Project TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D4.2 — Design of the unified intermediate represeation

Due date of deliverable: 31/12/2010
Actual Submission: 31/12/2010

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiindding the Commission Services)

CO | Confidential, only for members of the consortiumc(uding the Commission Services)

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 1 of 21

Change Control

Version# Author Organization | Change History

1.0 Albert Cohen INRIA

2.0 Albert Cohen INRIA Additional details
2.1 Albert Cohen INRIA Feedback

Release Approval

Name Role Date
Albert Cohen Originator

Albert Cohen WP Leader

Roberto Giorgi Project Coordinator for formal deliverable | 31.12.2010

TABLE OF CON

TENTS

L1.GLOSSARY ..eeeetttttuteneneenneeeeeeeeeeeteeeieieieieeteteetettetetttttttttttttiitttatitittatitteattittentsiaieeans 5
2.EXECUTIVE SUMMARY.....cciiiiiiiiiiiiiiniiiiiimiiiiiiiiniiiiiiiiississssiissssiiisssisssessssseennsens 6
3.INTRODUCTION....c00uuuuuummuumnnssesssssssssnsssssnnnssss 7
4. PRESERVING THE SEMANTICS OF PARALLEL LANGUAGES.......c00iieuummmitiniiiiisnnsiieiiiiiisssssseesassssssiseeesnsasssenes 8
5.CONCLUSIONS. ..ceettttttteteeeeeneeeeeeeeeeereieeieieeeeeeeeeeeeieeeeeteeeteeteieeeeeeeeeeeteeteeieeietieeeeiteteieeeeeeeeessseteeessieieessimeennsne 20

6. REFERENCES......c0000iiiiiiiiiinnneeiiiinnsssnnneeeensssssssnnnsseeessssssssnssssesssssssssnssssessssssssnnssseesssssssssnssssssssssssssnssnnassssssssens 21

The following list of authors will be updated tdfleet the list of contributors to the writing ofeh
document.

Albert Cohen
INRIA

Document marked as PU (Public) is published inyJtidr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedhis tiocument.

The authors and the publishers make no expressieshtied warranty of any kind and assume no resipdites for errors
or omissions. No liability is assumed for inciddrdaconsequential damages in connection with wiray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and malydre used or
copied in accordance with the terms of the Licerdee information in this document is a work in mess, jointly
developed by the members of TERAFLUX ConsortiumERRFLUX") and is provided for informational use only

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks andide secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technolayy r@lated materials.
Any use of the protected technology and relatecerr@tbeyond the terms of the License without therpwritten consent
of TERAFLUX is prohibited. This document containgterial that is confidential to TERAFLUX and its migens and
licensors. Until publication, the user should assutmat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iatkd or apparent from the nature of such mate(als example,
references to publicly available forms or documgents

Disclosure or use of this document or any mateoatained herein, other than as expressly

permitted, is prohibited without the prior writteonsent of TERAFLUX or such other party that mayngm@ermission to
use its proprietary material. The trademarks, lpgmsl service marks displayed in this documenttlaeeregistered and
unregistered trademarks of TERAFLUX, its members dsdlicensors. The copyright and trademarks owigd
TERAFLUX, whether registered or unregistered, may lpe used in connection with any product or sentttat is not
owned, approved or distributed by TERAFLUX, and mmet be used in any manner that is likely to causstorner
confusion or that disparages TERAFLUX. Nothing cored in this document should be construed as grgnhiy
implication, estoppel, or otherwise, any licenseright to use any copyright without the expressttem consent of
TERAFLUX, its licensors or a third party owner afyasuch trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUZRPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT QHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, NCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVRE (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR OST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRIT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OREH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

1.Glossary

OpenMP — Parallel programming pragma language on top, &€ and Fortran. In this deliverable,
we refer to the OpenMP specification version 3.6 tndataflow streaming extensions proposed in
the TERAFLUX project (see D4.1).

http://www.openmp.org

HMPP — Hybrid Compiler for Manycore Applications, fro@APS entreprise, generally used as a
shortcut for the HMPP pragma language on top ofC&t+ and Fortran, and for the HMPP
development workbench.

http://www.caps-entreprise.com

StarSs— StarSs is a task-based programming model tladlesn the exploitation of the applications'
inherent parallelism at the task level. To marktdsks in a StarSs application, annotations (prayma
similar to the OpenMP ones are used. A uniquenésitarSs tasks are the input, output or inout
clauses that applied to tasks' parameters enableithime to track tasks' data dependences.

http://nanos.ac.upc.edu

Graphite — Graphite is the name of a R&D project and a dtatipn pass of the GNU Compiler
Collection (GCC). It implements polyhedral compiat algorithms, applied to automatic
parallelization and loop nest optimization. In tbidiverable, the unified representation enabletus
sketch an extension of Graphite to task-level og&tons and to enhance its analysis with static
semantics carried by annotations of the efficidaoguages.

Http://gcc.gnu.org/wiki/Graphite

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 5 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

2.Executive Summary

The traditional compilation methods for parallehdaages consists in lowering the concurrency
constructs to runtime library calls or hardwaremitives in the early stages of the compilation flow
This approach is detrimental to performance, #mits the scope of most compiler optimizations in
presence of concurrency. It is also a waste of a static semantics for these compiler
optimizations, as the parallel language constracts not exploited in the static analyses of the
optimization passes. It complicates the support rfarltiple alternative language syntaxes and
semantics in a common backend compiler, althoughetlsyntaxes and semantics may share a lot of
common principles and constructs. In this deliveralive present the early design of a unified
intermediate representation addressing all of thesges. In addition, our approach is designed to
seamlessly integrate into an existing compiler gaork with minimal impact to the optimization
passes. An early implementation has been condirct€&LC, and will be used as a basis for future
OpenMP and OpenMP dataflow extension support imERAFLUX project.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 6 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

3.Introduction

This deliverable reports on the design a unifigddrimediate representation, aiming for the following
properties: it should be compatible with differefiiciency layer languages used in TERAFLUX, it
should enable aggressive task-level optimizatitmsadapt the grain of parallelism to the target, it
should enable state-of-the-art loop optimizatioasd finally it should enable classical compiler
optimizations in presence of dataflow concurreraywell as specific specialization steps to reduce
the overhead of parallel and distributed execution.

3.1. Document structure
This deliverable contains one main technical sagtiesenting the motivations for and the design of
the unified representation

3.2. Relation to other deliverables
This deliverable covers the compiler internals asged with the programming language designs
discussed in D3.2, and with the techniques and te$cribed in D4.1 and D4.3.

3.3. Activities referred by this deliverable
This deliverable is associated with Task 4.1. Tlwekwon unified intermediate representations will
extend into Tasks 4.2 for aggressive task-levelnopations and Task 4.3 for the optimizations
dedicated to transactional memory.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 7 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

4. Preserving the Semantics of Parallel Languages

We designed a unified representation of the higkileemantics of parallel programming languages
in the intermediate representation of optimizingnpders. In general, the semantics of these
languages does not fit well in the intermediateresentation of classical optimizing compilers,
designed for single-threaded applications, andsigally lowered to threaded code with opaque
concurrency bindings through source-to-source clatipn or a front-end compiler pass. The
semantical properties of the high-level paralleigiaage are obfuscated at a very early stage of the
compilation flow. This is detrimental to the eff@einess of downstream optimizations.

We define the properties we introduce in our negva@sentation and prove that they are preserved by
existing optimization passes. We characterize pitenizations that are enabled or interfere witls thi
representation and evaluate the impact of the Iseptimizations enabled by this technique for
concurrent programs, using a prototype implememtedbranch of GCC 4.6.

We wish to target all efficiency layer languagessidered in TERAFLUX, including StarSs, HMPP
and OpenMP streaming extensions. We would like &p rthese languages to the same, unified
representation, benefiting from the same task-leygimizations and code generation algorithms
targetting the TERAFLUX ISA.

This representation will be refined and fully implented in the second and third years of the project
and will be the cornerstone of the optimizationgrig place in Tasks 4.2 and 4.3.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 8 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimau(ICT-2009.8.1)

4.1 Motivation

The efficiency programming layer in the TERAFLUXopect takes the form of annotation languages
built on top of widespread, imperative languagasour applications and benchmarks, we will focus
on C and on the pragma-based annotations of th8sst@penMP and HMPP languages. Notice these
pragmas are written by programmers with moderatligh experience in parallel programming,
while the Scala programming language has beentedlén the project to represent productivity
development practices and to offer a syntax andiegas for a wider range of programmers.

The early expansion of user annotations to runtiadés, with the associated code transformations,
outlining, opaque marshaling of data and use aftfan pointers, is a process whereby concurrency is
gained, at an early compilation stage, at the ab#te loss of the initial high-level informatiomé
obfuscation of the underlying code.

The annotations provide a wealth of precise infaiomaabout data dependences, control flow, data
sharing and synchronization requirements, thateretle more optimizations than just the originally
intended parallelization.

The common approach for the compilation of parglfelgramming annotations is to directly translate
them into calls to the runtime system at a veryyestage. For example, in the GCC compiler, this
happens right after parsing the source code. Tleisngthat all the high-level information provided
by the programmer is lost and the compiler will é&w cope with the resulting code obfuscation and
loss of precise information. Our approach is tahfer abstract the semantics of the user annotations
and bring this information into the compiler's mmediate representation using the technique
presented in the next section. The semantical nmition is preserved, and when possible used or
even refined, until the end of the code optimizatmasses, where it is finally translated to the
intended runtime calls in a late expansion pass.

int main () {
int #8 = ... ;
#pragma omp parallel for shared (&) %
achedule (atatic)
for (i = 0; i < N; ++i)

{
alil = foo (...);

for (j = 0; j < N; ++j)
.. = alj]
¥

void main_omp_fn_0 (struct omp_data_a # omp_data_i) {
n_th = omp_get_num_threada();
th_id = omp_get_thread _num();
// compute lower and upper bounds from n_th and th_id
for (i = lower; i < uppar; #+#i) {
cap_data_i->alil = foo (...);

}

int main () {
int #8 = ... ;
omp_data o.8 = &;
GOMP_parallel_start (main_omp_fn_0, komp_data_o, 0);
main_omp_fn_0 (komp_data_o);
GOMP_parallel_end ();
8 = omp_data_o.a;
for (j = 0; j < N; ++j)
.. = aljl

}
Figure 1: The early expansion of a simple OpenMP exampl@) (tesults in information loss and obfuscation {¢i).

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 9 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimau(ICT-2009.8.1)

Let us consider the example on Figtreshere a simplemp parallel forloop with a static schedule is
expanded. Despite the fact that we chose one oletist disruptive expansions, the resulting code
does not look quite as appealing for most analysd optimization passes. If the original loop could
have been unrolled or vectorized, it is now verlkaty it would still be.

To make matters worse, the resulting code is nigt loarder to analyze and optimize, but it also lost
the information provided by the user through theaations and we lost the capability of optimizing
the parallelization itself. In the original versjaas the loop is declared to be parallel with arestha
data structura, we know that the right-hand-side of the assigrrali] = ... is not partaking in any

loop-carried dependences or that calls to the fomc foo have no ordering restrictions and can

happen concurrently. In the expanded version, hewdhat information is lost and must be found
through analyses that may, and quite likely will. fAmong other possibilities, the loop annotated a
parallel may have been fused with the second lbopthat is no longer an option once expansion has
taken place.

Annotated source code Annotated source code
OpenMP StarSs/5MPSs HMPP J OpenMp StarSs/8MPSs HMPP

T T T T T T

: ; ' ; i !

i [Saurce—tu—suurce campiler] i [suurce—tn—snurﬁe r:umpiler]

L T v L]
Y i Y i :
Aunotated code | [Farailel code| ([Amnotated cose | [Saiencial cote)

] L] T T T
G E—— e A . e T s 4 \
! ¥ Arser ¥ i ! ! } Arser { ¥ !
i Early expansion 1 i i Early abstraction E
| 1 [l 1 I | J 1 ' 1
I] [L] | | ¥] i 1
I -Standard IR: parallel code + runtime calls I I 8td. IR: seg. code + abstract annotatioms :
. ¥ i |] i
: Optimization passes | | Optimization passes i
i ; l | i ;
| ; I : Late expansion i
| * o ; |
: Back-end : : Back-end i
k Standard compiler, ! Standard compiler;

Figure 2: Compilation flow of high-level parallel-programngifanguages, current situation (left) and
our objective (right).

Figure2 illustrates the compilation flow of three parallgkogramming languages that are

representative of this type of languages. Open8jPStarSs ¢] and HMPP §] each in their own way

suffer from this issue. StarSs and HMPP rely onramtp-source compilers as a first step. The

source-to-source compiler they rely on is capablgeaerating optimized parallel code, either disect

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 10 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

expanded to calls to the runtime system or traedlaito another high-level parallel programming
language like OpenMP. From that point on, their pihaion flow either goes through an early

expansion pass that generates parallelized codissuneks calls to the runtime along with OpenMP, or
as is the case for HMPP, the code is parsed aedtljirrepresented in the compiler's intermediate
representation. At that point, most of the potérfitiafurther optimization is lost.

In order to preserve the high-level semantics @ @ notations and to avoid clobbering important
optimizations or analyses, we replace the earlyaesion of user annotations by an early abstraction
pass. This pass extracts the semantics of the ationg and inserts it into the compiler's original
intermediate representation, using constructsghegerve the information in a state that is ushple
analysis and optimization passes and that can atkyn be expanded to parallel code and runtime
calls at the end of the compilation flow.

We believe that even languages like HMPP, with diaied optimizing compiler, can benefit from

our approach as the source-to-source compilernergdly intended and specialized to perform the
domain-specific optimizations corresponding to tbeginal source language. Extending our
framework to such a language should not be overgpdicated, but to leverage the HMPP-specific
optimizations, CAPS would need to write a new cgdeeration backend for their source-to-source
compiler targeting the unfied intermediate repreéstim.

We attempt to address the following issues:

1. High-level parallel programming languages, intipatar OpenMP, are poorly optimized by
current compilers, even for simple and crucial segjal scalar optimizations.

2. Opportunities for optimizing the exploitation parallelism are lost (e.g., possibility to
compute optimized static schedules, verification ..

3. User information on concurrency, dataflow andcéyanization requirements is wasted. It can
be used for more than only parallelization.

4.2. Semantic abstraction

The semantics of user-level annotations is gernedefined with a direct correspondence to specific
parallelization techniques or to specific runtimallss Because of this, if instead of the early

expansion we only represent the annotations, ag dhe, in the intermediate representation, the
interpretation of their semantics will be necesskmy each compiler pass that needs to use the
information they carry. Multiple interpretation kg, in optimization passes and then in the late
expansion pass, would severely reduce the genewfitthis framework and make its extension

cumbersome.

The solution we advocate is to replace the earfyapgion pass by asarly abstractionpass that
extracts the necessary information from user atioot and represents it using a unique set of
abstract annotations irrespectively of the origia@lguage, lowering the annotations to a language-
independent representation, which should providmified view of the user information whether it
comes from OpenMP, HMPP or StarSs annotations.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 11 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

The key insight is that the high-level user annotest mostly provide information on data-flow, with
also some restrictions on control-flow that steonfrthe lack of precision on the dynamic data-flow.
The concurrency is just a result of the absenamnoflicts. We also recognize the importance of the
additional information a user provides as hintstlo& best strategy, like for example which is the
scheduling technique likely to yield the best resul

Adapting a new language, or an extension, to thityebstraction pass requires understanding and
abstracting the underlying semantics of the aniwstst but it should not require any modification in
the optimization passes of the compiler. Additioaget-specific semantics for new architectures or
accelerators can easily be added in the form ofhisés.

Following is the set of required abstract annotegj@nd a gist of their semantics.

Data-flow annotations.

* use the variable or memory area is read within trsoamted block.

» def: the variable or memory area is written.

* may-use the variable or memory area may be read withénatbsociated block.
* may-def. the variable or memory area may be written.

» safe-ref the variable is used or defined, but the userajuaes that all potential conflicts are
handled, e.g., with manual synchronization.
* reduction: the associated variable is part of a reduction.

Control-flow annotations.

* SESE the associated block of code is a Single-Entrggl@tEXit region. There is no
branching in or out and exceptions are caught withé region.

* single the associated block can only be executed orttoead.

* point-to-point synchronization: typically a producer-consumer dependence.

* barrier: collective synchronization, either an explicitrtier or when a barrier is implied at
the end of a block.

* transaction: atomic and isolated control flow region.
* memory barrier: a memory flush is required at this point.

These annotations can be further qualified with phecise memory model (e.g., consistency on
synchronization points) and any additional langusyggecific properties.

User hints.

Many of the decisions involved in tuning the pastaiode generation and the execution are hard to
decide from static analysis alone. We storhiats all the information provided by the programmer. If
the optimization passes can find provably betteriags, then these hints can be ignored, otherwise
they should take precedence.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 12 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

» parallel: this hint may be important for loops, becauseneifestatic analysis can recognize
the loop is parallel, the profitability of the pHeh execution may not be obvious. If the
programmer annotates a loop as parallel, it shootde overlooked.

» schedule the choice of the schedule for a parallel loop.

* num_threads number of threads available.

* More generally, any language-specific or targecgeinformation can be stored as a hint.
In particular, in case the late expansion pas®asdifficult to perform using the abstract
annotations alone, it would be trivial to keep thieole set of original annotations in this
form. As we will see in Sectiof.4, this is the easy way to solve the problem of éngb
classical sequential optimizations for such langsaas OpenMP.

These abstract annotations provide readily usati@mation to the optimization passes. They can
also be refined through static analysis as, formgta, OpenMP sharing clauses will generally only
providemay-def/may-usmformation which can be promoteddef/use

Depending on the compiler pass, annotated blocksad can be either seen as black boxes, that have
well-specified memory effects and behaviour, oythegay need to be perfect white boxes to allow
unrelated optimizations to be transparently appliegte representation of these annotations needs to
allow access to the code, yet restrict optimizatidhat would break the semantics of the
optimizations.

Default clauses.

In languages that have default clauses, or dekpdtified behaviour, all defaults must be made
explicit by the early expansion. This is part oé timterpretation of the language's semantics and
keeping any information implicit would hamper thengricity of the approach. The abstract
annotations should be self-contained.

In particular, the OpenMP default sharing atedaultclause allows the programmer to leave some of
the sharing clauses implicit. We convert all impliclauses to explicit ones during the early
abstraction pass, which allows to decouple thanmeiate representation from the OpenMP-specific
semantics of the default sharing.

Example: abstract semantics for OpenMP.

Without attempting to provide a full characteripatiof the OpenMP semantics, we present on
Figure3 a subset of the abstract semantics of the language

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 13 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

[[OpenMP annotation [Abstract annotations counterpart

parallel SESE & barrier
single SESE & single & barrier
e F r task SESE
Main directives sections SESE & barrier
section SESE & single
for parallel hint & barrier
master master thread hint & single
atomic {expr} lower to cormesponding atomic builtin operation
Synchronization directives|barrier barrier
taskwait synchronization point
flush memory barrier
shared (X) safe-rel (X & may-use (X) & may-del [X)
firstprivate {X) us=e (X)
lastprivate (X def {X)
Wiyt alme private (X) rename the variable X_p
. : threadprivate {X) rename the variable X_tp
reduction reduction(X)
copyin (X) use (X) & def (X_tp)
copyprivate (X) barrier & use (X)) & def (X_p)
mimtreads mum_threads hint
schedule schedule hint
Tuning clauses collapse
orderad single & static schedule
nowait remove the implicit barrier from the directive

Figure 3: OpenMP semantics.
Adapting this framework for an OpenMP extension $tseaming 4,7], consisting in two additional
clauses for task constructs, would require alsangdthe same two data-flow annotations. This
extension defines an input and an output clausetagks, which can be abstracted tase and a
def annotations in the simple, scalar version of tttergsion.

4.3. Intermediate representation
In this section we present a simple yet convenvesy to represent high-level information in the
current intermediate representation of optimizimgnpilers, in a way that does not require special
care.

The semantics of user-level annotations is genedafined with a direct correspondence to specific
parallelization techniques or to specific runtimallss This makes them well-suited for early
expansion as they are self-contained and requitatic analysis or verification. A direct trangat

or expansion, can be performed at the earliesestafjthe compilation flow, which is a convenient
way to avoid the interactions with the optimizatjmasses of compilers.

A common constraint in extending the intermediaperesentation of a compiler is that it requires
modifying most compiler passes, if only to keep thew information consistent after code
transformations. Instead of modify the represeniative circumvent this issue by making use of the
existing infrastructure. We introduce calls to fiatis builtin functions and conditional statements
that allow us to carry the abstract semantics efuber annotations and also to prevent aggressive
optimizations that would break the parallel sen@nititended by the user.

As Figure4 shows, we use variadic builtins, with parametersesponding to the abstract annotation
properties and, when relevant, the program varsatadevhich the property applies.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 14 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimau(ICT-2009.8.1)

int =X;
woid foo (int i) {
il = ..

¥
woid bar () {
for (int i = 0; i < ...; ++i) {
#pragma omp task shaved (I) firstprivate (i)
{
foo (i);
}
L
#pragma omp barrier
ff use X;

}

bool __builtin_property (property, ...J) {
Teturn true;
H
int bar () {
for (int i = 0; i < ...; ++i) {
if (__builtin_property (may_def, X}
&k _ builtin property (may_use, X)
kk __builtin_property (safae, X)
kk __builtin_property (use, i)
kk _ builtin property (restricted CF)) {
\par
foo (i);
}
H
__builtin_property (barrier);
ff use X;

}

Figure 4: Builtins.
It would be quite easy at this point to not perfany abstraction and only focus on avoiding theecod
obfuscation of the early expansion, by simply repreing directly all of the language's annotations
and performing a late expansion after the sequenpitimization passes. This is, however, only a
partial and suboptimal result.

One of the imperative requirements to make ourasgmtation robust, despite not requiring to modify
optimization passes, is that it naturally preveatsy transformation that would invalidate the
semantics of the annotations.

Many compiler passes have the potential to breaks#imantics if they are to perform without any
constraint. However, the representation implicitliroduces a few constraints that we believe to be
sufficient. The conditional expressions it introdscrelying on opaque builtin function calls, emssur
the integrity of the blocks of code they are attatto.

4.4. Application to compiler analysis and optimization
The information provided by programmers throughhHigvel annotations has the potential to be of
great use in other areas of compiler analysis giinzation than only parallelization. The first
major benefit of our technique is that it allowsawid the systematical loss of classical sequlentia
compiler optimizations when compiling parallel pragnming languages. In a second time, we survey

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 15 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

some other areas where we have hope to make arctimpiag the information gathered from the
programmer annotations.

We have already started to experiment with usiigittiormation for extending the code coverage of
the Graphite polyhedral optimization framework awe believe it will prove very useful for
improving the accuracy of some analysis passes,ftik example data-dependence and pointer alias
analyses. Finally, a more productivity-oriented atage of this scheme, we will discuss the potentia
for compiler verification of the program annotaton

4.5. Code obfuscation and optimization inhibition
One of the main drawbacks of the early expansioss pga that it leaves little room for classical
sequential optimizations, some of which have muatemtial for improving performance. Optimizing
concurrent applications is made harder by the pasef parallelization code. By postponing the
expansion pass, we allow the compiler to apply ghegtimizations before generating the
parallelization code, as long as we can ensurdlibaemantics are preserved.

A sequential optimization pass will, in most casest interact with our representation and will
therefore consider any annotated block of code aghide box. For example, on Figube the
optimization pass will consider that the conditiosatement and the call to our builtin function is
simply user code. In order to ensure that the clempan efficiently analyze white boxes, the bailti
function is typed so that the access to a varifibla the builtin function matches its semantics.rilo
specifically, on Figur®, the builtin function has const parameters. Theans that this code can
easily be analyzed to show that it only re.xjsthus enabling for example a constant propagation
pass. The invalidation of thgoperty, in case the = variable is substituted by a constant value i bot
references, does not invalidate the semanticseohtimotations.

if (__E}uil‘tj_l:_prn]_}ert)’ (usa, x3) {

R
Figure 5: As a white box, the builtin function is consideluser code.

It appears clear that the constant propagation dvoat be possible if, for example, the assignment

statement on Figurgwas enclosed within an OpenMP task constructithdtbeen expanded. In such

a case, the value r would have been marshalled in an opaque datatsteuand passed to a

function pointer in the same way as the expansiesgmted on Figurk

Despite major efforts, data-parallel and transaeticextension of imperative languages still incur
significant overheads due to missed optimizatiod§,l]. Our experiments demonstrate that
optimization of parallel code can increase perforoeaby up to1l.54x on a real application,

FMradio, thanks to vectorization and additional scalaimizations alone].

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 16 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

4.6. Extending the scope of polyhedral optimization

frameworks
One of the traditional limitations of the polyheldnaodel has been its restriction to the represemmtat
and transformation of Static Control Parts (SCafPgrograms. This restriction means that only stati
control is allowed and all array accesses musthbeugh affine subscripts. This strong limitation
reduces its applicability. Recently, Benabderrahenanal. proposed a simple extension of the code
generation algorithm and a generic scheme to captiynamic, data-dependence conditions in
polyhedral compilation frameworks3][This approach can represent arbitrary intrapitoca,
structured control flow. Yet it is only a conseiivatapproach, where dependences remain computed
through static analysis, and where complex cortooV or irregular data structures (with pointers)
may result in rough approximatior®g.[In addition, it is only an intraprocedural exsem.

We advocate for a complementary approach, usingtations to drive the formation of larger
SCoPs. While maintaining the static control prapsrtthis approach allows for more accurate
dependence analysis and enables more aggressivaizapions. We modified GCC's polyhedral
optimization framework, Graphite, to use the alastennotations in the SCoP detection phase. By
assimilating well-behaved blocks of code (corresiyum to the SESE abstract annotation), with the
proper memory effects information, to black boxeattare represented as single statements in the
polyhedral model, we hide non-static control flow opon-affine array subscripts from the
optimization framework without compromising its pertness.

Let us consider the example on FigGref non-static control code that is currently, aodrectly, not
recognised as a SCoP by Graphite and thus notiaptim

for (i = 0; i < N; ++#i) {
for (j = 0; j < M; ++3) {
#pragma omp task shared (A)

if (JALHILD = ...
else

AGIED = ..

for (i = 0; i < N; ++i) {
for (j = 0; j < W ++5) {
if (__builtin_property (SESE))

{
$f (GAGICED = ..

alaa

AT = ..

Figure 6: Extending Static Control Parts.
Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 17 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

If the task directive is expanded early within #esting OpenMP framework, this would be a lost
cause for Graphite as there would be opaque functdls and marshaling of a pointer to the array in
an opaque data structure. If the task directivegi®mred, then the non-affine modulo conditional
expression makes the SCoP detection fail.

However, using our representation and considehiagdsk as a black box within Graphite enables the
optimization of this loop nest. The current impleragion of the early abstraction pass is already
handling common OpenMP constructs. The Graphit@tatian to represent single-entry single-exit

regions as black boxes and to use the informatienextracted from the OpenMP annotations is
complete and will be included in the next releas@GC.

We plan to test the benefits of this technique byngiling OpenMP benchmarks in this way and
compare to the sequential execution of the prografss the late expansion pass from our
representation to generate parallel code is stdlen development.

Combining this annotation-based SCoP formation owthith Benabderrahmane's extensighi$ an
exciting future work. It will motivate additionalipport from annotations to refine the quality of th
data dependence and pointer aliasing computation.

4.7. Statically verifying user annotations
For languages like OpenMP, where the early expansidy consists in a direct translation of the
directives to parallelization code, the compilen caly perform rudimentary sanity checks along the
line of verifying that the same variable does n@bear on more than one sharing clause. This is a
serious limitation to productivity as most mistakegst be tracked through debugging.

Performing the expansion at a late stage will engug compiler has gathered much more information
on the program through static analysis and wilabke to more accurately and more completely assess
the validity of the user annotations.

For instance, relying on user annotations doesnmedn that static analysis can be forgotten. It is
important to compare its results with the programimérmation. If there is a contradiction and the
static analysis gives a precise answer, then ikeageasonable case for considering the programmer
made a mistake.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 18 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimau(ICT-2009.8.1)

woid foo) {
#pragma omp parallel for shared (A, x)
for (i =0; i < N; ++i) {
x += A[i];

}

wvoid foo_omp_fn_ O (struct omp_data 8 * omp_data_i) {
for (i = lower; i < upper; ++i) {
mp_data_i-*x += omp_data_i->A[i];
H
}
\par
void foo () {
omp_data_o.a = A;
omp_data_o.xX = X;
GOMP_parallel_start (foo_omp_fn O, komp_data o, 0);
foo_omp_fn_0 (komp_data_o);
GOMP_parallel _end ();
a = omp_data o.A;
x = omp_data_o.x;

}
Figure 7: The wrong code annotation, missing the reductianse or =z (top) and the result of early
expansion (bottom).
Let us consider the example presented on Figuwehere the programmer omitted a reduction clause.
The code is obviously incorrect. If the annotatians expanded early, even though it is possible for
the compiler to detect, at a later stage, the tamludn the function feoomp fn 0, there is no

information left about the original annotation, eetn about the fact that this is a parallelizexgblo

If the early abstraction pass was used insteash@s as the compiler detects the dependen:z; on
the reduction, it is possible to decide that thegpgmmer made a mistake as he declared the loop to
be parallel.

4.8. Roadmap for future work
In order to experimentally validate our approacd amaluate the impact these techniques have on
real applications, we envisage the following roagma

» Evaluate the additional code coverage that carchiewed in the polyhedral representation by
using the additional semantics of OpenMP annotationthe programs of the OpenMP
Benchmark Suite.

* Consider streaming OpenMP dataflow streaming eikdaascarrying explicit dependence
information, to enhance the accuracy of data degrerelanalyses.

* Further evaluate the performance improvement tbded coverage has on both the late-
expanded version and on the sequential version.

* Evaluate more precisely and more extensively thgatch of missed optimization
opportunities on the OpenMP Benchmark Suite, by pamng the performance achieved
using the original OpenMP code with the classicatlye expansion to the performance
achieved using late expansion.

* Compare the performance results of early expansidhe results of both unoptimized late
expansion and optimized late expansion with specdncurrency optimization.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 19 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

5.Conclusions

We presented an alternative approach to the ctssimpilation flow of high-level annotation-based
parallel programming languages. This alternatiiatsm enables sequential optimizations of parallel
codes, in particular it allows TERAFLUX efficienclayer programs to benefit from many
optimizations that until now were out of reach.tRar uses of the intermediate representation irclud
the extension of the scope of polyhedral repretientand optimization as well as static verificatio
of user annotations. Eventually we will be ableise this intermediate representtion to map differen
TERAFLUX pragma-based languages to a common badkargetting the TERAFLUX ISA.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 20 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbei249013
Call: FET proactive 1: Concurrent Tera-device Cotimgu(ICT-2009.8.1)

6. References

1. W. Baek, C. C. Minh, M. Trautmann, C. Kozyraldad K. Olukotun.
The opentm transactional application programmingrface.
In IEEE Intl. Conf. Parallel Architecture and Compilath Techniques (PACT'07pages 376-387,
2007.

2. D. Barthou, J.-F. Collard, and P. Feautrier.
Fuzzy array dataflow analysis.
J. on Parallel and Distributed Computing0:210-226, 1997.

3. M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohad,@ Bastoul.
The polyhedral model is more widely applicable tigan think.
In Proceedings of the International Conference on G@ngonstruction (ETAPS CC'10)
number 6011 in LNCS, Paphos, Cyprus, Mar. 201Gn§er Verlag.

4. P. M. Carpenter, D. R6denas, X. Martorell, A. R@xn and E. Ayguadé.
A streaming machine description and programmingehod
In SAMOS pages 107-116, 2007.

5. C. Miranda, P. Dumont, A. Cohen, M. Duranton, AnéPop. Erbium: A deterministic, concurrent
intermediate representation to map data-flow téslssalable, persistent streaming processes. In
Intl. Conf. on Compilers Architectures and Synthést Embedded Systems (CASES ' O@}ober
2010.

6. J. Planas, R. M. Badia, E. Ayguadé, and J. Labart
Hierarchical Task-Based Programming With StarSs.
Int. J. High Perform. Comput. AppR3(3):284-299, 2009.

7. A. Pop and A. Cohen. A stream-comptuting extangiacOpenMP. Iintl. Conf. on High
Performance Embedded Architectures and CompileiBEAC’11) January 2011.

8. S. B. R. Dolbeau and F. Bodin.
Hmpp: A hybrid multi-core parallel programming ernment.
In Workshop on General Purpose Processing on GragPiosessing Units (GPGPU 20Q7)
2007.

9. The OpenMP Architecture Review Board.
OpenMP Application Program Interface.
http://www.openmp.org/mp-documents/spec30.pdf.

10.C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-Rl-Aabatabai.
Code generation and optimization for transactiomamory constructs in an unmanaged language.
In ACM/IEEE Intl. Symp. on Code Generation and Opttiin (CGO'07) pages 34-48, 2007.

Deliverable number: D4.2 Bissemination Level: PU

Deliverable nameDesign of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 21 of 21

