
backend compiler, gcc, or the NVidia compiler, nvcc for CUDA devices).

The binary output for these different files are merged together into a single object file that contains
additional information about the different subobjects. This allows the compiler to maintain the
traditional behavior of generating one object file per source file to enable compatibility with other
tools (i.e., makefiles). The information is recovered at the linkage step to generate the final binary
with all the objects.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 14 of 16

7 TERAFLUX GCC backend compiler
The code generation pass has been developed as a middle-end pass in GCC 4.7.0 20110426, operating
on three-address GIMPLE-SSA code. The traditional compilation flow is being modified according to
a specialized adaptation of the builtin-based, late expansion approach described in D4.2 (first year
deliverable). Builtins are used both to convey the semantics of input and output clauses in streaming
pragmas to the compiler middle-end, and to capture the semantics of efficiency languages such as
HMPP, OMPSs and TFLUX.

INRIA is working on software-only and hardware-assisted runtime libraries to support the
TERAFLUX GCC backend compiler. These runtime libraries support the semantics of the different
efficiency programming models on top of the TERAFLUX GCC's native support for T* dataflow
instructions.

• We implemented a new machine description for the backend of GCC, generating T* dataflow
instructions derived from the x86_64 ISA. The machine description expands the builtins
inserted by the middle-end pass.

• For a hardware-assisted implementation, these instructions are detected by hooks in
COTSon's SimNow, using a dedicated encoding of the T* instructions as a 32bit immediate
field. This work was conducted as a collaboration between INRIA, UNISI and HP.

• To experiment with software-only implementation, and to implement a scalable dataflow
middleware within COTSon, we developed a runtime system called dfrt. It is written in
C++11 (the latest standard), making heavy use of the functional features such as lambdas and
closures for readability. This runtime is inspired from BSC's previous implementation called
tfsim and meant to be used within COTSon, but it has been completely reimplemented to
experiment with a prototype of the memory model being designed for TERAFLUX. This
runtime and memory semantics work will be reported in the third year.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 15 of 16

8 Conclusion and Integration Plan
We presented the current state of the tool flow, mapping the TERAFLUX programming models to the
TERAFLUX architecture. The different components are in place and implement the majority of the
expected features and optimizations. Integration and communication between these components
remains a challenge, however.

The proposed integrated flow is the following:

1. Scala programs will be mapped to the TERAFLUX architecture relying primarily on runtime
libraries, mapping high-level constructs, parallel containers, and combinators, to dataflow and
transactional primitives. This will demonstrate how a modern productivity language like
Scala, provided with lightweight programming model and class library enhancements, can
deliver scalable performance on a wide class of applications.

2. High-level dataflow synchronous programs will be compiled source-to-source to dataflow
streaming extensions of OpenMP, to be compiled by the TERAFLUX GCC backend, and
benefiting from all locality and parallelism-adapting transformations implemented therein.

3. Efficiency languages StarSs, HMPP and TFlux will be compiled source-to-source to an
intermediate, unified representation, in the form of C code with builtin function calls. These
builtins will be either dataflow and transactional primitives of the T* ISA itself, or mapped to
runtime support functions. In particular, dynamic dependence resolution in StarSs and
memory management in HMPP will be delegated to runtime support functions. This unified
intermediate code will be further compiled with the TERAFLUX GCC backend. Many of the
optimizations designed and implemented in the project will be applied to the unified
intermediate code, relying on the builtin functions to avoid hiding the key semantic
information for loop and task-level optimization (see D4.3). Some loss of information will not
be avoidable however, resulting in missed optimization opportunities.

4. The dataflow streaming extension of OpenMP will be supported natively in GCC and will
support all optimizations designed in WP4. The OpenMP pragmas will be converted
internally (in the frontend of the compiler) into builtins and runtime library functions,
merging with and integrating seamlessly with the flow from other efficiency languages.

5. The TERAFLUX GCC backend will generate T* ISA running on COTSon.

We believe this complete flow can be demonstrated in the 3rd year of the project, providing a unique
toolkit for the exploration of dataflow computing principles on a full scale architecture simulator and
on real-world applications. Optimizing this flow and extending the semantic expressiveness will be
the focus of the 4th year.

Deliverable number: D4.5 – Dissemination Level: PU

Deliverable name: Optimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 16 of 16

