Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D4.5 — Optimized version of the compilation toolsyith the
invitation of third-party contributors

Due date of deliverable: 31/12/2011
Actual Submission; 31/12/2011

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs patrticipant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntlifding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 1 of 16

Change Control

Version# Author Organization | Change History

1.0 Albert Cohen INRIA First version

11 Albert Cohen INRIA Revision with feedback
from Pedro Trancoso

1.2 Albert Cohen INRIA Integrated corrections

from Salman Khan

Release Approval

Name Role Date
Albert Cohen Originator 23/12/2011
Albert Cohen WP Leader 23/12/2011

Roberto Giorgi

Project Coordinator for formal deliverable | 30/12/2011

TABLE OF CONTENTS

0 Y PP 6
2EXECUTIVE SUMMARY...ciiiiiiiuunnteeiiniiisssnsneeeiniisssssssseeeinniisssssssseessississssssssesesssssssssssssesssssssssssssssenisssesesssassssnns 7
SINTRODUCTION...c00tettiiiiesssnnseernnisissssssssessssssssssssssssssssssssssssesssssssssssssseessssssssssssesesssssssssssssseresesssasssssssseesssssasses 8
ACOMPILATION TOOLS....ccceiiiiieiinnnreeiiissssssnnseeeessssssssnsseesessssssssnsssessssssssssnssssessssssssssssssesssssssssssssssssssssnnnsssssssses 9
5SCALA COMPILATION AND SUPPORT LIBRARIES.......ccoooueeiiiieisnnnnaeeennissssnsnseeeninsssssnssseeenssessssssesssssnssssnsnnees 10
6STARSS TOOL CHAIN...ccooouututetiniiissunnsneenriiisssnsseseesssssssssssssssenssssssssssssenssssssssssseeeesssssssssssseeennssesssesssssassssnsnnees 13
7TERAFLUX GCC BACKEND COMPILER.....ccooeeuuuueeriisssssnnneeeeissssssnnnneeeessssssssnnnseeessssssssnnnsseessssssssnnnsssessssssssssenens 15

8CONCLUSION AND INTEGRATION PLAN....ccutttteeeeeeeeeeeeeemeeeeeeeeeeeeeeeeeeeeeeeeeemsmeeemeememmeemeemmmmeeeemmessimieessiieems. 16

The following list of authors will be updated tdleet the list of contributors to the writing ofeh
document.

Riyadh Baghdadi, Albert Cohen, Feng Li, Antoniu Pop
INRIA
Rosa Badia
BSC
Francois Bodin, Laurent Morin

CAPS

Daniel Goodman, Salman Khan, lan Watson, Mikel Luja
University of Manchester

Document marked as PU (Public) is published iry)tir the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis tiocument.

The authors and the publishers make no expressetpbed warranty of any kind and assume no resipdit®s for errors
or omissions. No liability is assumed for incidértaconsequential damages in connection with isirag out of the use of
the information contained in this document.

This document is furnished under the terms of tABRAFLUX License Agreement (the "License") and mafyde used or
copied in accordance with the terms of the Licefibe. information in this document is a work in piegg, jointly
developed by the members of TERAFLUX Consortium ("TERAX") and is provided for informational use only.

The technology disclosed herein may be protecteshigyor more patents, copyrights, trademarks andide secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technolagy related materials.
Any use of the protected technology and relateceri@tbeyond the terms of the License without therpwritten consent

of TERAFLUX is prohibited. This document containsteral that is confidential to TERAFLUX and its meenb and
licensors. Until publication, the user should assubat all materials contained and/or referencadi;mdocument are
confidential and proprietary unless otherwise iatdd or apparent from the nature of such mateffiatsexample,
references to publicly available forms or documgents

Disclosure or use of this document or any mateoatained herein, other than as expressly permiggaohibited without
the prior written consent of TERAFLUX or such otlparrty that may grant permission to use its proé@nematerial. The
trademarks, logos, and service marks displayekisndocument are the registered and unregisteseérmarks of
TERAFLUX, its members and its licensors. The copyrignd trademarks owned by TERAFLUX, whether reged or
unregistered, may not be used in connection withpaaduct or service that is not owned, approvedisiributed by
TERAFLUX, and may not be used in any manner thikédy to cause customer confusion or that dispasabERAFLUX.
Nothing contained in this document should be comstras granting by implication, estoppel, or othigewany license or
right to use any copyright without the expresstaritconsent of TERAFLUX, its licensors or a thirdtpawner of any
such trademark.

Printed in Sena, Italy, Europe.

Part numberplease refer to the File name in the document footer.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 4 of 16

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXEBPIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT QHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVERNCLUDING, WITHOUT

LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORTSTRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OR&H DAMAGES.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 5 of 16

1 Glossary

Nothing specific for this deliverable.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 6 of 16

2 Executive Summary

The tool flow for the TERAFLUX project has been kg throughout the second year. The
rationale for this evolution, and the associatechasgic and algorithmic contributions have been
reported in D4.4 (exploitation of multi-level pdedism, locality optimizations). This deliverable
surveys the most important design and implememtatiformation regarding the main components of
the tool chain, and links to the online resourdesué the prototype component themselves. These
components are being integrated following the compation scheme between the efficiency
programming models' source-to-source compilers thed TERAFLUX GCC back-end, and the
complete integrated flow will be demonstrated ia third year.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 7 of 16

3 Introduction

The overall objective of WP4 is the developmentcompilation tools which are tailored to the
TERAFLUX architecture and programming models.

This deliverable describes the design and impleatiemt of the first version of the tool flow,
mapping the productivity and efficiency programmilagers to the TERAFLUX architecture. This
flow is composed of fully operational componentslog with all aspects of the code generation,
optimization and runtime support. It performs layaloptimizations and handles multi-level
parallelism as described in D4.4. But the differemtnponents are not yet integrated. The integration
plans for the 3rd year will be discussed in the past of this document.

3.1. Document structure

Section 4 outlines the main developments conduatethe TERAFLUX tool flow in the 2nd year of
the project. These developments fill many gaps @rdplement the baseline tool flow presented in
D4.1 and D4.3. A complete integration will takeg#an the 3rd year of the project. Section 5 susvey
the design and implementation challenges and chaitéhe Scala component of the flow. Section 6
and 7 report on the StarSs and GCC backend impletnam respectively. Section 7 summarizes our
achievements and presents the plans for an inesbfiatv.

3.2. Relation to other deliverables

This deliverable extends the compilation tools dbsd in D4.1 and D4.3. It complements D4.4,
covering design and implementation aspects ofdbkfiow.

3.3. Activities referred by this deliverable

Work and software reported in this document cowadp to the current, intermediate progress status
of Task 4.2. Implementation of the methods beingétigated in Task 4.3 will take place in the 3rd
year.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 8 of 16

4 Compilation Tools

The prototypes available at the end of the secead gan be sorted in 3 categories.

1. The first one is Scala-specific. It is based wm-time libraries from UNIMAN, described in
D3.3. The departure from an integration of the &e¢abl flow through GCJ is presented in
this document. In the future, it is possible thaine of this library-based support may be
enhanced and implemented into the Java virtual meactself.

Technical information and code are available onlirend updated regularly:
http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS

2. The different efficiency programming models albme with their source-to-source
compilation framework. The TFlux model and toolsvédhabeen extended to support
transactions (see D3.3). Several locality optinniret and multi-level parallel programming
extensions have been implemented in the HMPP Wadtb&.0. The Mercurium compiler
for StarSs is now embedded into a comprehensidestoi@ within the OmpSs infrastructure.
Enhancements for multi-level parallelization hawei integrated to the OmpSs tool flow,
including the support libraries and code generdtardifferent devices. Note that OmpSs and
HMPP models the TERAFLUX architecture as an ace&erdevice.

Technical information and code are available onlirend updated regularly:
http://nanos.ac.upc.edu

3. The TERAFLUX back-end compiler is currently aleotion of three independent patches to
the mainline of GCC (development version 4.7). Tirst patch supports the direct
compilation of OpenMP dataflow streaming pragmadtantrinsic functions, themselves
compiled to the T* ISA (cf. Deliverable 6.2). Thecend one converts sequential programs
through static analysis only. The original flownmdified, replacing pragma expansion with
the automatic extraction of threads from arbitreoyntrol flow; the run-time library may also
be replaced with T* intrinsic functions. A paperliwie presented at the MULTIPROG
workshop in January 2012. The third one experimeuitis the late expansion of OpenMP
pragmas, as a double attempt to facilitate themoptition of OpenMP streaming programs
(task-level optimizations) and to combine the fezduof the two previous patches. The goal
in the third year is to support a hybrid programgnimodel with pragmas for coarse-grain
parallelism and complex dependence patterns, atmmatic parallelization for the finest
grain of parallelism and scalar dependence patterns

Technical information and code are available onéind updated regularly:

http://www.di.ens.fr/TerafluxProject

The rest of this deliverable surveys the most irgdraspects and describes the current status of
these tools. The Scala tool chain is discusseddatgr detail given the important progress made in
understanding its integration in a complete toawfltargeting a hardware-supported dataflow
execution model with transactions.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 9 of 16

5 Scala compilation and support libraries

Currently Scala and all the associated librarieg the have produced execute on the Java Virtual
Machine. To tie this work to the work with lowent# languages and to allow this code to execute on
the simulations of the proposed hardware we hawsidered several approaches. While we are yet to
decide the exact approach to be undertaken wenaill detail the different approaches considered.

5.1 Running a JVM on the simulator

The simulated hardware will need to expose funetlibn to the software. In our case, this
functionality is in two parts: the transactional m@y mechanisms and the dataflow scheduler. In
COTSon, this is done by expanding the instructiginby using thepuid instruction. As JVM based
languages cannot directly use native instructidres dtandard way of performing system-specific
operations is through the Java Native Interfacd)(JRhis allows the program to link with native
methods, which may be implemented in C or assembbwever, JNI calls come with a high
overhead. This is mostly related with the passihgrguments and allowing native method to access
process state. For small transactions, this ovdrbeaomes unacceptably high. An alternative to this
is modifying the JVM itself. The Hotspot virtual ofane includesintrinsic methods. These are
methods that, whenever they are called, are repléogethe JVM. This means, that with small
modifications to Hotspot, calls to transactionalhmoey or dataflow mechanisms can be replaced with
the appropriate C and assembly code.

For transactions, another issue is that during wi@t on a JVM, events that should not be
transactional may occur. For instance, class lgadimcompilation of classes or garbage collection.
The JVM must therefore be made aware of transaaltexecution, and either ensure that these events
do not occur during transactions, or exclude thliecution from the transactional mechanism.
Separating the JVM code from the transactional aodbe program becomes more complex if the
code is interpreted. In this case, the interpretest be differentiated by the hardware from the
operations of the interpreted code. One option tsete@ not allow transactions in interpreted codd a
force compilation of any methods that include @ excluded in transactions. This issue needs to be
explored further.

The JVM also requires modifications to interacthwitardware dataflow scheduling. The dataflow
scheduler, as proposed, relies on receiving ag@oiatthe section of code that is the computatioa i
dataflow thread. In C or C++, this is achieved tlylo passing a function pointer to the scheduler
device along with the directive to create a thraétien a thread is ready to execute, the associated
code is invoked. However, the JVM may have compileckcompiled the method code since the time
of thread creation, meaning the code’s location rhaye changed. This can be addressed by
introducing a level of indirection that involveslloay into the JVM to locate the right method using
some consistent identifier other than the addiBsis. need not involve changes to the hardwaresif th
code invoked is always the handler in the JVM, itethod identifier may be included as a token to
the thread. This will add a small additional ovexth¢o the scheduling process.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 10 of 16

Finally this approach is also dependent on the nyidg operating system for TERAFLUX being
able to support a JVM. Possible solutions will betfer explored in cooperation with WP6 and WP7
leaders and participants during the first halftaf third year.

5.2 Compilation to other codes

If the code is not run directly on a JVM, then scimen of compilation to either machine code or a
language that is supportable by the other elenwrte tool chain will be required. There are saler
ways this could be achieved.

Modifying Scalac

The last phase of the Scala compiler converts atraadt syntax tree into either JVM byte code or
somewhat less well supported CLR byte code. Thésesqgs are plug-able and this raises the
possibility of producing another backend that yilbduce either assembly or C++. Currently such a
backend would have to operate without garbage aie and because of its interface with the
compiler this phase would be required to handléhallother features of Scala.

While the construction of such a phase is possthke poor documentation of the compilers internal
data structures would make it challenging and amuit support would be required to replace the
Java libraries and JNI calls. An alternative tha#rcome many of these issues would be to transform
the resultant byte code as discussed next.

Byte code transformation

A more targeted and better documented approach ¢®rivert Java byte code into either C++ or
assembly. This approach has the advantage thataweacoid handing all cases by selectively
deciding which classes we are going to convert,amid issues between Scala and Java code as all
the code will be the same at this stage. It woeldilmplest to target C++ and then work on being abl
to feed this into the rest of the system tool chaigain this approach would require the loss of the
garbage collector in a basic implementation and tmwandle JNI calls would need further thought,
but we feel that this approach is worth furtherraixeation.

Compiling through GCJ

GCJ is an ahead-of-time compiler for the Javaait compile Java source code to Java byte code or
directly to native machine code. It can also compéva byte code to native machine code. To avoid
using a JVM, we considered the option of using @&Cdompile class files generated by the Scala
compiler to native code. On examination we decitleat this approach is not feasible for the
following reasons:

1. GCJis not yet fully compatible with Java 1.5 \et$cala is dependent on Java 1.6 features.

2. GCJ relies on the byte code being compiled whk Eclipse Compiler and makes
assumptions about the class files based on this. mbans that GCJ does not accept every
correct class file including most non-trivial cldées generated by the Scala compiler.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 11 of 16

We also evaluated a commercial tool, Excelsior JHTis, like GCJ, is an ahead of time compiler
coupled with an interpreter for any portions of eothat fail to compile. This tool has better
compatibility, and can support Java 1.6, but It fils to compile large parts of the Scala litiearto
native code.

5.3 Summary

To summarize we feel that there is potential irhtibe JVM and the bytecode transformation options.
The GCJ and the Scala compiler modifications asg li&ely to work for a sensible amount of effort
so will not be pursued further at this point.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 12 of 16

6 StarSs tool chain

BSC is currently devoting efforts to the OmpSsadsfructure, which combines the OpenMP standard
with the StarSs ideas. OmpSs is composed of Mentudompiler that converts the source code and
links it to the NANOS++ runtime. The OmpSs infrasture is depicted in lllustrationl.

Multifile
|
A Y .
o MP Nanox _Dewce
C/C++ frontend |+ %e:re » Nanox > Providers
Y Y
Device native Device native
compiler compiler
Y A

Nanos++ - P :
Linking [« Embedding
Final executable

Hlustration 1: OmpSs tool flow

The compiler recognizes the constructs and tramsfdhem into calls to the runtime library. The
I nput /out put /i nout clauses are transformed by generating a set oéssijons that are evaluated

when the application is executed. These expresgiensrate addresses of memory that will be passed
to the runtime library.

Thet ar get clause is used to indicate that a task is targetiapecific device, like a dataflow thread
of the TERAFLUX architecture, or a CUDA GPU. Whéwe tcompiler generates the code fdrask
construct, it looks if it is annotated witht @r get directive or if anothet ar get directive is linked
to this task construct by means ofiarpl enent clause. If so, the AST of the task is passed threo

Nanox tool, in charge of dispatching code genematta device-specific provider and wrapping the
device-specific compilation and linking flow fora&kanon-SMP device.

Device providers generate the device-dependent andemetadata that must go associated with the
task. They also, if necessary, generate a spemiabztline, for the device which may need to be

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 13 of 16

generated in a separated file. This additionalifileeintroduced in the compiler pipeline, followin
usually a different compilation profile that withvoke different backend tools (e.g., the TERAFLUX
backend compiler, gcc, or the NVidia compiler, nfmcCUDA devices).

The binary output for these different files are geat together into a single object file that corgain
additional information about the different subolgecThis allows the compiler to maintain the
traditional behavior of generating one object filer source file to enable compatibility with other
tools (i.e., makefiles). The information is recma at the linkage step to generate the final inar
with all the objects.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 14 of 16

7 TERAFLUX GCC backend compiler

The code generation pass has been developed aklkerand pass in GCC 4.7.0 20110426, operating
on three-address GIMPLE-SSA code. The traditionadmlation flow is being modified according to

a specialized adaptation of the builtin-based, &tpansion approach described in D4.2 (first year
deliverable). Builtins are used both to convey gbmantics of input and output clauses in streaming
pragmas to the compiler middle-end, and to captiveesemantics of efficiency languages such as
HMPP, OMPSs and TFLUX.

INRIA is working on software-only and hardware-agsil runtime libraries to support the
TERAFLUX GCC backend compiler. These runtime liarsupport the semantics of the different
efficiency programming models on top of the TERABLIGCC's native support for T* dataflow

instructions.

* We implemented a new machine description for thekdsad of GCC, generating T* dataflow
instructions derived from the x86_64 ISA. The maehdescription expands the builtins
inserted by the middle-end pass.

* For a hardware-assisted implementation, these uctgins are detected by hooks in
COTSon's SimNow, using a dedicated encoding offthmstructions as a 32bit immediate
field. This work was conducted as a collaboratietween INRIA, UNISI and HP.

* To experiment with software-only implementationdato implement a scalable dataflow
middleware within COTSon, we developed a runtimsteay calleddf rt . It is written in
C++11 (the latest standard), making heavy useefuhctional features such as lambdas and
closures for readability. This runtime is inspiffedm BSC's previous implementation called
t f si mand meant to be used within COTSon, but it has lmeenpletely reimplemented to
experiment with a prototype of the memory modeihpedesigned for TERAFLUX. This
runtime and memory semantics work will be repoitethe third year.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 15 of 16

8 Conclusion and Integration Plan

We presented the current state of the tool flowppitag the TERAFLUX programming models to the
TERAFLUX architecture. The different components erglace and implement the majority of the
expected features and optimizations. Integratiod aemmunication between these components
remains a challenge, however.

The proposed integrated flow is the following:

1. Scala programs will be mapped to the TERAFLUXhaecture relying primarily on runtime

5.

libraries, mapping high-level constructs, parati@htainers, and combinators, to dataflow and
transactional primitives. This will demonstrate h@avmodern productivity language like
Scala, provided with lightweight programming moeaeld class library enhancements, can
deliver scalable performance on a wide class oficgijons.

High-level dataflow synchronous programs will é@mpiled source-to-source to dataflow
streaming extensions of OpenMP, to be compiledhgy TERAFLUX GCC backend, and
benefiting from all locality and parallelism-adaggitransformations implemented therein.

Efficiency languages StarSs, HMPP and TFlux Ww#l compiled source-to-source to an
intermediate, unified representation, in the forfCocode with builtin function calls. These
builtins will be either dataflow and transactiopaimitives of the T* ISA itself, or mapped to
runtime support functions. In particular, dynamiepdndence resolution in StarSs and
memory management in HMPP will be delegated toimatsupport functions. This unified
intermediate code will be further compiled with fRERAFLUX GCC backend. Many of the
optimizations designed and implemented in the ptojwill be applied to the unified
intermediate code, relying on the builtin functiots avoid hiding the key semantic
information for loop and task-level optimizatiore€sD4.3). Some loss of information will not
be avoidable however, resulting in missed optinmzadpportunities.

The dataflow streaming extension of OpenMP wdl dupported natively in GCC and will
support all optimizations designed in WP4. The Qyenpragmas will be converted
internally (in the frontend of the compiler) intaiiins and runtime library functions,
merging with and integrating seamlessly with tlusvffrom other efficiency languages.

The TERAFLUX GCC backend will generate T* ISA nimg on COTSon.

We believe this complete flow can be demonstratettié 3rd year of the project, providing a unique
toolkit for the exploration of dataflow computinginqriples on a full scale architecture simulatod an
on real-world applications. Optimizing this flow daextending the semantic expressiveness will be
the focus of the 4th year.

Deliverable number: D4.5 Bissemination Level: PU

Deliverable nameOptimized version of the compilation tools

File name: TERAFLUX-D45-v4 Page 16 of 16

