
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D4.3 – First version of the compilation tools targeted to the
TERAFLUX architecture

Due date of deliverable: 31/12/2010
Actual Submission: 31/12/2010

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 1 of 28

Change Control

Version# Author Organization Change History

1.0 Albert Cohen INRIA

2.0 Albert Cohen INRIA Major revision

2.1 Albert Cohen INRIA Feedback and comments

Release Approval

Name Role Date

Albert Cohen Originator

Albert Cohen WP Leader

Roberto Giorgi Project Coordinator for formal delive rable 31.12.2010

TABLE OF CONTENTS

1.GLOSSARY .. 6

2.EXECUTIVE SUMMARY .. 7

3.INTRODUCTION .. 8

4.CODE GENERATION FOR THE TERAFLUX ISA ... 9

5.COMPILING STARSS .. 23

6.CONCLUSIONS .. 28

The following list of authors will be updated to reflect the list of contributors to the writing of the
document.

Albert Cohen, Feng Li

INRIA

Rosa Badia

BSC

Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.

This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).

Disclosure or use of this document or any material contained herein, other than as expressly

permitted, is prohibited without the prior written consent of TERAFLUX or such other party that may grant permission to
use its proprietary material. The trademarks, logos, and service marks displayed in this document are the registered and
unregistered trademarks of TERAFLUX, its members and its licensors. The copyright and trademarks owned by
TERAFLUX, whether registered or unregistered, may not be used in connection with any product or service that is not
owned, approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer
confusion or that disparages TERAFLUX. Nothing contained in this document should be construed as granting by
implication, estoppel, or otherwise, any license or right to use any copyright without the express written consent of
TERAFLUX, its licensors or a third party owner of any such trademark.

Printed in Siena, Italy, Europe.

Part number: please refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 4 of 28

OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 5 of 28

1.Glossary

Continuation.

In this deliverable, a continuation may either denote a function that has been outlined from the control
flow region of a parent or caller function, and whose arguments include the live-in variables of the
associated control flow region. Code generation for the TERAFLUX ISA builds explicit continuations
when sequential control flow is decoupled for parallel, data-flow execution. Continuations can be
built from the decoupling of both intraprocedural (conditionals) and interprocedural control flow (call
and return points).

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 6 of 28

2.Executive Summary

This deliverable describes the form of the low level code that the TERAFLUX back-end compiler will
aim to generate. The back-end compiler is currently being designed and implemented as a port of
GCC. We report on two complementary code generation schemes, one based on the direct expansion
of the efficiency layer, pragma-based language, and the second one relying on the automatic
conversion of implicit parallelism into explicit parallelism, implementing the PS-DSWP technique
described in D4.1. At the front-end level, we report on the design and implementation of a unified
compiler infrastructure supporting the StarSs family of languages. This infrastructure is based on the
source-to-source Mercurium compiler. Both compilers will communicate through the unified
representation described in D4.2.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 7 of 28

3.Introduction

This deliverable describes the compilation techniques and tools targeting the TERAFLUX
architecture, and supporting the efficiency programming layer designed in WP3. It describes the first
adaptations of the TERAFLUX compilation tools (planned and implemented) to generate code for the
TERAFLUX architecture. In this deliverable, we focus on the ISA extensions for dataflow computing
and on the lowering of the annotations of the efficiency programming layer to an executable
abstraction of the machine.

3.1. Document structure

Section 4 describes the code generation scenarios targeting the TERAFLUX ISA extensions for
dataflow threads. Section 5 describes the compilation infrastructure for the efficiency layer pragmas
of the StarSs programming language.

3.2. Relation to other deliverables

This deliverable builds on the TERAFLUX Instruction Set Architecture (ISA) and deployment
specifications defined in D7.1 and D7.2. It is closely related to the compilation methods described in
D4.1.

3.3. Activities referred by this deliverable

This deliverable is associated with and concludes Task 4.1. Future work on code generation for the
TERAFLUX architecture will be performed in the context of Task 4.2.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 8 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4.Code Generation for the TERAFLUX ISA

Due to some delay in the hiring and some logistic difficulty of integrating the work of three partners
(INRIA, UCY, UNISI), the design and implementation of a compiler back-end dedicated to
TERAFLUX has not finished in year 1 and needs to be completed in the second year of the project, in
the context of Task 4.2. We believe this will not have consequences or other delays in the planning of
the activities of the second year.

This deliverable describes the form of the low-level code targeted by the TERAFLUX back-end
compiler, setting the objectives and general design choices for the implementation of this compiler.
We report on two complementary code generation schemes that we decided to study and to support in
the project. The first one relies on the direct expansion of the efficiency layer, pragma-based
language. The second one complements this expansion with the automatic conversion of implicit
parallelism into explicit parallelism, implementing the PS-DSWP technique described in D4.1. The
second scheme is capable of exposing finer grain parallelism, converting all the control flow to
dataflow threads, but it involves a more complex compilation infrastructure and will take more time to
mature and to become applicable to full TERAFLUX applications. Both schemes are being
implemented in GCC and leverage the static analysis and program transformation passes described in
D4.1.

To illustrate the code generation schemes for the TERAFLUX ISA, we selected a small example
representative of the problems arising when compiling complex (recursive) control flow to a dataflow
architecture. This small example is the tree-recursive Fibonacci algorithm, in a C implementation
called in the following.

We will show the original program, different annotated programs with OpenMP streaming extensions,
and different versions of the generated code for the two code generation schemes we propose.

4.1. Methodology and definitions:

• We use a C syntax with compiler builtins; these builtins will ultimately be expanded into
assembly instructions by the backend compiler.

• is a conditional, dynamic thread
creation builtin; it (unconditionally) returns a fresh frame pointer to a frame structure of size

. Note that a fresh frame is allocated and returned even if is false.
• terminates the current thread, publishing all data produced and written to

consumer frames, decrementing the synchronization counters of these consumers accordingly,
and marking the resources of the terminated thread for recycling.

• marks the synchronization counter of the thread
associated with to be decremented, if is true. The actual decrement and
publication of the produced data does not happen until is reached, terminating the
execution of the current thread. This way, atomicity of the updates and productions is
maintained even in the case of roll-backs. This is essential for future extensions with
transactions in dataflow threads and for fault tolerance.
Note that unlike the DTA architecture from which this syntax and semantics is partly inspired,
we do not assume that stores to dataflow frames trigger an implicit update (decrement) of the
synchronization counter. This is the main difference from the current ISA specification in
D7.1 and D7.2, and it is intended to make the code generation more systematic.
If possible, we will consider removing this explicit, distinct builtin and rely on
auto-update store semantics in the future.

• void waits for the completion of all threads spawned by the current dataflow thread,
and for the completion of threads transitively spawned by those. When the Thread Scheduling
Unit (TSU – see D6.1) manages the threads, there will not be a need for this synchronization
mechanism.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 9 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4.2. Original Program

The original program computes the seventh Fibonacci number in a tree-recursion.

4.3. First parallel version

In the first scenario, the program is manually parallelized with the pragma-based efficiency
programming model. We first consider a manually parallelized version where the recursive calls are
executed asynchronously from the sum. We use the syntax and semantics of the streaming dataflow
OpenMP extension described in D3.2.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 10 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

This version uses nested parallel regions, with a clause (one of our proposed extensions to
OpenMP tasks) and a barrier before the return statement. This is probably the most
incremental way to parallelize the code for a beginner, but it does not expose much pipeline
parallelism. We will explore the code generation to dataflow threads nonetheless, before switching to
a more aggressively parallelized version.

4.4. Direct lowering of the first parallel version

Code generation takes five main steps.

• Convert tasks into outlined functions; these functions will become the work units of the
generated dataflow frames.

• Tag these functions with the proper thread type, as defined in D7.1 (DF1, DF1b, DF2, S, L).

• Declare frame data types for each outlined function, to capture the inputs of the associated
dataflow frame.

• Capture the dependences between threads from the task input and output clauses, and convert
them into continuation fields in the frame data types.

• Replace each task pragmas with a dataflow thread creation, with the associated allocation and
initialization of its frame.

• Compile barriers () into . This violates the basic principle that all
synchronizations in a pure dataflow program should come from the availability of input data.
But it makes the compilation of the efficiency layer's pragmas much more systematic. Note
that is systematically eliminated by the second, finer grain compilation scheme that
will be presented in a later section.

Here is the resulting code for the example.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 11 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 12 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

The code generation scheme is very natural and systematic. Implementation in GCC is in progress and
will serve as a basis for more aggressive, finer grain parallelization schemes.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 13 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

However, because the original parallel code was using a synchronization barrier, the code does not
expose as much parallelism as it could. In particular, it mostly exposes task parallelism and no
pipeline parallelism across recursive calls. We will address this limitation in the next section.

4.5. Second parallel version

This is an illustration of task pragmas on functions, forming a nested pipeline and avoiding taskwait.
We also decided not to decouple the execution in the control flow of the callee, but rather to make the
fib function itself a dataflow thread using our extended OpenMP pragmas.

This version seems to expose much more scalable parallelism. This will be confirmed when looking at
the generated dataflow code in the next section.

4.6. Direct lowering of the second parallel version

To form a nested pipeline, we complete the previous code generation scheme by analyzing the inter-
procedural data dependences, and passing a continuation to handle the value returned from the inner
task(s). The continuation makes the program non-blocking, eliminating the .

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 14 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 15 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 16 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4.7. Automatic parallelization of the source code, converting all
procedural and conditional control flow to dataflow
continuations

In the previous sections, we studied the lowering of the efficiency layer pragmas into TERAFLUX
ISA extensions. In this section and the following ones, we go one step further and leverage the grain
coarsening and implicit concurrency conversion techniques described in D4.1 to expose finer grain
dataflow parallelism. In particular, we aim to generate as many DF1 threads as possible, rather than
the more generic DF1b threads with internal control flow of the previous versions.

We do not detail the application of the parallel-stage decoupled software pipelining algorithm (see
D4.1), but only show the generated code. Here, the code has been obtained manually, but the goal is
to automate all of this in the second year of the project.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 17 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 18 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 19 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Note that the code has been slightly optimized: the sum is forwarded directly to the outer
thread or to the main thread, and not to an additional thread that would handle the statement
separately.

4.8. Automatic parallelization of the source code, converting all
procedural control flow to dataflow continuations and if-
converting conditional control flow

To further optimize the program and expose dataflow parallelism that may be easier to exploit on
practical hardware (to mitigate synchronization and scheduling overheads), it is also possible to if-
convert the innermost control flow rather than systematically converting it to dataflow continuations.
The result of this transformation is depicted in the following version.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 20 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 21 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4.9. Status Report and Partial Conclusions

As announced in the introduction, the implementation of these two main scenarios, and their variants,
is still underway. This delay has been an occasion to reinforce our automatic techniques to convert
implicit concurrency into coarser grain, scalable parallelism (see D4.1) and to realize that a
comparison of the different code generation styles for dataflow architectures will be necessary. We
will complete the implementation in the second year of the project and perform the in-depth
comparison together with the multi-level parallelization and locality optimizations conducted in Task
4.2.

The development branch of GCC in which these researches take place is not yet publicly available.
The OpenMP extensions used in this deliverable are supported by the streamization branch of GCC
and can be obtained from the GCC svn:

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 22 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

5.Compiling StarSs

While the previous section discussed code generation issues, we now address the front-end
compilation challenges and infrastructure supporting the efficiency programming model (with
pragmas) defined in WP3.

StarSs is a task-based programming model that enables the exploitation of the applications' inherent
parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas) similar
to OpenMP are used. While this is already found in OpenMP 3.0, a unique feature of StarSs tasks is
the input, output or inout clauses that applied to tasks' parameters enable the runtime to track tasks'
data dependences. A task dependence graph is dynamically built and scheduled for execution in the
different devices. Also the clause “target device” to specify that a given task code is tailored to a
specific device type (e.g., a custom vector accelerator node) has been defined.

This section reviews the StarSs family of annotation languages, recalls the main syntactic and
semantic features, and then describes the compilation infrastructure involved. The TERAFLUX
project enabled us to conduct a necessary reengineering and a systematic merge of the different tools
associated with StarSs into a common, coherent infrastructure. For this first deliverable, we report on
this effort, discussing the techniques and compiler tools common to all flavors of StarSs, targeting
different classes of parallel hardware. The specialization of these techniques and tools for the
TERAFLUX architecture will be described in a future deliverable.

StarSs family

There are several instantiations of StarSs, specialized on different target architectures, like CellSs that
targets Cell/B.E. architectures or SMPSs that target shared memory machines. OmpSs is another
implementation of StarSs that also integrates OpenMP. It is a BSC project recently started with the
aim of pushing the StarSs ideas in the OpenMP standard. While a prototype version of GPUSs was
implemented based on the CellSs and SMPSs runtimes, BSC decided to continue the effort of this
development integrated with the OmpSs infrastructure.

OmpSs, which can also include OpenCL or CUDA kernels, is a solution for easy programming of
heterogeneous architectures. OmpSs can be used to run on plain SMP machines, and SMP machines
with GPUs. There is also an implementation of the model for clusters under development. OmpSs
leverages, from OpenMP, the possibility to inline loop parallelization and task definition pragmas
(avoiding the need to manually outline tasks) and the possibility of nesting tasks. StarSs extensions
allow runtime dependence analysis between tasks, and automatic data transfers. OpenCL and CUDA
allow the programmer to easily write efficient and portable SIMD kernels to be exploited inside the
tasks.

StarSs syntax

This section reviews the StarSs syntax, that it is based on a few directives that annotate the code, the
main one being the task pragma. The input/output/inout clauses in StarSs are mandatory for all the
arguments of the annotated functions to indicate their direction and are basic for the creation of the
data-flow graph of the application at runtime.

#pragma css task[input (parameters)] \

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 23 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

 [output (parameters)] \
 [inout (parameters)] \

[target device([cell, smp, cuda])] \
[implements (task_name)] \
[reduction (parameters)] \

 [highpriority]

#pragma css wait on (data_address)
#pragma css barrier
#pragma css mutex lock (variable)
#pragma css mutex unlock(variable)

For example, the following pragma annotates a dgemm function, therefore denoting that all
invocations of dgemm in the application will become a task.

#pragma css task input (A, B, BS) inout (C)
void dgemm (double A[BS][BS],
 double B[BS][BS],

To support heterogeneity, two classes have been added: the target device clause specifies that
the code of the task is specific for a given device (i.e., SPU for Cell, CUDA for NVIDIA GPUs or
smp for general purpose processors). Another clause that has been added to support heterogeneity is
the clause implements that specifies alternative implementations for a function. For example, for
the same case of the dgemm function an alternative implementation that runs of NVIDIA GPUS can
be given (in the absence of the target device clause, the default is smp that enables the task to
be run on a general purpose processor):

#pragma css task input (A, B, BS) inout (C)
void dgemm (double A[BS][BS],
 double B[BS][BS],
 double C[BS][BS],

#pragma css task input (A, B, BS) inout (C)\
target device (cuda) implements (dgemm)
void dgemm_cuda (double A[BS][BS],
 double B[BS][BS],

With the objective of extending OpenMP with the data-flow ideas of StarSs, similar extensions have
been defined on the OmpSs syntax for OpenMP. One of the differences with the StarSs syntax is that
for OpenMP is not required to define in the input/output/inout clauses all the parameters of
the functions although all those that will define the data dependences between tasks:

#pragma omp task inout (C)
void dgemm (double A[BS][BS],
 double B[BS][BS],
 double C[BS][BS], int BS);

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 24 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

#pragma omp target device (cuda) implements (dgemm)\
copy_in (A, B, BS)
void dgemm_cuda (double A[BS][BS],
 double B[BS][BS],

Another difference with StarSs syntax is that inlined pragmas are allowed. This saves the programmer
from outlining the task code in functions, although the pragma should then be inserted in all the
corresponding points in the code.

StarSs Compilation

StarSs is a generic programming model and several prototype implementations have been done so far:
CellSs, SMPSs, MPI/SMPSs, etc. However, recently BSC started a task force to join all these ideas in
a single compiler (Mercurium) and runtime infrastructure (Nanos++) called OmpSs. Since the future
compiler efforts will be devoted to this infrastructure, we relate to it in this section.

Mercurium C/C++ is a source-to-source compiler, i.e., it does not generate object code (many other
compilers do this very well). Mercurium modifies, rewrites, translates, changes, messes, and/or mixes
the input source code into another source code that is then feed to a object-code generating compiler
(the native compiler or backend compiler.

The compiler plays a relatively minor role on implementing the OmpSs model. The compiler
recognizes the constructs and transforms them into calls to the Nanos++ runtime library. Most of
OmpSs is supported by the current version of the compiler.

The dependences clauses are transformed by generating a set of expressions that will be evaluated
when the application is executed. These expressions will generate addresses of memory that will be
passed to the runtime library. In our current implementation, the target construct can only be applied
to a task construct but we envision than in future revisions it will be possible to apply it to functions
and OpenMP work sharing as well. The target devices that are currently supported are: SMP, CUDA
and Cell. There is ongoing work to support OpenCL.

When the compiler is going to generate the code for a task construct it looks to see if it is immediately
preceded with a target directive or if another target directive is linked to this task construct by means
of an implement clause. If so, then the AST of the task is passed onto a device-specific provider for
each non-SMP device.

This provider generates the device-dependent data that must be associated with the task. It also, if
necessary, generate a specialized outline for the device which may need to be generated in a separate
file. This additional file is reintroduced in the compiler pipeline following usually a different
compilation profile that will invoke different backend tools (e.g., the NVidia compiler, nvcc, for
CUDA devices).

Internals of Mercurium

In Mercurium, new compiler phases are added as dynamic libraries to the compiler. These phases are
written in C++ though scripting languages (like Python or Ruby) are under consideration in order to
speed up prototyping. As said before, Mercurium is a source-to-source compiler, therefore it is based

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 25 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

on source generation and it does not spend too much time or use many strategies modifying syntax
trees when transforming the code.

Mercurium supports single source compilation, therefore it can generate more than one file for each
input source file. This is used for example to support heterogeneous architectures where two or more
backend compilers are used.

Mercurium provides extensive C++ support, aiming at supporting all of C++2003. Also, many GCC
extensions are supported.

The figure above shows the pipeline of the Mercurium compiler. The loop from the compiler driver
back to the input source denotes that in some cases, for a given input file, the process is repeated one
or more times.

The compiler is extended by means of compiler phases. Every compiler phase is a dynamically
loadable library. Phases are written in C++ using an API called TL. Mercurium on start loads a
sequence of compiler phases (a profile determines which phases and their order in each case). After
parsing, these phases run one after the other. Phases receive a common very high-level internal
representation (IR) but they may create a new IR that can be used by subsequent phases.

Mercurium has been designed to provide support to multiple programming models. For example, right
now it gives support to StarSs and OpenMP pragmas (with the data-flow extensions). When building
a new phase for Mercurium it is not always necessary to start from scratch. For example, if there is a
need for handling new #pragma lines, PragmaCustomCompilerPhase can be subclassed. When
extending OpenMP, can be subclassed. These classes simplify finding specific constructions.

Tools

The OmpSs infrastructure software is currently hosted at

The corresponding download URLs are:

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 26 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

• For the compiler: http://nanos.ac.upc.edu/projects/mcxx/downloads

• For the runtime: http://nanos.ac.upc.edu/content/nanos-environment-distribution

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 27 of 28

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

6.Conclusions

We have reported on the design and implementation of the compiler flow targeted to the TERAFLUX
architecture.

Due to delays in the integration of the different ISA extension proposals, the back-end work was
delayed and we describe the different compilation schemes and forms taken by the target code
generation on one example, instead of reporting on the actual compiler tool (still being actively
developed at this time).

On the front-end side, we also describe the infrastructure effort conducted to unify the different
semantical and syntactic approaches in the StarSs family of pragma-based languages serving as the
efficiency layer for TERAFLUX programming. This infrastructure is based on the Mercurium source-
to-source compiler, and will be connected to the TERAFLUX port of the GCC back-end compiler
through the unified intermediate representation described in D4.2.

Both front-end and back-end tools are accessible for public download and will be updated
continuously in the course of the project.

Deliverable number: D4.3 – Dissemination Level: PU

Deliverable name: First version of the compilation tools targeted to the TERAFLUX architecture

File name: TERAFLUX-D43_v21final.odt Page 28 of 28

