Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D4.4 — Report on multi-level parallelization and laality
optimization

Due date of deliverable: 31/12/2011
Actual Submission; 31/12/2011

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs patrticipant (includimg Commission Services)

RE | Restricted to a group specified by the consortiuntlifding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 1 of 19

Change Control

Version# Author Organization | Change History
1.0 Albert Cohen INRIA First version
1.1 Albert Cohen INRIA Improved version,

implementing important
feedback from Pedro
Trancoso (UCY)

Release Approval

Name Role Date
Albert Cohen Originator 23/12/2011
Albert Cohen WP Leader 23/12/2011

Roberto Giorgi

Project Coordinator for formal deliverable | 30/12/2011

TABLE OF CONTENTS

0 N PP 6
2.EXECUTIVE SUMMARY....c0iiieiiunnuteeniieeisnsnneernssesssssssseersssesssssssssessssesssssssseesssssssssssssesnsssssssssssseensssssssssesssssasses 7
3.INTRODUCTION....00etttiiieunnnnerrnisssssssssseerssssssssssssessssssssssssssesssssssssssssseeesssssssssssesessssssssssssssesesesssssssssssneesssssanses 8
4. MULTI-LEVEL PARALLELIZATION.....cccooeeuueeriissssssnnnneeesssssssnnseseessssssssnssssesssssssssnssssesssssssssssssssesessnnnsssssssseennns 10
5.LOCALITY OPTIMIZATIONcceeeeeriieeisnnnneeenssssssnnsssseersssesssssssseesssssssssnssseessssssssssssssessssssssssssssenssesssssassssnssnnes 15
6.CONCLUSION. ..eeeeeuuunnnetnnnnnissunsssereniasssssssssessnsssssssssssesesssssssssssssesssssssssssseeeessssssssssssesnssssssssssssssesesssssnssssnssnnes 18

7.REFERENCES.......ccoeeiiiuuuteriiiiissssnnneeeisssssssnnneeeessssssssnnssseessssssssnssssesssssssssnsssssssssssssssnsssssnssssssssessssnnnsssssssseennne 19

The following list of authors will be updated tdleet the list of contributors to the writing ofeh
document.

Boris Arnoux, Riyadh Baghdadi, Albert Cohen, Feng I, Antoniu Pop
INRIA
Francois Bodin, Laurent Morin

CAPS

Document marked as PU (Public) is published iry)tar the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressethtied warranty of any kind and assume no resipdit®s for errors
or omissions. No liability is assumed for incidértaconsequential damages in connection with isiray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Licefide. information in this document is a work in s, jointly
developed by the members of TERAFLUX Consortium ("TERAX") and is provided for informational use only.

The technology disclosed herein may be protecteshiegyor more patents, copyrights, trademarks andide secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technolagy r@lated materials.
Any use of the protected technology and relatecerimtbeyond the terms of the License without thierpwritten consent

of TERAFLUX is prohibited. This document containsteral that is confidential to TERAFLUX and its meenb and
licensors. Until publication, the user should assuihat all materials contained and/or referencedli;yddocument are
confidential and proprietary unless otherwise iathd or apparent from the nature of such matg(fialexample,
references to publicly available forms or documgents

Disclosure or use of this document or any mategatained herein, other than as expressly permiggatohibited without
the prior written consent of TERAFLUX or such otlparrty that may grant permission to use its pro@nematerial. The
trademarks, logos, and service marks displayekisndocument are the registered and unregisteseennarks of
TERAFLUX, its members and its licensors. The copyrignd trademarks owned by TERAFLUX, whether reged or
unregistered, may not be used in connection withpraduct or service that is not owned, approvedistributed by
TERAFLUX, and may not be used in any manner thikédy to cause customer confusion or that dispasaBERAFLUX.
Nothing contained in this document should be coestras granting by implication, estoppel, or othigewany license or
right to use any copyright without the expresstaritconsent of TERAFLUX, its licensors or a thirdtpawner of any
such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXEBPIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT QHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVERNCLUDING, WITHOUT

LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 4 of 19

SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORTSTRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OR&H DAMAGES.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 5 of 19

1.Glossary

OpenMP — Parallel programming pragma language on top ofC& and FORTRAN. In this
deliverable, we refer to the OpenMP specificatiersion 3.1.

http://www.openmp.org

HMPP — Hybrid Compiler for Many-core Applications, fro@APS entreprise, generally used as a
shortcut for the HMPP pragma language on top ofC€ and FORTRAN, and for the HMPP
development workbench. HMPP exposes multi-levedlpgism and memory management through a
unique concept and language construct calleadalet

http://www.caps-entreprise.com

StarSs— StarSs is a task-based programming model tladles the exploitation of the applications'
inherent parallelism at the task level. To marktdsks in a StarSs application, annotations (prayma
similar to the OpenMP ones are used. A uniquenéstasSs tasks are the input, output or inout
clauses that applied to tasks' parameters enableithime to track tasks' data dependences.

http://nanos.ac.upc.edu

Graphite — Graphite is the name of a R&D project and a dtatipn pass of the GNU Compiler
Collection (GCC). It implements polyhedral compgiat algorithms, applied to automatic
parallelization and loop nest optimization. In tHediverable, the unified representation enablesus
sketch an extension of Graphite to task-level og&tions and to enhance its analysis with static
semantics carried by annotations of the efficidaoguages.

Http://qcc.gnu.org/wiki/Graphite

Program Dependence Graph (PDG)}- The PDG collects the scalar data dependenceshand
control dependences between basic blocks of aitumdt is a denser representation than the Static
Single Assignment form, capturing the same infofomain a form that can be directly exploited for
the conversion of control flow into data flow. Thermal definition of the PDG and control
dependences in terms of the post-dominance frocdieibe found in any good textbook on optimizing
compilation.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 6 of 19

2.Executive Summary

This deliverable describes the compilation and tione techniques enabling the adaptation of a
parallel program expressing multiple levels andedie forms of parallelism to the TERAFLUX
architecture. Throughout this static and dynamiepsation process, locality optimizations and
tradeoffs between locality and parallelism are panant.

We report on the multiple advances that took placthe second year of the project. Some of the
contributions are generic and are being implemeimeadCC, supporting all efficiency programming
notations, while others are language-specific.

Four papers have been published: polyhedral cotigiléor locality optimization at POPL'11 [4] and
IMPACT'12 [5], compiler support for multi-level detow parallelism and locality optimizations for
streaming dataflow programs at HIPEAC'11 [3] and IMUPPROG'12 [2]. A PhD thesis has been
defended [1].

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 7 of 19

3.Introduction

The overall objective of WP4 is the developmentarpilation and run-time support tools tailored to
the TERAFLUX architecture and programming modelse Tompiler(s) need to map the parallelism
and locality as available from the source programd programming model to the target execution
model and architecture. The distribution of theesohmong the compilation tools and the run-time
tools is guided by the efficiency and robustneshasfdling the challenges statically or dynamically,
respectively.

The source program exhibits high levels of conawye but it still has to be exploited effectively o
the target. As any many-core processor, the TERAKBtthitecture template exposes parallelism in
a non-uniform way. In this deliverable, the termltievel parallelism refers to two complementary
aspects:

* The hierarchy of parallel constructs expressed hpyamllel program or exposed by the
TERAFLUX architecture;

* The different forms of concurrency, expressed ak ta data parallelism, pipelining, vector
operations, and the heterogeneity of the compuBsgurces associated with the exploitation
of these different forms of parallelism.

To adapt the concurrency and data flow computationthe source program to this non-uniform
architecture, the compiler and run-time tools imm@at a variety of code generation and optimization
tasks:

* The first task consists in capturing the custom asgins of the different programming
models, regarding inter-task dependencies and sthgatonstraints (e.g., transactions).

* The second one is to map this semantics to thewlaaedprimitives implemented by the
TERAFLUX architecture.

* In addition, to guarantee some level of performgmmeability, and to increase productivity,
the compiler and run-time tools apply various opations to coarsen the grain of
synchronization, issue bulks of communications,riapecommunication and computation,
balance computation with communication bandwidtid harness temporal locality of code
and data, taking into account the features of temary hierarchy.

* The compiler also needs to perform the usual scatar array optimizations, generating
tightly scheduled, fine-grain vectorized computasio

We report on semantical and algorithmic progredseaed during the second year. Our approach
involves a combination of static and dynamic opteions for locality, and language and compiler
methods to exploit multi-level parallelism.

3.1. Document structure

Section 4 reports on the projects progresses inettgression and exploitation of multi-level
parallelism. Section 5 reports on the compilationd aun-time methods for locality optimization.
Section 6 concludes and outlines future plans &sk$ 4.2 and 4.3 in WP4.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 8 of 19

3.2. Relation to other deliverables

This deliverable extends the compilation algorithaescribed in D4.1 and D4.3 with enhanced code
generation techniques. The associated D4.5 (prwdtyeliverable presents the status of the software
implementation, and discusses the integration regdamd issues.

3.3. Activities referred by this deliverable
This deliverable is associated with and represietintermediate progress status of Task 4.2.

INRIA invested most of its resources on the TERARLUSCC backend, developing and
implementing a general and modular thread-leveiitparing algorithm, combining it with pragma-
based dependences expressed as streaming constru®genMP, and contributing the work-
streaming compilation and runtime method for cogmsen dataflow synchronization in dynamic,
multi-producer multi-consumer scenarios.

CAPS extended the HMPP Workbench to enhance itpastfor multi-level parallelism across
multiple devices and supporting higher order fuwdl operations. CAPS also designed and
implemented language extensions and program tnanatmns for locality optimization of loop nests
across multiple dimensions.

Work on Task 4.3 has begun at UNIMAN, BSC and INRI#Ad has focused on language support and
code generation, exploring different semantic iraégn and runtime support (hybrid transactional

memory). The early results are mostly WP3-related jpresented in D3.3. Task 4.3 will see direct

WP4 contributions in the 3rd year.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 9 of 19

4.Multi-level parallelization

Let us now describe the support for multi-level ghatism in the HMPP Workbench and in the
TERAFLUX GCC back-end.

4.1 Multi-level parallelization in the HMPP compiler

Support for multi-level parallelism is a native atitferentiating feature of HMPP. Compiling HMPP
codeletsto the different block/work-group and thread/wdatdm levels of CUDA/OpenCL exploits
the multi-level annotations provided by the us&d anore recently as internal heuristics to balance
the exploitation of data parallelism and the exptiwn of memory locality (discussed later in this
deliverable). The HMPP compiler handles the traimiaof high-level parallelism annotations into
the hardware-specific expression of data-paraleistructs, including low-level vectors intrinsics
(i.e.,. builtins) and types supported by a majooityargets (besides NVidia).

HMPP also natively captures the heterogeneity ofilmare accelerators; again user annotations (the
t ar get clause) provide explicit placement directives.

Since HMPP 3.0, thelevi ce and nb_devi ce clauses allow to distribute computations over
multiple accelerator devices. At the moment, onbtad parallel computations are supported;
(dataflow) task parallelism is being investigatedcpllaboration with TERAFLUX partners in the
newly established OpenHMPP consortium (and moreifsgaly its language definition committee).

HMPP 3.0 supports currently the following levelgafrallelism, from the lowest level to the highest
level:

- SIMT parallelism extracted from parallel nestedden codelets.

- Data collection based parallelism that is providiedthe specification of aap operation. A
codelet is applied in parallel to a set of datdriisted over the devices via a mirroring
mechanism. A syntax example is given in the codgnirent below, implementing a parallel
nap operation on an arraf k] .

#pragma hmpp <mgrp> parallel
for(k=0;k<n;k++) {
#pragma hmpp <mgrp> f1 callsite
myparallelfunc(d[k],n);

4.2 Multi-level parallelization in the TERAFLUX GCC back-end

INRIA has been working on an algorithm and toolinhfar modular dataflow code generation. This
deliverable surveys the main aspects of the demighimplementation of this complete tool chain,
starting from annotated C code down to a threadtdata-flow machine interface. The framework
puts a strong emphasis on control flow generaditglability and modularity. We propose new code
generation algorithms and evaluate their implenientan GCC for automatic and annotation-driven
parallelization.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 10 of 19

The dynamic data flow execution model follows a ayically constructed precedence graph, where
a node in may be executed only if all of its prexsors have finished their execution. To abstract
from the ISA details and variations proposed in W&P@l WP7, we define an abstract dataflow
interface serving as a target for code generatiom fparallelizing compilation or efficiency
programmers developing low-level dataflow code. Tiierface defines two main components: the
data-flow threads (dynamic task instances) togethidr their associated frames. The frame of a data-
flow thread stores its input values, local variabdend some thread meta-data. The producer thread
knows the address of the dataflow frames of itess®or consumer threads. A thread writes its output
data directly into the dataflow frames of its degemt (consumer) threads. Each thread is associated
with a Synchronization Counter (SC) to implemera gitrecedence relation. The SC is initialized to
the number of its predecessors, and decrementédtieae one of them provided its data. When the
SC reaches 0, the thread is ready for execution.

Our algorithm operates on a low-level representaitoStatic Single Assignment (SSA) form and is
implemented as a new parallelization pass of G@@slle-end. An example of C code converted to
SSA form is shown in lllustration 1 (GCC implemenform of SSA called loop-closed, with strong
advantages for loop nest optimization).

S1 while (p1 = ®!°°P(p0,p2)) {
S2 x1 = pl->value;
s3 if(c1) {

S1 while (p !'= NULL) {
S2 x = p->value;
S3 if(c1) {

- . S4 x2 = pl->value/2;
:g : —_p i:?izzizioo . S5 ipl = pl->inner_loop;
L1 wiilep(ip) { ~O0F; L1 while (ip2 = @®'°°P(ip1, ip3)) {
L2 do_something (ip); tg éoésfmétgi:g(lp?);
L3 ip = ip->next; ip3 = 1pZ->next;
d }
} |

S6 ce. = X5 x3 = &0 (x1, x2);
S7 P = p—>next; S6 S x3; .

¥ ST P2 = pl->next;

}

Hlustration 1: Static Single Assignment form (SSA)

* The input is the Program Dependence Graph (PD@gctiog data and control dependencies
of a given function in a compilation unit. Nodestloé PDG are single basic blocks; they are
the finest-grain of dataflow threads achievabldHhgypartitioning algorithm.

* An optimization heuristic coarsens the granulaofythe tasks based on a generalization of
the Parallel Stage Decoupled Software Pipelinirg+[FSWP); it has been presented in D4.1.

* Modular code generation: the externally visiblediions in a compilation unit is cloned into
a threaded version, preserving the original confliav as an alternative version. Thread
creation is guarded by conditional execution prais and always located on the post-
dominance frontier of the thread's block, i.e.,tle# source of all control dependencies
targeting the thread's block. This scheme avoidsted for speculative thread creation. On
the other hand, the structure of dataflow framescasstructed from data dependence
information only. But special care must be takerptopagate values and frame pointers
among the control dependence paths in the Prograperigience Graph (PDG): the ultimate
consumers may not be known at the production poirttie consumer threads may be created
earlier than some of their producers. In the foroase, values must be propagated along the

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 11 of 19

control dependence paths to the ultimate consunstasting from the closest common
ancestors of the producer and consumers, as shoWnstration 2. In the latter case, frame
pointers must be propagated instead, as showtusirfition 3. Function calls are split into an
asynchronous thread creation and a return conigrutitread for modularity.

argl=fp->argl; argl=fp-rargl;

entry ’entry

f T LBB2 argl f N M| BB2
' ¢ | a-’ghl I{
N) YY 4
A | BB3 EXTT A [g3 EXIT
. = argl = argl

Hllustration 2: Propagating values along control dependencies

kntry.

¢ entry
i_1=0; bLE ‘ :
sum_1=4;
|— fpl2:

Y ¥ Yy h
i_F=pif{i_1,1_%); . g A = 2
sum_3=phi (sum_1.sun_2): bb1 [bb® | . ’ bbl }_,um 3 bb2 ‘

A |4t (13 = W) goto BE: - -
sum_Zd=sum_3+1_3; *— 'f—
i 2=1 3+1; ret=sum_3/7; ‘ bb3
goto BB1 —

l obZ
Y

EXIT

lllustration 3: Propagating frame pointers along control dependencies

b3

lllustration 4 shows a template for modular codaegation of imperative function calls. The caller
thread will create the entry thread of the called the continuation thread for handling the return
value. The entry thread creates post-dominatingatis inside the callee, and the return thread pass
the return value to the continuation in the callEne algorithm is fully modular and can convert
arbitrary control flow into dynamic dataflow thresadt basic block granularity. More detail can be
found in a MULTIPROG'12 paper by Li et al. [2].

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 12 of 19

create

bb thread &, entry thread | —. bb thread
caller.bb.1 callee.entry callee.bb.1

create create
bb thread return thread bb thread
caller.bb.2 callee.return callee.bb.2

continuation v

continugfion passing
caller threads callee threads

lllustration 4: Modular generation of dataflow traded code

For pointers and arrays, we currently rely on aseovative scheme that only relies on the coarse but
scalable, flow-insensitive, context-insensitive d direld-sensitive pointer analysis implemented in
GCC. Our method aims for robustness and generaditijitrary unstructured control flow with
arbitrary memory accesses can be internally repteden GCC using virtual definitions (VDEF) and
virtual uses (VUSE) in what is commonly referrecatbomem-SSA (a concept introduced as HSSA in
the SGI Pro64 compiler, now Open64). These virtigdinitions and uses are associated with virtual
PHI nodes to reconcile the memory-induced data flomn different control flow branches. Our
partitioning and dataflow conversion algorithm denextended to operate on these virtual operations
and operands, at the cost of extra complexity @ @ath the initialization of the synchronization
counters; indeed, the number of producers is nowknanymore at thread creation time in general.
Implementation is in progress. We will report oe 8rd year on enhancements of the compilation
methods and T* ISA (cf. Deliverable D6.2) will beoposed to efficiently support arbitrary memory-
induced data flow and irregular control flow.

To go beyond the conversion of scalar dependeridsthe conservative handling of pointer- and
array-based dependencies, we leverage pragma #taonstalefined for our dataflow streaming
extension of OpenMP (see D3.2 and D4.2 from thst fpear's deliverables). These annotations
provide an explicit task partitioning and expressaddependencies on pointer-based data structures
and arrays that cannot be discovered through staéitysis. The programmer use pragmas only when
necessary to supplement static analysis; he/sespensible for declaring live-in and live-out veduy
expressing task-to-task dependencies through ietdiate stream variables. Note that this component
of the compilation flow is fully functional but nget integrated with the automatic partitioning and
scalar dataflow conversion pass (the integratian 8 discussed further in D4.5).

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 13 of 19

The second phase of the algorithm starts fromittest-grain data-flow threads and aggregates them
into a hierarchy of tasks, driven by locality optation, synchronization grain coarsening. Our
heuristic extends Parallel-Stage Decoupled Softwapelining (PS-DSWP) to operate on arbitrary
control flow and SSA programs. It merges tasksdn@ically in a generalized typed loop fusion
algorithm, preserving data parallelism of statetessads and causality (causal scheduling in tasks)

Specific patterns can lead to more efficient, slemd code:

* DOALL: data-parallel loops can be compiled intoadr f splitter and merger tasks enclosing
coarser grain independent blocks of iterations

* DOACROSS: loops with dependencies may be compilerdd splitter-merger pair enclosing
pipelining stages resulting from the PS-DSWP atbani

Our current results come from two separate pro®typplementations that are currently being
merged into a consistent compilation flow. We tay@4-core Intel Xeon Dunnington server (6-core
FSB architecture).

We studied three benchmarks: 1D-FFT, FMradio an2l BG. Annotating the FMradio code with
extended pragmas require little effort and prowigeto 18.8x speedup. 802.11a is more unbalanced
and harder to parallelize as the original versiseduglobal variables extensively; after a re-fastpr
step, annotating the program is straightforward laads to 14.9x speedup. 1D-FFT scales up to 7.5x
speedup.

We evaluated our modular code generation algoritmm(tree-)recursive, scalar code only. The
Fibonacci and Merge Sort kernels, written in pl@incan be automatically parallelized. This is jst
proof of concept and we only measured performanca gmall scale machine so far, an Intel Core i7-
2720QM 4-Core machine, using adifrt run-time. To coarsen the synchronization grain,seea
threshold to switch back to the sequential versibhonacci and Merge Sort reach 2.55x and 2.82x
speedups respectively. We are currently working terge-scale experiment using the same run-time
for a cluster of workstations, and using the haréwassisted implementation of T* instructions in
COTSon.

This ongoing work will be presented at the MULTIP&@vorkshop associated with the HIPEAC'12
conference [2] and at the CGO'12 Student Reseavafip€tition.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 14 of 19

5.Locality optimization

5.1 Locality optimization in the HMPP Workbench

HMPP provides a set of directives to implement llrand-jam, a dedicated form of loop tiling where
the inner loops (i.e., the point loops) are fultyralled (unroll-and-jam can also be seen as ootz |
unrolling followed by fusion of the resulting copief the inner loop). HMPP also provides directives
to use device local memories effectively. The figbelow describes unroll-and-jam: a square of 4x4
iterations in the source program are unrolled-amAed together to form a larger iteration (in the
form of a big circle) in the transformed progranme$e directives are combined with the parallelism
scheme (“gridification™); in such a way, the progmaer has many ways to tune the mapping of the
threads as well as memory accesses to improvdataiity.

000010000
0000
0000
0000
0000

#tpragma hmppcg gridify(j,i)
#tpragma hmppcg unroll(4), jam(4)
for(j=0; j<p; j+t) {
for(1i=0; 1i<m; i++) {

for (k = ...) { ...}
vout[j][i] = alpha * ...;
}
}

These additional locality optimization directiva® amplemented in the HMPP Workbench 3.0 and
have been applied to customer applications.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 15 of 19

5.2 Locality optimization in the TERAFLUX GCC back-end

To harness the complexity of many-core architestumed complex memory hierarchies, powerful
compiler optimizations and especially loop neshgfarmations are in high demand. We first survey
ongoing work on polyhedral compilation for taskdéwptimizations, then we describe the evolution
of our low-level locality optimization method forathflow threads called “work-streaming”. Both
activities are conducted at INRIA.

5.2.1 Adapting polyhedral compilation for task-level optimization

The polyhedral framework is showing interestingcass in this area. It is an algebraic abstraction f
reasoning about loop transformations. It allowstwdel and apply complex loop nest transformations
addressing most of the parallelism and localityserding challenges. The loop control flow
constraints, statement dependencies and the meaoptipization constraints are used together to
construct a unified system of constraints. Resglthis system allows to find a new schedule for the
statements and thus to apply complex loop transibams maximizing parallelism and data locality.

INRIA is actively integrating the polyhedral optmation framework in the GCC compiler: the
Graphite framework (INRIA also contributes to amoirproject in LLVM called Polly). We are also

working towards using the polyhedral frameworkarmget the optimization of dataflow programs and
to generate aggressively optimized code startioigp fnigh-level languages.

This deliverable summarizes our progress on twdlages arising when adapting the polyhedral
framework to work on the level of dataflow taskgating with memory-based dependencies and
optimizing very large kernels.

Part of it is a practical compiler constructionusswhere upstream passes such as the transfonmatio
to three-address code and Partial Redundancy Etiom Constant Subexpression Elimination
(PRE/CSE) introduce new scalar variables leadingdditional memory-based dependencies. A
second difficulty is specific to the compilation talSk-based programs. General TERAFLUX tasks in
our efficiency programming models may be statedithough the programmer is discouraged to use
state when not necessary for effective memory nmemagt. It is necessary to model the memory-
based dependence constraints induced by this Sthte.last difficulty is to identify a profitable
tradeoff between memory expansion (privatizatioenaming) and parallelism. Memory-based
dependencies not only increase the complexity efohtimization but most importantly, they reduce
the degree of freedom available to express effedtop nest transformations, limiting the overall
effectiveness of the polyhedral framework.

We designed and implemented a technique that satv&problem by allowing a compiler to relax
the constraint of memory-based dependencies ondesptransformations and that does not incur the
memory footprint overhead of scalar and array egiggm The proposed technique is based on the
concept of polyhedral live range interval interfeze. A paper was submitted to the ETAPS Compiler
Construction (CC'12) conference.

We are also addressing scalability issues [4]. riteoto find the most suitable optimization and
parallelism opportunities, the polyhedral framewstives a system of constraints. Having a very
large number of statements and dependencies malsystem harder to solve. Polyhedral techniques
are progressively extended to handle tasks addts af operation, and supporting larger classes of
programs with data-dependent control flow, spanrorgr full functions. The complexity of the
optimization algorithms becomes increasingly protzéc.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 16 of 19

To address this challenge, we introduce a technimplied statement clustering. Motivated by a
practical study of the 30 numerical kernels in Bedybench 2.0 suite, we found that statements that
are a part of the same strongly connected companéiné dependence graph can be lumped together,
and that we can look for a schedule for the whdiester instead of considering each statement
individually. When building affine-by-statementhgaules, the schedule of each statement at nesting
depthn inducesn unknown variables (schedule coefficients) in tbestraint system, and possibly
many times more when applying the affine form af Farkas lemma to linearize the problem. With
the proposed approach, many of these variableseiing equated across the statements belonging to a
given cluster at a given nesting depth. Furtheemall intra-cluster dependencies are removed. This
simplification leads to much smaller systems, ang@articularly effective on low-level intermediate
representations in three-address code. Applying tbchnique on th&nm kernel, for example,
reduces the number of variables in the initial é@mst system from 36 to 9 variables.

This ongoing work will be presented at the IMPACT Workshop [5] and at the CGO'12 Student
Research Competition.

5.2.2 Work-streaming compilation for low-overhead dataflow execution

Our code generation framework aims to apply codasfiormations capable of transforming a
streaming OpenMP program [3] into task-level dyrmadataflow threads whose synchronization and
communication grain has been tailored to the tamgstitecture.

In a nutshellwork-streamingconverts general streaming OpenMP programs, wiitirary dynamic
dependence and dynamic task creation patterns,lomtaverhead coarser-grain threads operating
over generalized form of dataflow I-structures feery fast multi-producer multi-consumer
communications. The background for these genethlizgructures consists of a run-time and data
structure called Erbium and described in D4.3 t(fpesar deliverable). In the second year, we greatly
generalized the compilation method to these lowdme&d synchronization and communication
structures. We also proved the correctness of dimamalysis algorithms to detect and eliminate
resource deadlocks (buffer sizing), to detect fionetl deadlock (for debugging purposes).

In the 3rd year, we will further integrate the watkeaming compilation and run-time techniques
with the TERAFLUX compilation flow and memory modehapping the associated concurrent data
structure to the Owner Writable Memory defined in.D(first year deliverable).

Due to the length of these contributions and tihhgelamount of background information, we refer to
the PhD thesis of Antoniu Pop [1].

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 17 of 19

6.Conclusion

This deliverable presented the main contributicssoeiated with the compiler and run-time support
for the TERAFLUX programming models. Our work foedson Task 4.2, with numerous

developments in the exploitation of multi-level gigglism and in the optimization for the memory
hierarchy.

We believe that the main static and dynamic tealescare now in place for a complete tool flow to
adapt the concurrency exposed in the efficiencygmamming models to the TERAFLUX
architecture. A discussion of the implementatioatus and integration plan can be found in the
conclusion section of D4.5.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 18 of 19

7.References

[1] Antoniu Pop. Leveraging Streaming for Determaiii Parallelization : an Integrated
Language, Compiler and Runtime ApproaBtD thesis, MINES ParisTecParis, France,
September 2011.

[2] Feng Li, Boris Arnoux and Albert Cohen. A Congpiand Runtime System Perspective to
Scalable Data-Flow Computin§th MULTIPROG Workshop (associated with HIPEAC'12)
Paris, France, January 2012.

[3] Antoniu Pop and Albert Cohen. A stream-compgitaxtension to OpenMP. limtl. Conf.
on High Performance and Embedded Architectures @ochpilers (HIPEAC'11) January
2011.

[4] Louis-Noél Pouchet, Uday Bondhugula, Cédric tBak Albert Cohen, J. Ramanujam,
P. Sadayappan, and Nicolas Vasilache. Loop tramsfibons: Convexity, pruning and
optimization. In38" Symp. on Principles of Programming Languages (POPL. Austin,
Texas, January 2011.

[5] Riyadh Baghdadi, Albert Cohen, and Konrad Tmifmic. Using Live Range Non-
Interference Constraints to Enable Polyhedral Lobmansformations .In the 2nd
International Workshop on Polyhedral Compilatiorciiques (IMPACT'12)Paris, France,
January 2012.

Deliverable number: D4.4 Bissemination Level: PU

Deliverable nameRReport on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 19 of 19

