
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D4.4 – Report on multi-level parallelization and locality
optimization

Due date of deliverable: 31/12/2011
Actual Submission: 31/12/2011

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 1 of 19

Change Control

Version# Author Organization Change History

1.0 Albert Cohen INRIA First version

1.1 Albert Cohen INRIA Improved version,
implementing important
feedback from Pedro
Trancoso (UCY)

Release Approval

Name Role Date

Albert Cohen Originator 23/12/2011

Albert Cohen WP Leader 23/12/2011

Roberto Giorgi Project Coordinator for formal delive rable 30/12/2011

TABLE OF CONTENTS

1.GLOSSARY .. 6

2.EXECUTIVE SUMMARY .. 7

3.INTRODUCTION .. 8

4.MULTI-LEVEL PARALLELIZATION ... 10

5.LOCALITY OPTIMIZATION .. 15

6.CONCLUSION .. 18

7.REFERENCES ... 19

The following list of authors will be updated to reflect the list of contributors to the writing of the
document.

Boris Arnoux, Riyadh Baghdadi, Albert Cohen, Feng Li, Antoniu Pop

INRIA

François Bodin, Laurent Morin

CAPS

Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.

This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).

Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.

Printed in Siena, Italy, Europe.

Part number: please refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 4 of 19

SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 5 of 19

1.Glossary

OpenMP – Parallel programming pragma language on top of C, C++ and FORTRAN. In this
deliverable, we refer to the OpenMP specification version 3.1.

http://www.openmp.org

HMPP – Hybrid Compiler for Many-core Applications, from CAPS entreprise, generally used as a
shortcut for the HMPP pragma language on top of C, C++ and FORTRAN, and for the HMPP
development workbench. HMPP exposes multi-level parallelism and memory management through a
unique concept and language construct called a codelet.

http://www. caps­entreprise . com

StarSs – StarSs is a task-based programming model that enables the exploitation of the applications'
inherent parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas)
similar to the OpenMP ones are used. A uniqueness of StarSs tasks are the input, output or inout
clauses that applied to tasks' parameters enable the runtime to track tasks' data dependences.

http:// nanos.ac.upc.edu

Graphite – Graphite is the name of a R&D project and a compilation pass of the GNU Compiler
Collection (GCC). It implements polyhedral compilation algorithms, applied to automatic
parallelization and loop nest optimization. In this deliverable, the unified representation enables us to
sketch an extension of Graphite to task-level optimizations and to enhance its analysis with static
semantics carried by annotations of the efficiency languages.

Http://gcc.gnu.org/wiki/Graphite

Program Dependence Graph (PDG) – The PDG collects the scalar data dependences and the
control dependences between basic blocks of a function. It is a denser representation than the Static
Single Assignment form, capturing the same information in a form that can be directly exploited for
the conversion of control flow into data flow. The formal definition of the PDG and control
dependences in terms of the post-dominance frontier can be found in any good textbook on optimizing
compilation.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 6 of 19

2.Executive Summary

This deliverable describes the compilation and run-time techniques enabling the adaptation of a
parallel program expressing multiple levels and diverse forms of parallelism to the TERAFLUX
architecture. Throughout this static and dynamic adaptation process, locality optimizations and
tradeoffs between locality and parallelism are paramount.

We report on the multiple advances that took place in the second year of the project. Some of the
contributions are generic and are being implemented in GCC, supporting all efficiency programming
notations, while others are language-specific.

Four papers have been published: polyhedral compilation for locality optimization at POPL'11 [4] and
IMPACT'12 [5], compiler support for multi-level dataflow parallelism and locality optimizations for
streaming dataflow programs at HiPEAC'11 [3] and MULTIPROG'12 [2]. A PhD thesis has been
defended [1].

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 7 of 19

3.Introduction

The overall objective of WP4 is the development of compilation and run-time support tools tailored to
the TERAFLUX architecture and programming models. The compiler(s) need to map the parallelism
and locality as available from the source program and programming model to the target execution
model and architecture. The distribution of the roles among the compilation tools and the run-time
tools is guided by the efficiency and robustness of handling the challenges statically or dynamically,
respectively.

The source program exhibits high levels of concurrency, but it still has to be exploited effectively on
the target. As any many-core processor, the TERAFLUX architecture template exposes parallelism in
a non-uniform way. In this deliverable, the term multi-level parallelism refers to two complementary
aspects:

• The hierarchy of parallel constructs expressed by a parallel program or exposed by the
TERAFLUX architecture;

• The different forms of concurrency, expressed as task or data parallelism, pipelining, vector
operations, and the heterogeneity of the computing resources associated with the exploitation
of these different forms of parallelism.

To adapt the concurrency and data flow computations in the source program to this non-uniform
architecture, the compiler and run-time tools implement a variety of code generation and optimization
tasks:

• The first task consists in capturing the custom semantics of the different programming
models, regarding inter-task dependencies and scheduling constraints (e.g., transactions).

• The second one is to map this semantics to the hardware primitives implemented by the
TERAFLUX architecture.

• In addition, to guarantee some level of performance portability, and to increase productivity,
the compiler and run-time tools apply various optimizations to coarsen the grain of
synchronization, issue bulks of communications, overlap communication and computation,
balance computation with communication bandwidth, and harness temporal locality of code
and data, taking into account the features of the memory hierarchy.

• The compiler also needs to perform the usual scalar and array optimizations, generating
tightly scheduled, fine-grain vectorized computations.

We report on semantical and algorithmic progress achieved during the second year. Our approach
involves a combination of static and dynamic optimizations for locality, and language and compiler
methods to exploit multi-level parallelism.

3.1. Document structure

Section 4 reports on the projects progresses in the expression and exploitation of multi-level
parallelism. Section 5 reports on the compilation and run-time methods for locality optimization.
Section 6 concludes and outlines future plans for Tasks 4.2 and 4.3 in WP4.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 8 of 19

3.2. Relation to other deliverables

This deliverable extends the compilation algorithms described in D4.1 and D4.3 with enhanced code
generation techniques. The associated D4.5 (prototype) deliverable presents the status of the software
implementation, and discusses the integration roadmap and issues.

3.3. Activities referred by this deliverable

This deliverable is associated with and represents the intermediate progress status of Task 4.2.

INRIA invested most of its resources on the TERAFLUX GCC backend, developing and
implementing a general and modular thread-level partitioning algorithm, combining it with pragma-
based dependences expressed as streaming constructs in OpenMP, and contributing the work-
streaming compilation and runtime method for coarse-grain dataflow synchronization in dynamic,
multi-producer multi-consumer scenarios.

CAPS extended the HMPP Workbench to enhance its support for multi-level parallelism across
multiple devices and supporting higher order functional operations. CAPS also designed and
implemented language extensions and program transformations for locality optimization of loop nests
across multiple dimensions.

Work on Task 4.3 has begun at UNIMAN, BSC and INRIA and has focused on language support and
code generation, exploring different semantic integration and runtime support (hybrid transactional
memory). The early results are mostly WP3-related and presented in D3.3. Task 4.3 will see direct
WP4 contributions in the 3rd year.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 9 of 19

4.Multi-level parallelization
Let us now describe the support for multi-level parallelism in the HMPP Workbench and in the
TERAFLUX GCC back-end.

4.1 Multi-level parallelization in the HMPP compiler
Support for multi-level parallelism is a native and differentiating feature of HMPP. Compiling HMPP
codelets to the different block/work-group and thread/work-item levels of CUDA/OpenCL exploits
the multi-level annotations provided by the user, and more recently as internal heuristics to balance
the exploitation of data parallelism and the exploitation of memory locality (discussed later in this
deliverable). The HMPP compiler handles the translation of high-level parallelism annotations into
the hardware-specific expression of data-parallel constructs, including low-level vectors intrinsics
(i.e.,. builtins) and types supported by a majority of targets (besides NVidia).

HMPP also natively captures the heterogeneity of hardware accelerators; again user annotations (the
target clause) provide explicit placement directives.

Since HMPP 3.0, the device and nb_device clauses allow to distribute computations over
multiple accelerator devices. At the moment, only data parallel computations are supported;
(dataflow) task parallelism is being investigated in collaboration with TERAFLUX partners in the
newly established OpenHMPP consortium (and more specifically its language definition committee).

HMPP 3.0 supports currently the following level of parallelism, from the lowest level to the highest
level:

- SIMT parallelism extracted from parallel nested loops in codelets.
- Data collection based parallelism that is provided via the specification of a map operation. A

codelet is applied in parallel to a set of data distributed over the devices via a mirroring
mechanism. A syntax example is given in the code fragment below, implementing a parallel
map operation on an array d[k].

#pragma hmpp <mgrp> parallel

for(k=0;k<n;k++) {

 #pragma hmpp <mgrp> f1 callsite

 myparallelfunc(d[k],n);

 }

4.2 Multi-level parallelization in the TERAFLUX GCC back-end
INRIA has been working on an algorithm and tool-chain for modular dataflow code generation. This
deliverable surveys the main aspects of the design and implementation of this complete tool chain,
starting from annotated C code down to a thread-level data-flow machine interface. The framework
puts a strong emphasis on control flow generality, scalability and modularity. We propose new code
generation algorithms and evaluate their implementation in GCC for automatic and annotation-driven
parallelization.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 10 of 19

The dynamic data flow execution model follows a dynamically constructed precedence graph, where
a node in may be executed only if all of its predecessors have finished their execution. To abstract
from the ISA details and variations proposed in WP6 and WP7, we define an abstract dataflow
interface serving as a target for code generation from parallelizing compilation or efficiency
programmers developing low-level dataflow code. The interface defines two main components: the
data-flow threads (dynamic task instances) together with their associated frames. The frame of a data-
flow thread stores its input values, local variables and some thread meta-data. The producer thread
knows the address of the dataflow frames of its successor consumer threads. A thread writes its output
data directly into the dataflow frames of its dependent (consumer) threads. Each thread is associated
with a Synchronization Counter (SC) to implement the precedence relation. The SC is initialized to
the number of its predecessors, and decremented each time one of them provided its data. When the
SC reaches 0, the thread is ready for execution.

Our algorithm operates on a low-level representation in Static Single Assignment (SSA) form and is
implemented as a new parallelization pass of GCC's middle-end. An example of C code converted to
SSA form is shown in Illustration 1 (GCC implement a form of SSA called loop-closed, with strong
advantages for loop nest optimization).

• The input is the Program Dependence Graph (PDG), collecting data and control dependencies
of a given function in a compilation unit. Nodes of the PDG are single basic blocks; they are
the finest-grain of dataflow threads achievable by the partitioning algorithm.

• An optimization heuristic coarsens the granularity of the tasks based on a generalization of
the Parallel Stage Decoupled Software Pipelining (PS-DSWP); it has been presented in D4.1.

• Modular code generation: the externally visible functions in a compilation unit is cloned into
a threaded version, preserving the original control flow as an alternative version. Thread
creation is guarded by conditional execution predicates and always located on the post-
dominance frontier of the thread's block, i.e., at the source of all control dependencies
targeting the thread's block. This scheme avoids the need for speculative thread creation. On
the other hand, the structure of dataflow frames is constructed from data dependence
information only. But special care must be taken to propagate values and frame pointers
among the control dependence paths in the Program Dependence Graph (PDG): the ultimate
consumers may not be known at the production point, or the consumer threads may be created
earlier than some of their producers. In the former case, values must be propagated along the

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 11 of 19

control dependence paths to the ultimate consumers, starting from the closest common
ancestors of the producer and consumers, as shown in Illustration 2. In the latter case, frame
pointers must be propagated instead, as shown in Illustration 3. Function calls are split into an
asynchronous thread creation and a return continuation thread for modularity.

Illustration 4 shows a template for modular code generation of imperative function calls. The caller
thread will create the entry thread of the callee and the continuation thread for handling the return
value. The entry thread creates post-dominating threads inside the callee, and the return thread pass
the return value to the continuation in the caller. The algorithm is fully modular and can convert
arbitrary control flow into dynamic dataflow threads at basic block granularity. More detail can be
found in a MULTIPROG'12 paper by Li et al. [2].

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 12 of 19

For pointers and arrays, we currently rely on a conservative scheme that only relies on the coarse but
scalable, flow-insensitive, context-insensitive, and field-sensitive pointer analysis implemented in
GCC. Our method aims for robustness and generality: arbitrary unstructured control flow with
arbitrary memory accesses can be internally represented in GCC using virtual definitions (VDEF) and
virtual uses (VUSE) in what is commonly referred to as mem-SSA (a concept introduced as HSSA in
the SGI Pro64 compiler, now Open64). These virtual definitions and uses are associated with virtual
PHI nodes to reconcile the memory-induced data flow from different control flow branches. Our
partitioning and dataflow conversion algorithm can be extended to operate on these virtual operations
and operands, at the cost of extra complexity to deal with the initialization of the synchronization
counters; indeed, the number of producers is not known anymore at thread creation time in general.
Implementation is in progress. We will report on the 3rd year on enhancements of the compilation
methods and T* ISA (cf. Deliverable D6.2) will be proposed to efficiently support arbitrary memory-
induced data flow and irregular control flow.

To go beyond the conversion of scalar dependencies and the conservative handling of pointer- and
array-based dependencies, we leverage pragma annotations defined for our dataflow streaming
extension of OpenMP (see D3.2 and D4.2 from the first year's deliverables). These annotations
provide an explicit task partitioning and express data dependencies on pointer-based data structures
and arrays that cannot be discovered through static analysis. The programmer use pragmas only when
necessary to supplement static analysis; he/she is responsible for declaring live-in and live-out values,
expressing task-to-task dependencies through intermediate stream variables. Note that this component
of the compilation flow is fully functional but not yet integrated with the automatic partitioning and
scalar dataflow conversion pass (the integration plan is discussed further in D4.5).

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 13 of 19

Illustration 4: Modular generation of dataflow threaded code

The second phase of the algorithm starts from the finest-grain data-flow threads and aggregates them
into a hierarchy of tasks, driven by locality optimization, synchronization grain coarsening. Our
heuristic extends Parallel-Stage Decoupled Software Pipelining (PS-DSWP) to operate on arbitrary
control flow and SSA programs. It merges tasks hierarchically in a generalized typed loop fusion
algorithm, preserving data parallelism of stateless threads and causality (causal scheduling in tasks).

Specific patterns can lead to more efficient, specialized code:

• DOALL: data-parallel loops can be compiled into a pair of splitter and merger tasks enclosing
coarser grain independent blocks of iterations

• DOACROSS: loops with dependencies may be compiled into a splitter-merger pair enclosing
pipelining stages resulting from the PS-DSWP algorithm.

Our current results come from two separate prototype implementations that are currently being
merged into a consistent compilation flow. We target a 24-core Intel Xeon Dunnington server (6-core
FSB architecture).

We studied three benchmarks: 1D-FFT, FMradio and 802.11a. Annotating the FMradio code with
extended pragmas require little effort and provide up to 18.8x speedup. 802.11a is more unbalanced
and harder to parallelize as the original version used global variables extensively; after a re-factoring
step, annotating the program is straightforward and leads to 14.9x speedup. 1D-FFT scales up to 7.5x
speedup.

We evaluated our modular code generation algorithm on (tree-)recursive, scalar code only. The
Fibonacci and Merge Sort kernels, written in plain C, can be automatically parallelized. This is just a
proof of concept and we only measured performance on a small scale machine so far, an Intel Core i7-
2720QM 4-Core machine, using our dfrt run-time. To coarsen the synchronization grain, we set a
threshold to switch back to the sequential version. Fibonacci and Merge Sort reach 2.55x and 2.82x
speedups respectively. We are currently working on a large-scale experiment using the same run-time
for a cluster of workstations, and using the hardware-assisted implementation of T* instructions in
COTSon.

This ongoing work will be presented at the MULTIPROG workshop associated with the HiPEAC'12
conference [2] and at the CGO'12 Student Research Competition.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 14 of 19

5.Locality optimization

5.1 Locality optimization in the HMPP Workbench
HMPP provides a set of directives to implement unroll-and-jam, a dedicated form of loop tiling where
the inner loops (i.e., the point loops) are fully unrolled (unroll-and-jam can also be seen as outer loop
unrolling followed by fusion of the resulting copies of the inner loop). HMPP also provides directives
to use device local memories effectively. The figure below describes unroll-and-jam: a square of 4x4
iterations in the source program are unrolled-and-jammed together to form a larger iteration (in the
form of a big circle) in the transformed program. These directives are combined with the parallelism
scheme (“gridification”); in such a way, the programmer has many ways to tune the mapping of the
threads as well as memory accesses to improve data locality.

#pragma hmppcg gridify(j,i)

#pragma hmppcg unroll(4), jam(4)

 for(j = 0 ; j < p ; j++) {

 for(i = 0 ; i < m ; i++) {

 for (k = ...) { ...}

 vout[j][i] = alpha * ...;

 }

 }

These additional locality optimization directives are implemented in the HMPP Workbench 3.0 and
have been applied to customer applications.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 15 of 19

5.2 Locality optimization in the TERAFLUX GCC back-end

To harness the complexity of many-core architectures and complex memory hierarchies, powerful
compiler optimizations and especially loop nest transformations are in high demand. We first survey
ongoing work on polyhedral compilation for task-level optimizations, then we describe the evolution
of our low-level locality optimization method for dataflow threads called “work-streaming”. Both
activities are conducted at INRIA.

5.2.1 Adapting polyhedral compilation for task-level optimization
The polyhedral framework is showing interesting success in this area. It is an algebraic abstraction for
reasoning about loop transformations. It allows to model and apply complex loop nest transformations
addressing most of the parallelism and locality-enhancing challenges. The loop control flow
constraints, statement dependencies and the memory optimization constraints are used together to
construct a unified system of constraints. Resolving this system allows to find a new schedule for the
statements and thus to apply complex loop transformations maximizing parallelism and data locality.

INRIA is actively integrating the polyhedral optimization framework in the GCC compiler: the
Graphite framework (INRIA also contributes to a mirror project in LLVM called Polly). We are also
working towards using the polyhedral framework to target the optimization of dataflow programs and
to generate aggressively optimized code starting from high-level languages.

This deliverable summarizes our progress on two challenges arising when adapting the polyhedral
framework to work on the level of dataflow tasks: dealing with memory-based dependencies and
optimizing very large kernels.

Part of it is a practical compiler construction issue, where upstream passes such as the transformation
to three-address code and Partial Redundancy Elimination Constant Subexpression Elimination
(PRE/CSE) introduce new scalar variables leading to additional memory-based dependencies. A
second difficulty is specific to the compilation of task-based programs. General TERAFLUX tasks in
our efficiency programming models may be stateful, although the programmer is discouraged to use
state when not necessary for effective memory management. It is necessary to model the memory-
based dependence constraints induced by this state. The last difficulty is to identify a profitable
tradeoff between memory expansion (privatization, renaming) and parallelism. Memory-based
dependencies not only increase the complexity of the optimization but most importantly, they reduce
the degree of freedom available to express effective loop nest transformations, limiting the overall
effectiveness of the polyhedral framework.

We designed and implemented a technique that solves this problem by allowing a compiler to relax
the constraint of memory-based dependencies on loop nest transformations and that does not incur the
memory footprint overhead of scalar and array expansion. The proposed technique is based on the
concept of polyhedral live range interval interference. A paper was submitted to the ETAPS Compiler
Construction (CC'12) conference.

We are also addressing scalability issues [4]. In order to find the most suitable optimization and
parallelism opportunities, the polyhedral framework solves a system of constraints. Having a very
large number of statements and dependencies make the system harder to solve. Polyhedral techniques
are progressively extended to handle tasks as its atom of operation, and supporting larger classes of
programs with data-dependent control flow, spanning over full functions. The complexity of the
optimization algorithms becomes increasingly problematic.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 16 of 19

To address this challenge, we introduce a technique called statement clustering. Motivated by a
practical study of the 30 numerical kernels in the Polybench 2.0 suite, we found that statements that
are a part of the same strongly connected component in the dependence graph can be lumped together,
and that we can look for a schedule for the whole cluster instead of considering each statement
individually. When building affine-by-statement schedules, the schedule of each statement at nesting
depth n induces n unknown variables (schedule coefficients) in the constraint system, and possibly
many times more when applying the affine form of the Farkas lemma to linearize the problem. With
the proposed approach, many of these variables are being equated across the statements belonging to a
given cluster at a given nesting depth. Furthermore, all intra-cluster dependencies are removed. This
simplification leads to much smaller systems, and is particularly effective on low-level intermediate
representations in three-address code. Applying this technique on the 3mm kernel, for example,
reduces the number of variables in the initial constraint system from 36 to 9 variables.

This ongoing work will be presented at the IMPACT'12 workshop [5] and at the CGO'12 Student
Research Competition.

5.2.2 Work-streaming compilation for low-overhead dataflow execution

Our code generation framework aims to apply code transformations capable of transforming a
streaming OpenMP program [3] into task-level dynamic dataflow threads whose synchronization and
communication grain has been tailored to the target architecture.

In a nutshell, work-streaming converts general streaming OpenMP programs, with arbitrary dynamic
dependence and dynamic task creation patterns, into low-overhead coarser-grain threads operating
over generalized form of dataflow I-structures for very fast multi-producer multi-consumer
communications. The background for these generalized I-structures consists of a run-time and data
structure called Erbium and described in D4.3 (first year deliverable). In the second year, we greatly
generalized the compilation method to these low-overhead synchronization and communication
structures. We also proved the correctness of dynamic analysis algorithms to detect and eliminate
resource deadlocks (buffer sizing), to detect functional deadlock (for debugging purposes).

In the 3rd year, we will further integrate the work-streaming compilation and run-time techniques
with the TERAFLUX compilation flow and memory model, mapping the associated concurrent data
structure to the Owner Writable Memory defined in D7.1 (first year deliverable).

Due to the length of these contributions and the large amount of background information, we refer to
the PhD thesis of Antoniu Pop [1].

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 17 of 19

6.Conclusion

This deliverable presented the main contributions associated with the compiler and run-time support
for the TERAFLUX programming models. Our work focused on Task 4.2, with numerous
developments in the exploitation of multi-level parallelism and in the optimization for the memory
hierarchy.

We believe that the main static and dynamic techniques are now in place for a complete tool flow to
adapt the concurrency exposed in the efficiency programming models to the TERAFLUX
architecture. A discussion of the implementation status and integration plan can be found in the
conclusion section of D4.5.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 18 of 19

7.References
[1] Antoniu Pop. Leveraging Streaming for Deterministic Parallelization : an Integrated
Language, Compiler and Runtime Approach. PhD thesis, MINES ParisTech, Paris, France,
September 2011.

[2] Feng Li, Boris Arnoux and Albert Cohen. A Compiler and Runtime System Perspective to
Scalable Data-Flow Computing. 5th MULTIPROG Workshop (associated with HiPEAC'12),
Paris, France, January 2012.

[3] Antoniu Pop and Albert Cohen. A stream-computing extension to OpenMP. In Intl. Conf.
on High Performance and Embedded Architectures and Compilers (HiPEAC’11), January
2011.

[4] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
P. Sadayappan, and Nicolas Vasilache. Loop transformations: Convexity, pruning and

optimization. In 38th Symp. on Principles of Programming Languages (POPL’11), Austin,
Texas, January 2011.

[5] Riyadh Baghdadi, Albert Cohen, and Konrad Trifunović. Using Live Range Non-
Interference Constraints to Enable Polyhedral Loop Transformations . In the 2nd
International Workshop on Polyhedral Compilation Techniques (IMPACT'12), Paris, France,
January 2012.

Deliverable number: D4.4 – Dissemination Level: PU

Deliverable name: Report on multi-level parallelization and locality optimization

File name: TERAFLUX-D44-v3 Page 19 of 19

