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1.Glossary

OpenMP –  Parallel  programming  pragma  language  on  top  of  C,  C++  and FORTRAN.  In  this 
deliverable, we refer to the OpenMP specification version 3.1.

http://www.openmp.org 

HMPP – Hybrid Compiler for Many-core Applications, from CAPS entreprise, generally used as a 
shortcut  for  the HMPP pragma language on top of  C,  C++ and FORTRAN, and for  the HMPP 
development workbench. HMPP exposes multi-level parallelism and memory management through a 
unique concept and language construct called a codelet.

http://www.   caps­entreprise   .  com   

StarSs – StarSs is a task-based programming model that enables the exploitation of the applications' 
inherent parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas) 
similar to the OpenMP ones are used. A uniqueness of StarSs tasks are the input, output or inout 
clauses that applied to tasks' parameters enable the runtime to track tasks' data dependences.

http://   nanos.ac.upc.edu   

Graphite –  Graphite is the name of a R&D project and a compilation pass of the GNU Compiler 
Collection  (GCC).  It  implements  polyhedral  compilation  algorithms,  applied  to  automatic 
parallelization and loop nest optimization. In this deliverable, the unified representation enables us to 
sketch an extension of Graphite to task-level optimizations and to enhance its analysis with static 
semantics carried by annotations of the efficiency languages.

Http://gcc.gnu.org/wiki/Graphite

Program Dependence Graph (PDG) –  The PDG collects  the  scalar  data  dependences and the 
control dependences between basic blocks of a function. It is a denser representation than the Static 
Single Assignment form, capturing the same information in a form that can be directly exploited for 
the  conversion  of  control  flow  into  data  flow.  The  formal  definition  of  the  PDG and  control 
dependences in terms of the post-dominance frontier can be found in any good textbook on optimizing 
compilation.
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2.Executive Summary

This  deliverable describes  the compilation  and run-time techniques enabling the  adaptation  of  a 
parallel  program expressing multiple levels and diverse forms of  parallelism to the TERAFLUX 
architecture.  Throughout  this  static  and  dynamic  adaptation  process,  locality  optimizations  and 
tradeoffs between locality and parallelism are paramount.

We report on the multiple advances that took place in the second year of the project. Some of the 
contributions are generic and are being implemented in GCC, supporting all efficiency programming 
notations, while others are language-specific.

Four papers have been published: polyhedral compilation for locality optimization at POPL'11 [4] and 
IMPACT'12 [5], compiler support for multi-level dataflow parallelism and locality optimizations for 
streaming dataflow programs at HiPEAC'11 [3] and MULTIPROG'12 [2]. A PhD thesis has been 
defended [1].
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3.Introduction

The overall objective of WP4 is the development of compilation and run-time support tools tailored to 
the TERAFLUX architecture and programming models. The compiler(s) need to map the parallelism 
and locality as available from the source program and programming model to the target execution 
model and architecture. The distribution of the roles among the compilation tools and the run-time 
tools is guided by the efficiency and robustness of handling the challenges statically or dynamically, 
respectively.

The source program exhibits high levels of concurrency, but it still has to be exploited effectively on 
the target. As any many-core processor, the TERAFLUX architecture template exposes parallelism in 
a non-uniform way. In this deliverable, the term multi-level parallelism refers to two complementary 
aspects:

• The hierarchy  of  parallel  constructs  expressed by  a parallel  program or  exposed by  the 
TERAFLUX architecture;

• The different forms of concurrency, expressed as task or data parallelism, pipelining, vector 
operations, and the heterogeneity of the computing resources associated with the exploitation 
of these different forms of parallelism.

To adapt the concurrency and data flow computations in the source program to this non-uniform 
architecture, the compiler and run-time tools implement a variety of code generation and optimization 
tasks:

• The  first  task  consists  in  capturing  the  custom semantics  of  the  different  programming 
models, regarding inter-task dependencies and scheduling constraints (e.g., transactions).

• The second one is to map this semantics to the hardware primitives implemented by the 
TERAFLUX architecture.

• In addition, to guarantee some level of performance portability, and to increase productivity, 
the  compiler  and  run-time  tools  apply  various  optimizations  to  coarsen  the  grain  of 
synchronization, issue bulks of communications, overlap communication and computation, 
balance computation with communication bandwidth, and harness temporal locality of code 
and data, taking into account the features of the memory hierarchy.

• The compiler  also needs to  perform the usual  scalar and array optimizations,  generating 
tightly scheduled, fine-grain vectorized computations.

We report on semantical and algorithmic progress achieved during the second year. Our approach 
involves a combination of static and dynamic optimizations for locality, and language and compiler 
methods to exploit multi-level parallelism.

3.1. Document structure

Section  4  reports  on  the  projects  progresses  in  the expression  and  exploitation  of  multi-level 
parallelism.  Section 5 reports on the compilation and run-time methods for locality optimization. 
Section 6 concludes and outlines future plans for Tasks 4.2 and 4.3 in WP4.
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3.2. Relation to other deliverables

This deliverable extends the compilation algorithms described in D4.1 and D4.3 with enhanced code 
generation techniques. The associated D4.5 (prototype) deliverable presents the status of the software 
implementation, and discusses the integration roadmap and issues.

3.3. Activities referred by this deliverable

This deliverable is associated with and represents the intermediate progress status of Task 4.2.

INRIA  invested  most  of  its  resources  on  the  TERAFLUX  GCC  backend,  developing  and 
implementing a general and modular thread-level partitioning algorithm, combining it with pragma-
based  dependences  expressed  as  streaming  constructs in  OpenMP,  and  contributing  the  work-
streaming compilation and runtime method for coarse-grain dataflow synchronization in dynamic, 
multi-producer multi-consumer scenarios.

CAPS extended the HMPP Workbench to enhance its  support  for  multi-level  parallelism across 
multiple  devices  and  supporting  higher  order  functional  operations.  CAPS  also  designed  and 
implemented language extensions and program transformations for locality optimization of loop nests 
across multiple dimensions.

Work on Task 4.3 has begun at UNIMAN, BSC and INRIA and has focused on language support and 
code generation, exploring different semantic integration and runtime support (hybrid transactional 
memory). The early results are mostly WP3-related and presented in D3.3. Task 4.3 will see direct 
WP4 contributions in the 3rd year.
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4.Multi-level parallelization
Let us now describe the support for  multi-level parallelism in the HMPP Workbench and in the 
TERAFLUX GCC back-end.

4.1 Multi-level parallelization in the HMPP compiler
Support for multi-level parallelism is a native and differentiating feature of HMPP.  Compiling HMPP 
codelets to the different block/work-group and thread/work-item levels of CUDA/OpenCL exploits 
the multi-level annotations provided by the user, and more recently as internal heuristics to balance 
the exploitation of data parallelism and the exploitation of memory locality (discussed later in this 
deliverable). The HMPP compiler handles the translation of high-level parallelism annotations into 
the hardware-specific  expression of  data-parallel  constructs,  including low-level  vectors intrinsics 
(i.e.,. builtins) and types supported by a majority of targets (besides NVidia).

HMPP also natively captures the heterogeneity of hardware accelerators; again user annotations (the 
target clause) provide explicit placement directives.

Since  HMPP 3.0,  the  device and  nb_device clauses  allow to  distribute  computations  over 
multiple  accelerator  devices.  At  the  moment,  only  data  parallel  computations  are  supported; 
(dataflow) task parallelism is being investigated in collaboration with TERAFLUX partners in the 
newly established OpenHMPP consortium (and more specifically its language definition committee).

HMPP 3.0 supports currently the following level of parallelism, from the lowest level to the highest 
level:

- SIMT parallelism extracted from parallel nested loops in codelets.
- Data collection based parallelism that is provided via the specification of a map operation. A 

codelet is applied in parallel  to a set of data distributed over the devices via a mirroring 
mechanism. A syntax example is given in the code fragment below, implementing a parallel 
map operation on an array d[k].

#pragma hmpp <mgrp> parallel

for(k=0;k<n;k++) {

     #pragma hmpp <mgrp> f1 callsite

         myparallelfunc(d[k],n);   

   }

4.2 Multi-level parallelization in the TERAFLUX GCC back-end
INRIA has been working on an algorithm and tool-chain for modular dataflow code generation. This 
deliverable surveys the main aspects of the design and implementation of this complete tool chain, 
starting from annotated C code down to a thread-level data-flow machine interface. The framework 
puts a strong emphasis on control flow generality, scalability and modularity. We propose new code 
generation algorithms and evaluate their implementation in GCC for automatic and annotation-driven 
parallelization.
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The dynamic data flow execution model follows a dynamically constructed precedence graph, where 
a node in may be executed only if all of its predecessors have finished their execution. To abstract 
from the ISA details  and variations proposed in WP6 and WP7, we define an abstract  dataflow 
interface  serving  as  a  target  for  code  generation  from  parallelizing  compilation  or  efficiency 
programmers developing low-level dataflow code. The interface defines two main components: the 
data-flow threads (dynamic task instances) together with their associated frames. The frame of a data-
flow thread stores its input values, local variables and some thread meta-data. The producer thread 
knows the address of the dataflow frames of its successor consumer threads. A thread writes its output 
data directly into the dataflow frames of its dependent (consumer) threads. Each thread is associated 
with a Synchronization Counter (SC) to implement the precedence relation. The SC is initialized to 
the number of its predecessors, and decremented each time one of them provided its data. When the 
SC reaches 0, the thread is ready for execution.

Our algorithm operates on a low-level representation in Static Single Assignment (SSA) form and is 
implemented as a new parallelization pass of GCC's middle-end. An example of C code converted to 
SSA form is shown in Illustration 1 (GCC implement a form of SSA called loop-closed, with strong 
advantages for loop nest optimization).

• The input is the Program Dependence Graph (PDG), collecting data and control dependencies 
of a given function in a compilation unit. Nodes of the PDG are single basic blocks; they are 
the finest-grain of dataflow threads achievable by the partitioning algorithm.

• An optimization heuristic coarsens the granularity of the tasks based on a generalization of 
the Parallel Stage Decoupled Software Pipelining (PS-DSWP); it has been presented in D4.1.

• Modular code generation: the externally visible functions in a compilation unit is cloned into 
a threaded version, preserving the original  control flow as an alternative version. Thread 
creation is  guarded by  conditional  execution  predicates  and always  located  on  the  post-
dominance  frontier  of  the  thread's  block,  i.e.,  at  the  source  of  all  control  dependencies 
targeting the thread's block. This scheme avoids the need for speculative thread creation. On 
the  other  hand,  the  structure  of  dataflow  frames  is constructed  from  data  dependence 
information only.  But  special care must be taken to propagate values and frame pointers 
among the control dependence paths in the Program Dependence Graph (PDG): the ultimate 
consumers may not be known at the production point, or the consumer threads may be created 
earlier than some of their producers. In the former case, values must be propagated along the 
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control  dependence  paths  to  the  ultimate  consumers, starting  from the  closest  common 
ancestors of the producer and consumers, as shown in Illustration 2. In the latter case, frame 
pointers must be propagated instead, as shown in Illustration 3. Function calls are split into an 
asynchronous thread creation and a return continuation thread for modularity.

Illustration 4 shows a template for modular code generation of imperative function calls. The caller 
thread will create the entry thread of the callee and the continuation thread for handling the return 
value. The entry thread creates post-dominating threads inside the callee, and the return thread pass 
the return value to the continuation in the caller. The algorithm is fully modular and can convert 
arbitrary control flow into dynamic dataflow threads at basic block granularity. More detail can be 
found in a MULTIPROG'12 paper by Li et al. [2].
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For pointers and arrays, we currently rely on a conservative scheme that only relies on the coarse but 
scalable,  flow-insensitive,  context-insensitive,  and field-sensitive  pointer  analysis  implemented in 
GCC.  Our  method  aims  for  robustness  and  generality: arbitrary  unstructured  control  flow with 
arbitrary memory accesses can be internally represented in GCC using virtual definitions (VDEF) and 
virtual uses (VUSE) in what is commonly referred to as mem-SSA (a concept introduced as HSSA in 
the SGI Pro64 compiler, now Open64). These virtual definitions and uses are associated with virtual 
PHI nodes to reconcile the memory-induced data flow from different  control flow branches. Our 
partitioning and dataflow conversion algorithm can be extended to operate on these virtual operations 
and operands, at the cost of extra complexity to deal with the initialization of the synchronization 
counters; indeed, the number of producers is not known anymore at thread creation time in general. 
Implementation is in progress. We will report on the 3rd year on enhancements of the compilation 
methods and T* ISA (cf. Deliverable D6.2) will be proposed to efficiently support arbitrary memory-
induced data flow and irregular control flow.

To go beyond the conversion of scalar dependencies and the conservative handling of pointer- and 
array-based  dependencies,  we  leverage  pragma  annotations  defined  for  our  dataflow  streaming 
extension  of  OpenMP (see D3.2 and D4.2 from the  first  year's  deliverables).  These annotations 
provide an explicit task partitioning and express data dependencies on pointer-based data structures 
and arrays that cannot be discovered through static analysis.  The programmer use pragmas only when 
necessary to supplement static analysis; he/she is responsible for declaring live-in and live-out values, 
expressing task-to-task dependencies through intermediate stream variables. Note that this component 
of the compilation flow is fully functional but not yet integrated with the automatic partitioning and 
scalar dataflow conversion pass (the integration plan is discussed further in D4.5).
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The second phase of the algorithm starts from the finest-grain data-flow threads and aggregates them 
into a  hierarchy  of  tasks,  driven  by locality  optimization,  synchronization grain coarsening.  Our 
heuristic extends Parallel-Stage Decoupled Software Pipelining (PS-DSWP) to operate on arbitrary 
control flow and SSA programs. It  merges tasks hierarchically in a generalized typed loop fusion 
algorithm, preserving data parallelism of stateless threads and causality (causal scheduling in tasks).

Specific patterns can lead to more efficient, specialized code:

• DOALL: data-parallel loops can be compiled into a pair of splitter and merger tasks enclosing 
coarser grain independent blocks of iterations

• DOACROSS: loops with dependencies may be compiled into a splitter-merger pair enclosing 
pipelining stages resulting from the PS-DSWP algorithm.

Our  current  results  come  from two  separate  prototype  implementations  that  are  currently  being 
merged into a consistent compilation flow. We target a 24-core Intel Xeon Dunnington server (6-core 
FSB architecture).

We studied three benchmarks: 1D-FFT, FMradio and 802.11a. Annotating the FMradio code with 
extended pragmas require little effort and provide up to 18.8x speedup. 802.11a is more unbalanced 
and harder to parallelize as the original version used global variables extensively; after a re-factoring 
step, annotating the program is straightforward and leads to 14.9x speedup. 1D-FFT scales up to 7.5x 
speedup.

We evaluated our  modular  code generation algorithm on (tree-)recursive,  scalar  code only.  The 
Fibonacci and Merge Sort kernels, written in plain C, can be automatically parallelized. This is just a 
proof of concept and we only measured performance on a small scale machine so far, an Intel Core i7-
2720QM 4-Core machine, using our dfrt run-time. To coarsen the synchronization grain, we set a 
threshold to switch back to the sequential version. Fibonacci and Merge Sort reach 2.55x and 2.82x 
speedups respectively. We are currently working on a large-scale experiment using the same run-time 
for a cluster of workstations, and using the hardware-assisted implementation of T* instructions in 
COTSon.

This ongoing work will be presented at the MULTIPROG workshop associated with the HiPEAC'12 
conference [2] and at the CGO'12 Student Research Competition.
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5.Locality optimization  

5.1 Locality optimization in the HMPP Workbench
HMPP provides a set of directives to implement unroll-and-jam, a dedicated form of loop tiling where 
the inner loops (i.e., the point loops) are fully unrolled (unroll-and-jam can also be seen as outer loop 
unrolling followed by fusion of the resulting copies of the inner loop). HMPP also provides directives 
to use device local memories effectively. The figure below describes unroll-and-jam: a square of 4x4 
iterations in the source program are unrolled-and-jammed together to form a larger iteration (in the 
form of a big circle) in the transformed program. These directives are combined with the parallelism 
scheme (“gridification”); in such a way, the programmer has many ways to tune the mapping of the 
threads as well as memory accesses to improve data locality. 

#pragma hmppcg gridify(j,i) 

#pragma hmppcg unroll(4), jam(4)

  for( j = 0 ; j < p ; j++ ) {

    for( i = 0 ; i < m ; i++ ) {

     for (k = ...) { ...}

      vout[j][i] = alpha * ...;

    }

  }

These additional locality optimization directives are implemented in the HMPP Workbench 3.0 and 
have been applied to customer applications.
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5.2 Locality optimization in the TERAFLUX GCC back-end

To harness the complexity of many-core architectures and complex memory hierarchies, powerful 
compiler optimizations and especially loop nest transformations are in high demand. We first survey 
ongoing work on polyhedral compilation for task-level optimizations, then we describe the evolution 
of our low-level  locality optimization method for dataflow threads called “work-streaming”. Both 
activities are conducted at INRIA.

5.2.1 Adapting polyhedral compilation for task-level optimization
The polyhedral framework is showing interesting success in this area. It is an algebraic abstraction for 
reasoning about loop transformations. It allows to model and apply complex loop nest transformations 
addressing  most  of  the  parallelism  and  locality-enhancing  challenges.  The  loop  control  flow 
constraints,  statement dependencies and the memory optimization constraints are used together to 
construct a unified system of constraints. Resolving this system allows to find a new schedule for the 
statements and thus to apply complex loop transformations maximizing parallelism and data locality.

INRIA  is  actively  integrating  the  polyhedral  optimization  framework  in  the  GCC compiler:  the 
Graphite framework (INRIA also contributes to a mirror project in LLVM called Polly). We are also 
working towards using the polyhedral framework to target the optimization of dataflow programs and 
to generate aggressively optimized code starting from high-level languages.

This deliverable summarizes our progress on two challenges arising when adapting the polyhedral 
framework to work on the level of dataflow tasks: dealing with memory-based dependencies and 
optimizing very large kernels.

Part of it is a practical compiler construction issue, where upstream passes such as the transformation 
to  three-address  code  and  Partial  Redundancy  Elimination  Constant  Subexpression  Elimination 
(PRE/CSE)  introduce new scalar  variables  leading  to additional  memory-based dependencies.  A 
second difficulty is specific to the compilation of task-based programs. General TERAFLUX tasks in 
our efficiency programming models may be stateful, although the programmer is discouraged to use 
state when not necessary for effective memory management. It is necessary to model the memory-
based dependence constraints  induced by this state. The last  difficulty is  to identify  a  profitable 
tradeoff  between  memory  expansion  (privatization,  renaming)  and  parallelism.  Memory-based 
dependencies not only increase the complexity of the optimization but most importantly, they reduce 
the degree of freedom available to express effective loop nest transformations, limiting the overall 
effectiveness of the polyhedral framework.

We designed and implemented a technique that solves this problem by allowing a compiler to relax 
the constraint of memory-based dependencies on loop nest transformations and that does not incur the 
memory footprint overhead of scalar and array expansion.  The proposed technique is based on the 
concept of polyhedral live range interval interference. A paper was submitted to the ETAPS Compiler 
Construction (CC'12) conference.

We are also addressing scalability issues [4].  In  order to find the most suitable optimization and 
parallelism opportunities, the polyhedral framework solves a system of constraints. Having a very 
large number of statements and dependencies make the system harder to solve.  Polyhedral techniques 
are progressively extended to handle tasks as its atom of operation, and supporting larger classes of 
programs with data-dependent control  flow,  spanning over  full  functions. The complexity of  the 
optimization algorithms becomes increasingly problematic.
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To address this challenge,  we introduce a technique called statement  clustering.  Motivated by a 
practical study of the 30 numerical kernels in the Polybench 2.0 suite, we found that statements that 
are a part of the same strongly connected component in the dependence graph can be lumped together, 
and that we can look for a schedule for the whole cluster  instead of  considering each statement 
individually.  When building affine-by-statement schedules, the schedule of each statement at nesting 
depth  n induces  n unknown variables (schedule coefficients) in the constraint system, and possibly 
many times more when applying the affine form of the Farkas lemma to linearize the problem.  With 
the proposed approach, many of these variables are being equated across the statements belonging to a 
given cluster at a given nesting depth.  Furthermore, all intra-cluster dependencies are removed. This 
simplification leads to much smaller systems, and is particularly effective on low-level intermediate 
representations  in  three-address  code.  Applying  this  technique on  the  3mm kernel,  for  example, 
reduces the number of variables in the initial constraint system from 36 to 9 variables.

This ongoing work will be presented at the IMPACT'12 workshop [5] and at the CGO'12 Student 
Research Competition.

5.2.2 Work-streaming compilation for low-overhead dataflow execution

Our  code  generation  framework  aims  to  apply  code  transformations  capable  of  transforming  a 
streaming OpenMP program [3] into task-level dynamic dataflow threads whose synchronization and 
communication grain has been tailored to the target architecture.

In a nutshell, work-streaming converts general streaming OpenMP programs, with arbitrary dynamic 
dependence and dynamic task creation patterns, into low-overhead coarser-grain threads operating 
over  generalized  form  of  dataflow  I-structures  for  very  fast  multi-producer  multi-consumer 
communications. The background for these generalized I-structures consists of a run-time and data 
structure called Erbium and described in D4.3 (first year deliverable). In the second year, we greatly 
generalized  the  compilation  method  to  these  low-overhead  synchronization  and  communication 
structures. We also proved the correctness of dynamic analysis algorithms to detect and eliminate 
resource deadlocks (buffer sizing), to detect functional deadlock (for debugging purposes).

In the 3rd year, we will further integrate the work-streaming compilation and run-time techniques 
with the TERAFLUX compilation flow and memory model, mapping the associated concurrent data 
structure to the Owner Writable Memory defined in D7.1 (first year deliverable).

Due to the length of these contributions and the large amount of background information, we refer to 
the PhD thesis of Antoniu Pop [1].
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6.Conclusion

This deliverable presented the main contributions associated with the compiler and run-time support 
for  the  TERAFLUX  programming  models.  Our  work  focused  on  Task  4.2,  with  numerous 
developments in the exploitation of multi-level parallelism and in the optimization for the memory 
hierarchy.

We believe that the main static and dynamic techniques are now in place for a complete tool flow to 
adapt  the  concurrency  exposed  in  the  efficiency  programming  models  to  the  TERAFLUX 
architecture. A discussion of  the implementation status and integration plan can be found in the 
conclusion section of D4.5.
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