Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D4.3 — First version of the compilation tools targed to the
TERAFLUX architecture

Due date of deliverable: 31/12/2010
Actual Submission: 31/12/2010

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiindding the Commission Services)

CO | Confidential, only for members of the consortiumc(uding the Commission Services)

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 1 of 28

Change Control

Version# Author Organization | Change History

1.0 Albert Cohen INRIA

2.0 Albert Cohen INRIA Major revision

2.1 Albert Cohen INRIA Feedback and comments
Release Approval

Name Role Date

Albert Cohen Originator

Albert Cohen WP Leader

Roberto Giorgi Project Coordinator for formal deliverable | 31.12.2010

TABLE OF CONTENTS

L1.GLOSSARY....ccecuuueeeiiisssssnnnneeerissssssnnnseeersnssssssnnnseesssssssssnnsseesssssssssnnsssesssssssssnnssseessssssssnssssssssessssnsssssssssesssnnnnnes 6
2.EXECUTIVE SUMMARY....c0iiieiiunnmieeniieeisnnnaeernnsesssssssseensssesssssssssessssssssssssseessssssssssssseensssssssssssseensssssssssesssssassns 7
3.INTRODUCTION...c00etttiiieunnnneernnisssssssssersssssssssssssesersssesssssssseessssssssssssesesssssssssssesssssssssssssssseresesssasssssssssesssssanses 8
4.CODE GENERATION FOR THE TERAFLUX ISA.......ccc0eetiiunneeeiiisnssnnnneeeiesssssnnneeeeessssssnnnnssesssnsassssssseeesnnnssssssnns 9
5.COMPILING STARSS....ceeieeisuunnreerniaesssnnssneersssssssssssseersssesssssssseersssssssssssseessssesssssssssesssssssssssssssssesessssssssssnsnaees 23
6.CONCLUSIONS....ceiiiiiinnnnnnerriniiisssssseesisisssssssssesernsssssssssseseeissssssssssseessssssssssssesesssssssssssssssasssssssesessssssssssnsnenes 28

The following list of authors will be updated tdleet the list of contributors to the writing ofeh
document.

Albert Cohen, Feng Li
INRIA
Rosa Badia

BSC

Document marked as PU (Public) is published iry)tidr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis iocument.

The authors and the publishers make no expressatpbed warranty of any kind and assume no resibdiies for errors
or omissions. No liability is assumed for incidértaconsequential damages in connection with siray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and malydie used or
copied in accordance with the terms of the Licefibe. information in this document is a work in pregg, jointly
developed by the members of TERAFLUX Consortium REELUX") and is provided for informational use only

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks andide secrets owned
by or licensed to TERAFLUX Partners. The partneseinee all rights with respect to such technology ratated materials.
Any use of the protected technology and relatecerimtbeyond the terms of the License without thierpwritten consent

of TERAFLUX is prohibited. This document containaterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuihat all materials contained and/or referencetli;yddocument are
confidential and proprietary unless otherwise iathd or apparent from the nature of such matg(fialexample,
references to publicly available forms or documgents

Disclosure or use of this document or any mategatained herein, other than as expressly

permitted, is prohibited without the prior writteansent of TERAFLUX or such other party that maynggermission to
use its proprietary material. The trademarks, lpgasd service marks displayed in this documentharaegistered and
unregistered trademarks of TERAFLUX, its membersitslicensors. The copyright and trademarks owmed
TERAFLUX, whether registered or unregistered, mayb®used in connection with any product or sertheg is not
owned, approved or distributed by TERAFLUX, and may be used in any manner that is likely to caustomer
confusion or that disparages TERAFLUX. Nothing cord in this document should be construed as grauly
implication, estoppel, or otherwise, any licenseigint to use any copyright without the expresdtemn consent of
TERAFLUX, its licensors or a third party owner ofyasuch trademark.

Printed in Sena, Italy, Europe.

Part numberplease refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXEPIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT QHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVR (INCLUDING, WITHOUT

LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR QST BUSINESS, REVENUE, PROFITS, DATA
Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefrirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 4 of 28

OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, $ICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OR&H DAMAGES.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefrirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 5 of 28

1.Glossary

Continuation.

In this deliverable, a continuation may either derefunction that has been outlined from the @bntr
flow region of a parent or caller function, and wha@arguments include the live-in variables of the
associated control flow region. Code generatiortfierTERAFLUX ISA builds explicit continuations
when sequential control flow is decoupled for petatlata-flow execution. Continuations can be
built from the decoupling of both intraprocedurabriditionals) and interprocedural control flow (cal
and return points).

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefrirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 6 of 28

2.Executive Summary

This deliverable describes the form of the low leagle that the TERAFLUX back-end compiler will
aim to generate. The back-end compiler is currdrging designed and implemented as a port of
GCC. We report on two complementary code generatthemes, one based on the direct expansion
of the efficiency layer, pragma-based language th@decond one relying on the automatic
conversion of implicit parallelism into explicit @dlelism, implementing the PS-DSWP technique
described in D4.1. At the front-end level, we reémor the design and implementation of a unified
compiler infrastructure supporting the StarSs fgrafllanguages. This infrastructure is based on the
source-to-source Mercurium compiler. Both compileitscommunicate through the unified
representation described in D4.2.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefrirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 7 of 28

3.Introduction

This deliverable describes the compilation techegjand tools targeting the TERAFLUX
architecture, and supporting the efficiency prograng layer designed in WP3. It describes the first
adaptations of the TERAFLUX compilation tools (piaa and implemented) to generate code for the
TERAFLUX architecture. In this deliverable, we f@oon the ISA extensions for dataflow computing
and on the lowering of the annotations of the &fficy programming layer to an executable
abstraction of the machine.

3.1. Document structure

Section 4 describes the code generation scenarigsting the TERAFLUX ISA extensions for
dataflow threads. Section 5 describes the comgpiiatifrastructure for the efficiency layer pragmas
of the StarSs programming language.

3.2. Relation to other deliverables

This deliverable builds on the TERAFLUX InstructiBet Architecture (ISA) and deployment
specifications defined in D7.1 and D7.2. It is elgsrelated to the compilation methods described in
D4.1.

3.3. Activities referred by this deliverable

This deliverable is associated with and concludesk®.1. Future work on code generation for the
TERAFLUX architecture will be performed in the cext of Task 4.2.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefrirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 8 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice @puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

4.Code Generation for the TERAFLUX ISA

Due to some delay in the hiring and some logidfficdlty of integrating the work of three partners
(INRIA, UCY, UNISI), the design and implementatioha compiler back-end dedicated to
TERAFLUX has not finished in year 1 and needs tadmpleted in the second year of the project, in
the context of Task 4.2. We believe this will navh consequences or other delays in the planning of
the activities of the second year.

This deliverable describes the form of the low-leare targeted by the TERAFLUX back-end
compiler, setting the objectives and general deslgrices for the implementation of this compiler.
We report on two complementary code generationrseldhat we decided to study and to support in
the project. The first one relies on the directagion of the efficiency layer, pragma-based
language. The second one complements this expangtiothe automatic conversion of implicit
parallelism into explicit parallelism, implementitlge PS-DSWP technique described in D4.1. The
second scheme is capable of exposing finer graailpksm, converting all the control flow to
dataflow threads, but it involves a more complempiation infrastructure and will take more time to
mature and to become applicable to full TERAFLUXl&ations. Both schemes are being
implemented in GCC and leverage the static anafyrgilsprogram transformation passes described in
D4.1.

To illustrate the code generation schemes for BRAFLUX ISA, we selected a small example
representative of the problems arising when comgpitiomplex (recursive) control flow to a dataflow
architecture. This small example is the tree-reeerSibonacci algorithm, in a C implementation
calledfib in the following.

We will show the original program, different anrtethprograms with OpenMP streaming extensions,
and different versions of the generated code fotwo code generation schemes we propose.

4.1. Methodology and definitions:

* We use a C syntax with compiler builtins; thesdtims will ultimately be expanded into
assembly instructions by the backend compiler.

« void *TCreateDynamic(pred, function, counter, frame_size) is a conditional, dynamic thread
creation builtin; it (unconditionally) returns afh frame pointer to a frame structure of size
frame_size. Note that a fresh frame is allocated and retuenath ifpred is false.

« void TEnd() terminates the current thread, publishing all gataluced and written to
consumer frames, decrementing the synchronizatianters of these consumers accordingly,
and marking the resources of the terminated thimakcycling.

« void TUpdate(pred, frame_pointer) marks the synchronization counter of the thread
associated witlframe_pointer to be decremented,jifed is true. The actual decrement and
publication of the produced data does happen untilEnd() is reached, terminating the
execution of the current thread. This way, atomioitthe updates and productions is
maintained even in the case of roll-backs. Thesmential for future extensions with
transactions in dataflow threads and for faultreiee.

Note that unlike the DTA architecture from whiclsteyntax and semantics is partly inspired,
we donot assume that stores to dataflow frames triggemgticit update (decrement) of the
synchronization counter. This is the main diffeefrom the current ISA specification in

D7.1 and D7.2, and it is intended to make the gmleration more systematic.

If possible, we will consider removing this expljddistinctTUpdate() builtin and rely on
auto-update store semantics in the future.

« void TWait() waits for the completion of all threads spawnedHgycurrent dataflow thread,
and for the completion of threads transitively spad/by those. When the Thread Scheduling
Unit (TSU — see D6.1) manages the threads, thdkraatibe a need for this synchronization
mechanism.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 9 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

4.2. Original Program
int fib (int n) {

if (n<=1)
return n;
else |

int s1 = fib(n-1);
int s2 = fib(n-2);
int s =sl + &
return s;

|
|

void main () §
printf("fib(7) = %Zd", fib(7))

exit(0):

E

The original program computes the seventh Fibonaweiber in a tree-recursion.

4.3. First parallel version

In the first scenario, the program is manually palized with the pragma-based efficiency
programming model. We first consider a manuallyappelized version where the recursive calls are
executed asynchronously from the sum. We use thiassyand semantics of the streaming dataflow
OpenMP extension described in D3.2.

int fib (int n) {
#pragma omp parallel single

if (n<=1)
return n;
else §

#pragma omp lask firstprivate(n) output(sl)

sl = fib(n-1);

%

#pragma omp task firstprivate(n) output(s?)

| s2 = fib(n-2);

;pragma omp task input(sl, s2) lastprivate(s)
s = sl + 83

// Wait for all tasks spawned in this parallel region
#pragma taskwait

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 10 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

return s;
{ // End else
{ // End parallel single

void main () {
printi("fib(7) = %d", fib(7))

exit(0);

E

This version uses nested parallel regions, withyl@rivate clause (one of our proposed extensions to
OpenMP tasks) andtaskwait barrier before the return statement. This is pobbtne most
incremental way to parallelize the code for a beginbut it does not expose much pipeline
parallelism. We will explore the code generation#taflow threads nonetheless, before switching to
a more aggressively parallelized version.

4.4. Direct lowering of the first parallel version
Code generation takes five main steps.

* Convert tasks into outlined functions; these fusredi will become the work units of the
generated dataflow frames.

« Tag these functions with the proper thread typeledised in D7.1 (DF1, DF1b, DF2, S, L).

» Declare frame data types for each outlined functiorrapture the inputs of the associated
dataflow frame.

» Capture the dependences between threads fromsthentaut and output clauses, and convert
them into continuation fields in the frame dataetyp

* Replace each task pragmas with a dataflow thresation, with the associated allocation and
initialization of its frame.

+ Compile barrierstgskwait) into TWait(). This violates the basic principle that all
synchronizations in a pure dataflow program shaoltie from the availability of input data.
But it makes the compilation of the efficiency ldggoragmas much more systematic. Note
thatTWait() is systematically eliminated by the second, figrain compilation scheme that
will be presented in a later section.

Here is the resulting code for the example.

#define CFP TGetCurrentFramePointer():

struct frame_fib!
int n; // firstprivale(n)
int *s1; // output(s)
void *cont;

{

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 11 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

struct frame_fib2 §

int n; // firstprivate(n)
int *s2; // output(s2)
void *cont;

i

struct frame_fib_sum {

int s1; // input(s)

int s2; // input(s2)

int *s; // lastprivate(s)

// fib_sum has no continuation/consumer

L
[_THREAD void Jmain() §

//

// main() is always a legacy POSIX thread, not a dataflow thread.
printf("fib(7) = %d", fib(7));

exit(0):

E

int fib (int n) {
// fib is a plain function obeying procedural control flow.

if (n<=1)
return n;
else |
int s;

// Creale threads in reverse topological order of the
// dataflow graph

// Thread to compute the sum of fib(n-1) and fib(n-2).
// Stalled until it gets the data on both sides
// (last argument is 2).

#ipragma omp task input(nl, n2) lastprivate(n)
struct frame_fib_sum* fp_fib_sum =

TCreateDynamic(true, fib_sum, 2, sizeof(frame_fib_sum));
// Store the address of the cont frame,
//used by fib_sum to forward the result.
fp—fib_sum->g = &s;

// Thread computing fib(n—1)
// #pragma omp task firstprivate(n) output(nl)
struct frame_fib1* fp_fibl =

TCreateDynamic(true, fibl, 1, sizeof(frame_fib));
// Store the data needed for the thread computing fib(n-1).
// fp_fibl is the frame pointer where the data is stored to.
// n=1is the argument of function.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 12 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

// Tp_fib_sum—->argl is the field of the continuation
// thread where to store the resull.
fp_fibl->n = n;
fp_fibl—>cont = fp_fib_sum;
fp_fibl->s1 = &fp_fib_sum->s;
TUpdate(true, fp_fib1);
// Thread computing fib(n—2)
#pragma omp task firstprivate(n) output(nt)

struct frame_fib2* fp_fib2 =

TCreateDynamic(true, fib2, 1, sizeof(frame_fib));
fp_fib2->n = n;
fp—fib2—>cont = fp_fib_sum;
fp_fib2—>s2 = &fp_fib_sum->sg;
TUpdate(true, fp_fib2);

TWait();

return s;

|
|

DF1_THREAD fib1() §
int n = ((struct frame_fib1*)CFP)->n:;
“((struct frame_fib1*)CFP)->s1 = fib(n—1);
TUpdate(true, ((struct frame_fib1*)CFP)->cont);

} TEnd();

DFI_THREAD fib2() |
int n = ((struct frame_fib2*)CFP)->n:;
#((struct frame_fib2*)CFP)->s2 = fib(n-2):
TUpdate(true, ((struct frame_fib2*)CFP)->cont);

} TEnd();

DFI_THREAD fib_sum() |
int s = ((struct frame—fib_sum*)CFP)->sl;
int s2 = ((struct frame—fib_sum*)CFP)->s2;
int s =sl + 2
(struct frame_fib_sum*)CFP)—>s = s;

} TEnd();

The code generation scheme is very natural andregsic. Implementation in GCC is in progress and
will serve as a basis for more aggressive, finamgparallelization schemes.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 13 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

However, because the original parallel code wasguaisynchronization barrier, the code does not
expose as much parallelism as it could. In paricul mostly exposes task parallelism and no
pipeline parallelism across recursive calls. We address this limitation in the next section.

4.5. Second parallel version

This is an illustration of task pragmas on funcsiciorming a nested pipeline and avoiding taskwait.
We also decided not to decouple the executiondrctmtrol flow of the callee, but rather to make th
fib function itself a dataflow thread using our@&xtied OpenMP pragmas.

#pragma omp task input(n) output(*s)
int fib (int n, int *s) }

int §;

if (n<=1)
s =

else
int sl, s2;
fib(n-1, &sl);
fib(n-2, &s2);
g =8l + 8¢

%

E
E

void main () {
int s;

#pragma omp parallel single

% fib(7. &s):

printf("fib(7) = %d", s);

exit(0):

|

This version seems to expose much more scalakd¢igdesm. This will be confirmed when looking at
the generated dataflow code in the next section.

4.6. Direct lowering of the second parallel version

To form a nested pipeline, we complete the prevamae generation scheme by analyzing the inter-
procedural data dependences, and passing a cdidimtmhandle the value returned from the inner
task(s). The continuation makes the program nooking, eliminating thdWait ().

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 14 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

#4define CFP TGetCurrentFramePointer();

struct frame_main_print |
int arg; // Implicit pipelining (usage of s in main) between
// main and fib(n, &s).
f

struct frame_fib §
int arg; //#pragma omp task input(n) \
int *ret; // output(*s)
void *cont;

L

struct frame_fib_sum |
int argl; // Implicit pipelining between fib(n-1, &sl)
int argd; // fib(n-2, &s?)
int *ret; // and outer task fib(n, &s)
void *cont;

L

L_THREAD void main() §
// main() is always a legacy POSIX thread, not a dataflow thread.

// The value returned(output) by fib(7, &s) will be used in the
// main thread. Build a continuation for the returned value.
struct frame_main_print* fp_main_print =

TCreateDynamic(true, main_print, 1, sizeof(frame_main_print));

// Create an instance of the fib DF1b thread.

#pragma omp lask input(n) output(*s)
// the output(*s) here is connected to the outer main thread.
struct frame_fib fp_fibn* =

TCreateDynamic(true, fib, 1, sizeof(frame_fib));

// Store the argument (to compute fib(7)).
fp_fibn—>arg = 7,
// Store the continuation frame pointer.
fp_fibn—>cont = fp_main_print;
// Store the address where the result of the continuation thread
// should be stored.
fp_fibn—>ret = &fp_main_print->arg;
// Decrement the synchronization count of the fp_fibn instance.
TUpdate(true, fp_fibn):

exit(0); // Legacy threads are not managed by the TSU.
Pipeline between main thread and fib.

Create the continuation to handled the returned data by the inner task.
DFS_THREAD main_print() |}

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 15 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

/

// We assume a dataflow wrapper over printf is available,
//otherwige an S_THREAD should be uged.
printf("fib(7) = %d", ((struct frame_main_print*)CFP)->arg);

} TEnd();

DF1b_THREAD fib()
int n = CFP->arg;

if (n<=1)}4
// Return n to the continuation thread immediately.
((struct frame_fib)CFP)->rel = n;
} TUpdate(True, ((struct frame_fib*)CFP)—>conl);

else
// We create this continuation in the fib thread because there
// is an implicit pipeline between task fib (n—1, &s1),
// fib (n—=2, &s2) and their outer task fib (n, &s).
struct frame_fib_sum* fp_fib_sum =

TCreateDynamic(True, fib_sum, 2, sizeof(frame_fib_sum));
// Store the address of the cont frame,
// used by fib_sum to forward the result.
fp_fib_sum->cont = ((struct frame_fib*)CFP)->cont;
fp_fib_sum—>ret = ((struct frame_fib*)CFP)—>ret;
// Thread computing fib(n—1, &s1)
struct frame_fib* fp_fibl =

TCreateDynamic(pred?, fib, 1, sizeof(frame_fib));
// Store the data needed for the thread computing fib(n-1).
// fp_fibl is the frame pointer where the data is stored to.
// n=1is the argument of function.
// fp_fib_sum—->argl is the field of the continuation
// thread where to store the resull.
fp_fibl—>arg = n—1;
fp_fibl—>cont = fp_fib_sum;
fp_fibl—>ret = &fp_fib_sum->argl;
TUpdate(True, fp_fib1);

// Thread computing fib(n—2)
#pragma omp task firstprivate(n) output(s2)

struct frame_fib* fp_fib2 =

TCreateDynamic(pred?2, fib, 1, sizeof(frame_fib));
fp_fib2—>arg = n-2;
fp—fib2—>cont = fp_fib_sum;
fp_fib2—>ret = &fp_fib_sum->arg?;
TUpdate(True, fp-fib2);

E

} TEnd();

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 16 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

IMPLICIT pipelining between nested tasks.

#pragma omp ltask input(sl, s2) outpul(s)
DF1_THREAD fib_sum() |

int s1 = ((struct frame—fib_sum*)CFP)->arg!;

int s2 = ((struct frame_fib_sum*)CFP)->arg2;

int s =sl + 2

¥((struct frame_fib_sum*)CFP)->rel = s;

TUpdate(true, ((struct frame_fib_sum*)CFP)->cont);

TEnd();

4.7. Automatic parallelization of the source code, converting all
procedural and conditional control flow to dataflow
continuations

In the previous sections, we studied the lowerihtpe efficiency layer pragmas into TERAFLUX
ISA extensions. In this section and the followimges, we go one step further and leverage the grain
coarsening and implicit concurrency conversion méglires described in D4.1 to expose finer grain
dataflow parallelism. In particular, we aim to geate as many DF1 threads as possible, rather than
the more generic DF1b threads with internal corftoal of the previous versions.

We do not detail the application of the parall@lget decoupled software pipelining algorithm (see
D4.1), but only show the generated code. Heregtide has been obtained manually, but the goal is
to automate all of this in the second year of tiuggut.

#4define CFP TGetCurrentFramePointer();

struct frame_main_print |
int arg;

i

struct frame_fib §
int arg;
int *ret;
void *cont;

L

struct frame_fib_sum {
int argl;
int arg?;
int *ret;
void *cont;

L

L_THREAD void main() |
// main() is always a legacy POSIX thread, not a dataflow thread.

// Create an instance of the main_print DFS thread.
Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 17 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

struct frame_main_print* fp_main_print =
TCreateDynamic(true, main_print, 1, sizeof(frame_main_print));

// Create an instance of the fib DFl thread.
struct frame_fib* fp_fibn =
TCreateDynamic(true, fib, 1, sizeof(frame_fib));
// Store the argument (to compute fib(7)).
fp_fibn—>arg = 7;
// Store the continuation frame pointer.
fp_fibn—>cont = fp_main_print;
// Store the address where the result of the continuation thread
// should be stored.
fp_fibn—>ret = &fp_main_print—>arg;
// Decrement the synchronization count of the fp_fibn instance.
TUpdate(true, fp-fibn);

exit(0); // Legacy threads are not managed by the TSU.

|

DFS_THREAD main_print() {
// We assume a dataflow wrapper over printf is available,
// otherwise an S_THREAD should be used

printf("fib(7) = %d", ((struct frame_main_print*)CFP)->arg);

} TEnd();

DF1_THREAD fib() §
int n = CFP->arg;
bool predl = n <= 1,
bool pred¢ = 'predl;

struct frame_fib* fp_fib_then =

TCreateDynamic(pred!, fib_then, 1, sizeof(frame_fib));
fp_fib_then->arg = n;
[p_fib_then—>ret = ((struct frame_fib*)CFP)—>ret;
[p_fib_then—>cont = ((struct frame_fib*)CFP)->cont;
TUpdate(pred1, fp_fib_then);

struct frame_fib* fp_fib_else =

TCreateDynamic(pred, fib_else, 1, sizeof(frame_fib));
fp_fib_else—>arg = n;
[p_fib_else—>ret = ((struct frame_fib*)CFP)->ret:
[p_fib_else—>cont = ((struct frame_fib*)CFP)->cont;
TUpdate(pred2, fp_fib_else);

TEnd();

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 18 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

DFI1_THREAD fib_then() §
// Return n to the continuation thread immediately
((struct frame_fib)CFP)->ret = n;
TUpdate(true, ((struct frame_fib*)CFP)->cont);

} TEnd();

DFI_THREAD fib_else() {
// Create the thread to compute the sum of fib(n-1) and fib(n-2).
// Stalled until it gets data on both sides (last argument is 2).
struct frame_fib_sum* fp_fib_sum =
TCreateDynamic(true, fib_sum, 2, sizeof(frame_fib_sum));
// Store the address of the cont frame,
//used by fib_sum to forward the result.
fp_fib_sum->cont = ((struct frame_fib*)CFP)- >cont;
fp_fib_sum->ret = ((struct frame_fib*)CFP)- >ret;
// Thread computing fib(n—1)
struct frame_fib* fp_fibl =
TCreateDynamic(true, fib, 1, sizeof(frame_fib));
// Store the data needed for the thread computing fib(n-1).
// tp_fibl is the frame pointer where the data is stored to.
// n=1is the argument of function.
fp_fib_sum—>argl is the field of the continuation thread where
/] to store the result.
fp_fibl->arg = n—1;
fp_fibl->cont = fp_fib_sum;
fp_fibl—>ret = &fp_fib_sum—>argl;
TUpdate(true, fp_fib1);
// Thread computing fib(n—2)
struct frame_fib* fp_fib2 =
TCreateDynamic(true, fib, 1, sizeof(frame_fib));
fp_fib2->arg = n-¢;
fp_fib2—>cont = fp_fib_sum;
fp_fibd—>ret = &fp_fib_sum—>arg?;
TUpdate(true, fp_fib2);

} TEnd();

DFI_THREAD fib_sum() }
int s1 = ((struct frame_fib_sum*)CFP)->argl;
int s2 = ((struct frame—fib_sum*)CFP)->arg?;
mt s = sl + s%;
((struct frame—fib_sum)CFP)->ret = s;
TUpdate(true, ((struct frame_fib_sum*)CFP)->cont);

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 19 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

} TEnd();

Note that the code has been slightly optimizedstivas is forwarded directly to the outéb_sum
thread or to the main thread, and not to an additithread that would handle theurn statement
separately.

4.8. Automatic parallelization of the source code, converting all
procedural control flow to dataflow continuations and if-
converting conditional control flow

To further optimize the program and expose dataflavallelism that may be easier to exploit on
practical hardware (to mitigate synchronization addeduling overheads), it is also possible to if-
convert the innermost control flow rather than egstically converting it to dataflow continuations.
The result of this transformation is depicted ia tbllowing version.

#4define CFP TGetCurrentFramePointer();

struct frame_main_print |
int arg;

i

struct frame_fib §
int arg;
int *ret;
void *cont;

{

struct frame_fib_sum {
int argl;
int arge;
int *ret;
void *cont;

{

L_THREAD void main() |
// main() is always a legacy POSIX thread, not a dataflow thread.

// Creale an instance of the main_print DFS thread.
struct frame_main_print* fp_main_print =
TCreateDynamic(true, main_print, 1, sizeof(frame_main_print));

// Create an instance of the fib DF1 thread.
struct frame_fib* fp_fibn =
TCreateDynamic(true, fib, 1, sizeof(frame_fib));
// Store the argument (to compute fib(7)).
fp_fibn—>arg = 7;
// Store the continuation frame pointer.
Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 20 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

fp_fibn—>cont = fp_main_print;

// Store the address where the result of the continuation thread
// should be stored.

fp_fibn—>ret = &fp_main_print->arg;

// Decrement the synchronization count of the fp_fibn instance.
TUpdate(true, fp_fibn):

exit(0); // Legacy threads are not managed by the TSU.

E

DF'S_THREAD main—_print() |
// We assume a datallow wrapper over printf is available,
// otherwise an S_THREAD should be used.
printf("fib(7) = %d", ((struct frame_main_print*)CFP)->arg):

} TEnd();

DF'1_THREAD fib() §
int n = CFP—>arg;
bool predl = n <= [;
bool pred2 = !predl;

// 1f predl is true, return n to the continuation
// thread immediately
¥((struct frame_fib*)CFP)->rel = n;

TUpdate(predl, ((struct frame_fib*)CFP)->cont);
// The following operations are all guarded by pred?.

// Create the thread to compute the sum of fib(n—1) and fib(n-2).
// Stalled until it gets the data on both sides
// (last argument is 2).
struct frame_fib_sum* fp_fib_sum =
TCreateDynamic(pred2, fib_sum, 2, sizeof(frame_fib_sum));
// Store the address of the cont frame,
//used by fib_sum to forward the result.
[p_fib_sum—>cont = ((struct frame_fib*)CFP)->conl;
fp_fib_sum->ret = ((struct frame_fib*)CFP)->ret;
// Thread computing fib(n-1)
// #pragma omp task firstprivate(n) output(s1)
struct frame_fib* fp_fibl =
TCreateDynamic(pred?, fib, 1, sizeof(frame_fib));
// Store the data needed for the thread computing fib(n—1).
// tp_fibl is the frame pointer where the data is stored to.
// n—1is the argument of function.
// fp—fib_sum—->argl is the field of the continuation thread where
/] to store the result.
fp_fibl->arg = n—1;

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 21 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

fp_fibl=>cont = fp_fib_sum;
fp_fibl=>ret = &fp_fib_sum—>argl;
TUpdate(pred2, fp-fib1);
// Thread computing fib(n-2)
#pragma omp lask firstprivate(n) output(s?)

struct frame_fib* fp_fib2 =

TCreateDynamic(pred?, fib, 1, sizeof(frame_fib));
fp_fib2->arg = n-¢;
fp_fib—>cont = fp_fib_sum;
fp_fibd—>ret = &fp_fib_sum—>arge;
TUpdate(pred2, fp_fib2);

TEnd();

#pragma omp task input(sl, s?) lastprivate(s)
DFI_THREAD fib_sum() }

int s1 = ((struct frame_fib_sum*)CFP)->argl;

int s2 = ((struct frame_fib_sum*)CFP)->arg2;

mt s = sl + s%;

((struct frame_fib_sum)CFP)->ret = s;

TUpdate(true, ((struct frame_fib_sum*)CFP)->cont);

TEnd();

4.9. Status Report and Partial Conclusions

As announced in the introduction, the implementatibthese two main scenarios, and their variants,
is still underway. This delay has been an occaigrinforce our automatic techniques to convert
implicit concurrency into coarser grain, scalaldegtielism (see D4.1) and to realize that a
comparison of the different code generation stideslataflow architectures will be necessary. We
will complete the implementation in the second y&ahe project and perform the in-depth
comparison together with the multi-level parallatipn and locality optimizations conducted in Task
4.2.

The development branch of GCC in which these rebeartake place is not yet publicly available.
The OpenMP extensions used in this deliverablesapported by the streamization branch of GCC
and can be obtained from the GCC svn:

svn checkout svn://gcc.onu.org/svn/gcc/branches/streamization

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 22 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice @puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

5.Compiling StarSs

While the previous section discussed code generasnes, we now address the front-end
compilation challenges and infrastructure suppgrtire efficiency programming model (with
pragmas) defined in WP3.

StarSs is a task-based programming model thaten#ied exploitation of the applications' inherent
parallelism at the task level. To mark the taska 8tarSs application, annotations (pragmas) simila
to OpenMP are used. While this is already foun@penMP 3.0, a unique feature of StarSs tasks is
the input, output or inout clauses that appliethsis' parameters enable the runtime to track'tasks
data dependences. A task dependence graph is dyalnhiuilt and scheduled for execution in the
different devices. Also the clause “target devitmeSpecify that a given task code is tailored to a
specific device type (e.g., a custom vector acagdemode) has been defined.

This section reviews the StarSs family of annotatimguages, recalls the main syntactic and
semantic features, and then describes the congpilatfrastructure involved. The TERAFLUX
project enabled us to conduct a necessary reengigesnd a systematic merge of the different tools
associated with StarSs into a common, cohererastrficture. For this first deliverable, we repart o
this effort, discussing the techniques and compdlels common to all flavors of StarSs, targeting
different classes of parallel hardware. The speeaibdn of these techniques and tools for the
TERAFLUX architecture will be described in a fututeliverable.

StarSs family

There are several instantiations of StarSs, speethbn different target architectures, like Cellisst
targets Cell/B.E. architectures or SMPSs that teslygared memory machines. OmpSs is another
implementation of StarSs that also integrates OperiMis a BSC project recently started with the
aim of pushing the StarSs ideas in the OpenMP atdnilVhile a prototype version of GPUSs was
implemented based on the CellSs and SMPSs runtB$%3 decided to continue the effort of this
development integrated with the OmpSs infrastractur

OmpSs, which can also include OpenCL or CUDA kegrisla solution for easy programming of
heterogeneous architectures. OmpSs can be used tmmplain SMP machines, and SMP machines
with GPUs. There is also an implementation of tlueleh for clusters under development. OmpSs
leverages, from OpenMP, the possibility to inlinep parallelization and task definition pragmas
(avoiding the need to manually outline tasks) dnedpossibility of nesting tasks. StarSs extensions
allow runtime dependence analysis between taskisaatomatic data transfers. OpenCL and CUDA
allow the programmer to easily write efficient gattable SIMD kernels to be exploited inside the
tasks.

StarSs syntax

This section reviews the StarSs syntax, thatbaised on a few directives that annotate the cbde, t
main one being the task pragma. The input/outpuificlauses in StarSs are mandatory for all the
arguments of the annotated functions to indicat& thirection and are basic for the creation of the
data-flow graph of the application at runtime.

#pragma css task[input (parameters)] \

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 23 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

[output (paraneters)] \

[inout (paraneters)] \

[target device([cell, snmp, cuda])] \
[inpl enents (task _nane)] \
[reduction (paraneters)] \

[highpriority]

#pragma css wait on (data_address)
#pragna css barrier

#pragna css nmutex lock (variable)
#pragna css mutex unl ock(variable)

For example, the following pragma annotates a dgéunmction, therefore denoting that all
invocations of dgemm in the application will becoatask.

#pragna css task input (A, B, BS) inout (C
voi d dgemm (doubl e A[BS] [BS],
doubl e B[BS][BS],
double C[BS][BS].
int BS);

To support heterogeneity, two classes have beesdatiiet ar get devi ce clause specifies that
the code of the task is specific for a given deYiee, SPU for Cell, CUDA for NVIDIA GPUs or

smp for general purpose processors). Another clduagdas been added to support heterogeneity is
the clause npl enent s that specifies alternative implementations foarction. For example, for
the same case of tldgemm function an alternative implementation that ruh8I9IDIA GPUS can

be given (in the absence of thar get devi ce clause, the default &rp that enables the task to
be run on a general purpose processor):

#pragma css task input (A, B, BS) inout (CO
voi d dgemm (doubl e Al BS] [BS],
doubl e B[BS][BS],
doubl e CBS][BS],
int BS);
#pragma css task input (A B, BS) inout (C)\
target device (cuda) inplenents (dgenm
voi d dgemm cuda (doubl e A[BS][BS],
doubl e B[BS] [BS],
double C[BS][BS], int BS);

With the objective of extending OpenMP with theadéibw ideas of StarSs, similar extensions have
been defined on the OmpSs syntax for OpenMP. Otieeddifferences with the StarSs syntax is that
for OpenMP is not required to define in theput / out put /i nout clauses all the parameters of
the functions although all those that will defihe tata dependences between tasks:

#pragna onp task inout (C
voi d dgemm (doubl e Al BS] [BS],
doubl e B[BS][BS],
double C/BS][BS], int BS);

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 24 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice @puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

#pragna onp target device (cuda) inplenments (dgemm\
copy_in (A B, BS)
voi d dgemm cuda (doubl e Al BS][BS],

doubl e B[BS][BS],

double C[BS][BS]. int BS);

Another difference with StarSs syntax is that ietirpragmas are allowed. This saves the programmer
from outlining the task code in functions, although pragma should then be inserted in all the
corresponding points in the code.

StarSs Compilation

StarSs is a generic programming model and sevestitgpe implementations have been done so far:
CellSs, SMPSs, MPI/SMPSs, etc. However, recentl B&rted a task force to join all these ideas in
a single compiler (Mercurium) and runtime infrasture (Nanos++) called OmpSs. Since the future
compiler efforts will be devoted to this infrasttuie, we relate to it in this section.

Mercurium C/C++ is a source-to-source compiler, iteloes not generate object code (many other
compilers do this very well). Mercurium modifiegwrites, translates, changes, messes, and/or mixes
the input source code into another source codeghhén feed to a object-code generating compiler
(the native compiler or backend compiler.

The compiler plays a relatively minor role on impknting the OmpSs model. The compiler
recognizes the constructs and transforms thencadts to the Nanos++ runtime library. Most of
OmpSs is supported by the current version of timepdier.

The dependences clauses are transformed by gegeaadiet of expressions that will be evaluated
when the application is executed. These expressidhgenerate addresses of memory that will be
passed to the runtime library. In our current imm@tation, the target construct can only be applied
to a task construct but we envision than in futesdsions it will be possible to apply it to furmtis

and OpenMP work sharing as well. The target dewitassare currently supported are: SMP, CUDA
and Cell. There is ongoing work to support OpenCL.

When the compiler is going to generate the coda fask construct it looks to see if it is immeeliat
preceded with a target directive or if anothereéajrective is linked to this task construct byame
of an implement clause. If so, then the AST oftdsk is passed onto a device-specific provider for
each non-SMP device.

This provider generates the device-dependent Hatartust be associated with the task. It also, if
necessary, generate a specialized outline forekiee which may need to be generated in a separate
file. This additional file is reintroduced in therapiler pipeline following usually a different
compilation profile that will invoke different baekd tools (e.g., the NVidia compiler, nvcc, for
CUDA devices).

Internals of Mercurium

In Mercurium, new compiler phases are added asrdyniibraries to the compiler. These phases are
written in C++ though scripting languages (like iyt or Ruby) are under consideration in order to
speed up prototyping. As said before, Mercurium $®urce-to-source compiler, therefore it is based

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 25 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

on source generation and it does not spend too tmehor use many strategies modifying syntax
trees when transforming the code.

Mercurium supports single source compilation, tfeeeeit can generate more than one file for each
input source file. This is used for example to suppeterogeneous architectures where two or more
backend compilers are used.

Mercurium provides extensive C++ support, aimingugiporting all of C++2003. Also, many GCC
extensions are supported.

Input
source

Input IR

Compiler phase pipeline

C/C++

parsing engine N
OO
|
Y
Backend
compilation

Semantic
information

Compiler
driver

The figure above shows the pipeline of the Merauraompiler. The loop from the compiler driver
back to the input source denotes that in some caBes given input file, the process is repeated o
or more times.

Transformed IR

Output file “Prettyprinting”

Executable

The compiler is extended by means of compiler phaSeery compiler phase is a dynamically
loadable library. Phases are written in C++ usim@RI called TL. Mercurium on start loads a
sequence of compiler phases (a profile determirieshaphases and their order in each case). After
parsing, these phases run one after the otherePhaseive a common very high-level internal
representation (IR) but they may create a new # ¢hn be used by subsequent phases.

Mercurium has been designed to provide supportuibipte programming models. For example, right
now it gives support to StarSs and OpenMP pragmils (he data-flow extensions). When building
a new phase for Mercurium it is not always necgssastart from scratch. For example, if there is a
need for handling new #pragma lines, PragmaCustonp@erPhase can be subclassed. When
extending OpenMP, can be subclassed. These ckisgaly finding specific constructions.

Tools
The OmpSs infrastructure software is currently éostinanos.ac.upc.edu

The corresponding download URLs are:

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 26 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

* For the compilerhttp://nanos.ac.upc.edu/projects/mecxx/downloads

« For the runtimehttp://nanos.ac.upc.edu/content/nanos-environmistritmiition

Deliverable number: D4.3 Bissemination Level: PU

Deliverable namefFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 27 of 28

Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

6.Conclusions

We have reported on the design and implementafitimeacompiler flow targeted to the TERAFLUX
architecture.

Due to delays in the integration of the differédf\lextension proposals, the back-end work was
delayed and we describe the different compilatiremes and forms taken by the target code
generation on one example, instead of reportintheractual compiler tool (still being actively
developed at this time).

On the front-end side, we also describe the innatire effort conducted to unify the different
semantical and syntactic approaches in the Star8Sidyfof pragma-based languages serving as the
efficiency layer for TERAFLUX programming. This nafstructure is based on the Mercurium source-
to-source compiler, and will be connected to th&AELUX port of the GCC back-end compiler
through the unified intermediate representatiortidiesd in D4.2.

Both front-end and back-end tools are accessiblpublic download and will be updated
continuously in the course of the project.

Deliverable number: D4.3 Bissemination Level: PU

Deliverable nameFirst version of the compilation tools targeted tahe TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 28 of 28

