
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D4.2 – Design of the unified intermediate representation

Due date of deliverable: 31/12/2010
Actual Submission: 31/12/2010

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: INRIA

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 1 of 21

Change Control
Version# Author Organization Change History
1.0 Albert Cohen INRIA
2.0 Albert Cohen INRIA Additional details
2.1 Albert Cohen INRIA Feedback

Release Approval
Name Role Date
Albert Cohen Originator
Albert Cohen WP Leader
Roberto Giorgi Project Coordinator for formal delive rable 31.12.2010

TABLE OF CONTENTS

1.GLOSSARY .. 5

2.EXECUTIVE SUMMARY .. 6

3.INTRODUCTION .. 7

4. PRESERVING THE SEMANTICS OF PARALLEL LANGUAGES .. 8

5.CONCLUSIONS .. 20

6. REFERENCES ... 21

The following list of authors will be updated to reflect the list of contributors to the writing of the
document.

Albert Cohen
INRIA

Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.
The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly
permitted, is prohibited without the prior written consent of TERAFLUX or such other party that may grant permission to
use its proprietary material. The trademarks, logos, and service marks displayed in this document are the registered and
unregistered trademarks of TERAFLUX, its members and its licensors. The copyright and trademarks owned by
TERAFLUX, whether registered or unregistered, may not be used in connection with any product or service that is not
owned, approved or distributed by TERAFLUX, and may not be used in any manner that is likely to cause customer
confusion or that disparages TERAFLUX. Nothing contained in this document should be construed as granting by
implication, estoppel, or otherwise, any license or right to use any copyright without the express written consent of
TERAFLUX, its licensors or a third party owner of any such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

1.Glossary
OpenMP – Parallel programming pragma language on top of C, C++ and Fortran. In this deliverable,
we refer to the OpenMP specification version 3.0 and to dataflow streaming extensions proposed in
the TERAFLUX project (see D4.1).

http://www.openmp.org

HMPP – Hybrid Compiler for Manycore Applications, from CAPS entreprise, generally used as a
shortcut for the HMPP pragma language on top of C, C++ and Fortran, and for the HMPP
development workbench.

http://www. caps-entreprise . com

StarSs – StarSs is a task-based programming model that enables the exploitation of the applications'
inherent parallelism at the task level. To mark the tasks in a StarSs application, annotations (pragmas)
similar to the OpenMP ones are used. A uniqueness of StarSs tasks are the input, output or inout
clauses that applied to tasks' parameters enable the runtime to track tasks' data dependences.

http:// nanos.ac.upc.edu

Graphite – Graphite is the name of a R&D project and a compilation pass of the GNU Compiler
Collection (GCC). It implements polyhedral compilation algorithms, applied to automatic
parallelization and loop nest optimization. In this deliverable, the unified representation enables us to
sketch an extension of Graphite to task-level optimizations and to enhance its analysis with static
semantics carried by annotations of the efficiency languages.

Http://gcc.gnu.org/wiki/Graphite

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 5 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

2.Executive Summary
The traditional compilation methods for parallel languages consists in lowering the concurrency
constructs to runtime library calls or hardware primitives in the early stages of the compilation flow.
This approach is detrimental to performance, as it limits the scope of most compiler optimizations in
presence of concurrency. It is also a waste of valuable static semantics for these compiler
optimizations, as the parallel language constructs are not exploited in the static analyses of the
optimization passes. It complicates the support for multiple alternative language syntaxes and
semantics in a common backend compiler, although these syntaxes and semantics may share a lot of
common principles and constructs. In this deliverable, we present the early design of a unified
intermediate representation addressing all of these issues. In addition, our approach is designed to
seamlessly integrate into an existing compiler framework with minimal impact to the optimization
passes. An early implementation has been conducted in GCC, and will be used as a basis for future
OpenMP and OpenMP dataflow extension support in the TERAFLUX project.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 6 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

3.Introduction
This deliverable reports on the design a unified intermediate representation, aiming for the following
properties: it should be compatible with different efficiency layer languages used in TERAFLUX, it
should enable aggressive task-level optimizations, to adapt the grain of parallelism to the target, it
should enable state-of-the-art loop optimizations, and finally it should enable classical compiler
optimizations in presence of dataflow concurrency, as well as specific specialization steps to reduce
the overhead of parallel and distributed execution.

3.1. Document structure
This deliverable contains one main technical section presenting the motivations for and the design of
the unified representation.

3.2. Relation to other deliverables
This deliverable covers the compiler internals associated with the programming language designs
discussed in D3.2, and with the techniques and tools described in D4.1 and D4.3.

3.3. Activities referred by this deliverable
This deliverable is associated with Task 4.1. The work on unified intermediate representations will
extend into Tasks 4.2 for aggressive task-level optimizations and Task 4.3 for the optimizations
dedicated to transactional memory.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 7 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4. Preserving the Semantics of Parallel Languages
We designed a unified representation of the high-level semantics of parallel programming languages
in the intermediate representation of optimizing compilers. In general, the semantics of these
languages does not fit well in the intermediate representation of classical optimizing compilers,
designed for single-threaded applications, and is usually lowered to threaded code with opaque
concurrency bindings through source-to-source compilation or a front-end compiler pass. The
semantical properties of the high-level parallel language are obfuscated at a very early stage of the
compilation flow. This is detrimental to the effectiveness of downstream optimizations.

We define the properties we introduce in our new representation and prove that they are preserved by
existing optimization passes. We characterize the optimizations that are enabled or interfere with this
representation and evaluate the impact of the serial optimizations enabled by this technique for
concurrent programs, using a prototype implemented in a branch of GCC 4.6.

We wish to target all efficiency layer languages considered in TERAFLUX, including StarSs, HMPP
and OpenMP streaming extensions. We would like to map these languages to the same, unified
representation, benefiting from the same task-level optimizations and code generation algorithms
targetting the TERAFLUX ISA.

This representation will be refined and fully implemented in the second and third years of the project,
and will be the cornerstone of the optimizations taking place in Tasks 4.2 and 4.3.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 8 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4.1 Motivation
The efficiency programming layer in the TERAFLUX project takes the form of annotation languages
built on top of widespread, imperative languages. In our applications and benchmarks, we will focus
on C and on the pragma-based annotations of the StarSs, OpenMP and HMPP languages. Notice these
pragmas are written by programmers with moderate to high experience in parallel programming,
while the Scala programming language has been selected in the project to represent productivity
development practices and to offer a syntax and semantics for a wider range of programmers.
The early expansion of user annotations to runtime calls, with the associated code transformations,
outlining, opaque marshaling of data and use of function pointers, is a process whereby concurrency is
gained, at an early compilation stage, at the cost of the loss of the initial high-level information and
obfuscation of the underlying code.
The annotations provide a wealth of precise information about data dependences, control flow, data
sharing and synchronization requirements, that can enable more optimizations than just the originally
intended parallelization.
The common approach for the compilation of parallel programming annotations is to directly translate
them into calls to the runtime system at a very early stage. For example, in the GCC compiler, this
happens right after parsing the source code. This means that all the high-level information provided
by the programmer is lost and the compiler will have to cope with the resulting code obfuscation and
loss of precise information. Our approach is to further abstract the semantics of the user annotations
and bring this information into the compiler's intermediate representation using the technique
presented in the next section. The semantical information is preserved, and when possible used or
even refined, until the end of the code optimization passes, where it is finally translated to the
intended runtime calls in a late expansion pass.

Figure 1: The early expansion of a simple OpenMP example (top) results in information loss and obfuscation (bottom).

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 9 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Let us consider the example on Figure 1 where a simple omp parallel for loop with a static schedule is
expanded. Despite the fact that we chose one of the least disruptive expansions, the resulting code
does not look quite as appealing for most analysis and optimization passes. If the original loop could
have been unrolled or vectorized, it is now very unlikely it would still be.

To make matters worse, the resulting code is not only harder to analyze and optimize, but it also lost
the information provided by the user through the annotations and we lost the capability of optimizing
the parallelization itself. In the original version, as the loop is declared to be parallel with a shared

data structure , we know that the right-hand-side of the assignment is not partaking in any

loop-carried dependences or that calls to the function have no ordering restrictions and can

happen concurrently. In the expanded version, however, that information is lost and must be found
through analyses that may, and quite likely will fail. Among other possibilities, the loop annotated as
parallel may have been fused with the second loop, but that is no longer an option once expansion has
taken place.

Figure 2: Compilation flow of high-level parallel-programming languages, current situation (left) and
our objective (right).

Figure 2 illustrates the compilation flow of three parallel programming languages that are
representative of this type of languages. OpenMP [9], StarSs [6] and HMPP [8] each in their own way
suffer from this issue. StarSs and HMPP rely on source-to-source compilers as a first step. The
source-to-source compiler they rely on is capable of generating optimized parallel code, either directly
Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 10 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

expanded to calls to the runtime system or translated into another high-level parallel programming
language like OpenMP. From that point on, their compilation flow either goes through an early
expansion pass that generates parallelized code and issues calls to the runtime along with OpenMP, or
as is the case for HMPP, the code is parsed and directly represented in the compiler's intermediate
representation. At that point, most of the potential for further optimization is lost.

In order to preserve the high-level semantics of user annotations and to avoid clobbering important
optimizations or analyses, we replace the early expansion of user annotations by an early abstraction
pass. This pass extracts the semantics of the annotations and inserts it into the compiler's original
intermediate representation, using constructs that preserve the information in a state that is usable by
analysis and optimization passes and that can ultimately be expanded to parallel code and runtime
calls at the end of the compilation flow.

We believe that even languages like HMPP, with a dedicated optimizing compiler, can benefit from
our approach as the source-to-source compiler is generally intended and specialized to perform the
domain-specific optimizations corresponding to the original source language. Extending our
framework to such a language should not be overly complicated, but to leverage the HMPP-specific
optimizations, CAPS would need to write a new code generation backend for their source-to-source
compiler targeting the unfied intermediate representation.

We attempt to address the following issues:

1. High-level parallel programming languages, in particular OpenMP, are poorly optimized by
current compilers, even for simple and crucial sequential scalar optimizations.

2. Opportunities for optimizing the exploitation of parallelism are lost (e.g., possibility to
compute optimized static schedules, verification ...).

3. User information on concurrency, dataflow and synchronization requirements is wasted. It can
be used for more than only parallelization.

4.2. Semantic abstraction
The semantics of user-level annotations is generally defined with a direct correspondence to specific
parallelization techniques or to specific runtime calls. Because of this, if instead of the early
expansion we only represent the annotations, as they are, in the intermediate representation, the
interpretation of their semantics will be necessary for each compiler pass that needs to use the
information they carry. Multiple interpretation layers, in optimization passes and then in the late
expansion pass, would severely reduce the genericity of this framework and make its extension
cumbersome.

The solution we advocate is to replace the early expansion pass by an early abstraction pass that
extracts the necessary information from user annotations and represents it using a unique set of
abstract annotations irrespectively of the original language, lowering the annotations to a language-
independent representation, which should provide a unified view of the user information whether it
comes from OpenMP, HMPP or StarSs annotations.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 11 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

The key insight is that the high-level user annotations mostly provide information on data-flow, with
also some restrictions on control-flow that stem from the lack of precision on the dynamic data-flow.
The concurrency is just a result of the absence of conflicts. We also recognize the importance of the
additional information a user provides as hints on the best strategy, like for example which is the
scheduling technique likely to yield the best results.

Adapting a new language, or an extension, to this early abstraction pass requires understanding and
abstracting the underlying semantics of the annotations, but it should not require any modification in
the optimization passes of the compiler. Additional target-specific semantics for new architectures or
accelerators can easily be added in the form of user hints.

Following is the set of required abstract annotations, and a gist of their semantics.

Data-flow annotations.
• use: the variable or memory area is read within the associated block.

• def: the variable or memory area is written.

• may-use: the variable or memory area may be read within the associated block.

• may-def: the variable or memory area may be written.

• safe-ref: the variable is used or defined, but the user guarantees that all potential conflicts are
handled, e.g., with manual synchronization.

• reduction: the associated variable is part of a reduction.

Control-flow annotations.
• SESE: the associated block of code is a Single-Entry Single-Exit region. There is no

branching in or out and exceptions are caught within the region.

• single: the associated block can only be executed on one thread.

• point-to-point synchronization: typically a producer-consumer dependence.

• barrier : collective synchronization, either an explicit barrier or when a barrier is implied at
the end of a block.

• transaction: atomic and isolated control flow region.

• memory barrier : a memory flush is required at this point.

These annotations can be further qualified with the precise memory model (e.g., consistency on
synchronization points) and any additional language-specific properties.

User hints.
Many of the decisions involved in tuning the parallel code generation and the execution are hard to
decide from static analysis alone. We store as hints all the information provided by the programmer. If
the optimization passes can find provably better choices, then these hints can be ignored, otherwise
they should take precedence.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 12 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

• parallel: this hint may be important for loops, because even if static analysis can recognize
the loop is parallel, the profitability of the parallel execution may not be obvious. If the
programmer annotates a loop as parallel, it should not be overlooked.

• schedule: the choice of the schedule for a parallel loop.

• num_threads: number of threads available.

• More generally, any language-specific or target-specific information can be stored as a hint.
In particular, in case the late expansion pass is too difficult to perform using the abstract
annotations alone, it would be trivial to keep the whole set of original annotations in this
form. As we will see in Section 4.4, this is the easy way to solve the problem of enabling
classical sequential optimizations for such languages as OpenMP.

These abstract annotations provide readily usable information to the optimization passes. They can
also be refined through static analysis as, for example, OpenMP sharing clauses will generally only
provide may-def/may-use information which can be promoted to def/use.

Depending on the compiler pass, annotated blocks of code can be either seen as black boxes, that have
well-specified memory effects and behaviour, or they may need to be perfect white boxes to allow
unrelated optimizations to be transparently applied. The representation of these annotations needs to
allow access to the code, yet restrict optimizations that would break the semantics of the
optimizations.

Default clauses.
In languages that have default clauses, or default specified behaviour, all defaults must be made
explicit by the early expansion. This is part of the interpretation of the language's semantics and
keeping any information implicit would hamper the genericity of the approach. The abstract
annotations should be self-contained.

In particular, the OpenMP default sharing or a default clause allows the programmer to leave some of
the sharing clauses implicit. We convert all implicit clauses to explicit ones during the early
abstraction pass, which allows to decouple the intermediate representation from the OpenMP-specific
semantics of the default sharing.

Example: abstract semantics for OpenMP.
Without attempting to provide a full characterization of the OpenMP semantics, we present on
Figure 3 a subset of the abstract semantics of the language.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 13 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Figure 3: OpenMP semantics.
Adapting this framework for an OpenMP extension for streaming [4,7], consisting in two additional
clauses for task constructs, would require also adding the same two data-flow annotations. This
extension defines an input and an output clauses for tasks, which can be abstracted to a use and a
def annotations in the simple, scalar version of the extension.

4.3. Intermediate representation
In this section we present a simple yet convenient way to represent high-level information in the
current intermediate representation of optimizing compilers, in a way that does not require special
care.

The semantics of user-level annotations is generally defined with a direct correspondence to specific
parallelization techniques or to specific runtime calls. This makes them well-suited for early
expansion as they are self-contained and require no static analysis or verification. A direct translation,
or expansion, can be performed at the earliest stages of the compilation flow, which is a convenient
way to avoid the interactions with the optimization passes of compilers.

A common constraint in extending the intermediate representation of a compiler is that it requires
modifying most compiler passes, if only to keep the new information consistent after code
transformations. Instead of modify the representation, we circumvent this issue by making use of the
existing infrastructure. We introduce calls to factitious builtin functions and conditional statements
that allow us to carry the abstract semantics of the user annotations and also to prevent aggressive
optimizations that would break the parallel semantics intended by the user.

As Figure 4 shows, we use variadic builtins, with parameters corresponding to the abstract annotation
properties and, when relevant, the program variables to which the property applies.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 14 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Figure 4: Builtins.
It would be quite easy at this point to not perform any abstraction and only focus on avoiding the code
obfuscation of the early expansion, by simply representing directly all of the language's annotations
and performing a late expansion after the sequential optimization passes. This is, however, only a
partial and suboptimal result.

One of the imperative requirements to make our representation robust, despite not requiring to modify
optimization passes, is that it naturally prevents any transformation that would invalidate the
semantics of the annotations.

Many compiler passes have the potential to break the semantics if they are to perform without any
constraint. However, the representation implicitly introduces a few constraints that we believe to be
sufficient. The conditional expressions it introduces, relying on opaque builtin function calls, ensure
the integrity of the blocks of code they are attached to.

4.4. Application to compiler analysis and optimization
The information provided by programmers through high-level annotations has the potential to be of
great use in other areas of compiler analysis and optimization than only parallelization. The first
major benefit of our technique is that it allows to avoid the systematical loss of classical sequential
compiler optimizations when compiling parallel programming languages. In a second time, we survey

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 15 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

some other areas where we have hope to make an impact using the information gathered from the
programmer annotations.

We have already started to experiment with using this information for extending the code coverage of
the Graphite polyhedral optimization framework and we believe it will prove very useful for
improving the accuracy of some analysis passes, like for example data-dependence and pointer alias
analyses. Finally, a more productivity-oriented advantage of this scheme, we will discuss the potential
for compiler verification of the program annotations.

4.5. Code obfuscation and optimization inhibition
One of the main drawbacks of the early expansion pass is that it leaves little room for classical
sequential optimizations, some of which have much potential for improving performance. Optimizing
concurrent applications is made harder by the presence of parallelization code. By postponing the
expansion pass, we allow the compiler to apply these optimizations before generating the
parallelization code, as long as we can ensure that the semantics are preserved.

A sequential optimization pass will, in most cases, not interact with our representation and will
therefore consider any annotated block of code as a white box. For example, on Figure 5, the
optimization pass will consider that the conditional statement and the call to our builtin function is
simply user code. In order to ensure that the compiler can efficiently analyze white boxes, the builtin
function is typed so that the access to a variable from the builtin function matches its semantics. More
specifically, on Figure 5, the builtin function has const parameters. This means that this code can
easily be analyzed to show that it only reads , thus enabling for example a constant propagation
pass. The invalidation of this property variable is substituted by a constant value in both
references, does not invalidate the semantics of the annotations.

Figure 5: As a white box, the builtin function is considered as user code.
It appears clear that the constant propagation would not be possible if, for example, the assignment
statement on Figure 5 was enclosed within an OpenMP task construct that had been expanded. In such
a case, the value of would have been marshalled in an opaque data structure and passed to a
function pointer in the same way as the expansion presented on Figure 1.

Despite major efforts, data-parallel and transactional extension of imperative languages still incur
significant overheads due to missed optimizations [10,1]. Our experiments demonstrate that

optimization of parallel code can increase performance by up to on a real application,

FMradio, thanks to vectorization and additional scalar optimizations alone [5].

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 16 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

4.6. Extending the scope of polyhedral optimization
frameworks

One of the traditional limitations of the polyhedral model has been its restriction to the representation
and transformation of Static Control Parts (SCoPs) of programs. This restriction means that only static
control is allowed and all array accesses must be through affine subscripts. This strong limitation
reduces its applicability. Recently, Benabderrahmane et al. proposed a simple extension of the code
generation algorithm and a generic scheme to capture dynamic, data-dependence conditions in
polyhedral compilation frameworks [3]. This approach can represent arbitrary intraprocedural,
structured control flow. Yet it is only a conservative approach, where dependences remain computed
through static analysis, and where complex control flow or irregular data structures (with pointers)
may result in rough approximations [2]. In addition, it is only an intraprocedural extension.

We advocate for a complementary approach, using annotations to drive the formation of larger
SCoPs. While maintaining the static control properties, this approach allows for more accurate
dependence analysis and enables more aggressive optimizations. We modified GCC's polyhedral
optimization framework, Graphite, to use the abstract annotations in the SCoP detection phase. By
assimilating well-behaved blocks of code (corresponding to the SESE abstract annotation), with the
proper memory effects information, to black boxes that are represented as single statements in the
polyhedral model, we hide non-static control flow or non-affine array subscripts from the
optimization framework without compromising its correctness.

Let us consider the example on Figure 6 of non-static control code that is currently, and correctly, not
recognised as a SCoP by Graphite and thus not optimized.

Figure 6: Extending Static Control Parts.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 17 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

If the task directive is expanded early within the existing OpenMP framework, this would be a lost
cause for Graphite as there would be opaque function calls and marshaling of a pointer to the array in
an opaque data structure. If the task directive is ignored, then the non-affine modulo conditional
expression makes the SCoP detection fail.

However, using our representation and considering the task as a black box within Graphite enables the
optimization of this loop nest. The current implementation of the early abstraction pass is already
handling common OpenMP constructs. The Graphite adaptation to represent single-entry single-exit
regions as black boxes and to use the information we extracted from the OpenMP annotations is
complete and will be included in the next release of GCC.

We plan to test the benefits of this technique by compiling OpenMP benchmarks in this way and
compare to the sequential execution of the programs. As the late expansion pass from our
representation to generate parallel code is still under development.

Combining this annotation-based SCoP formation method with Benabderrahmane's extension [3] is an
exciting future work. It will motivate additional support from annotations to refine the quality of the
data dependence and pointer aliasing computation.

4.7. Statically verifying user annotations
For languages like OpenMP, where the early expansion only consists in a direct translation of the
directives to parallelization code, the compiler can only perform rudimentary sanity checks along the
line of verifying that the same variable does not appear on more than one sharing clause. This is a
serious limitation to productivity as most mistakes must be tracked through debugging.

Performing the expansion at a late stage will ensure the compiler has gathered much more information
on the program through static analysis and will be able to more accurately and more completely assess
the validity of the user annotations.

For instance, relying on user annotations does not mean that static analysis can be forgotten. It is
important to compare its results with the programmer information. If there is a contradiction and the
static analysis gives a precise answer, then there is a reasonable case for considering the programmer
made a mistake.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 18 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Figure 7: The wrong code annotation, missing the reduction clause on (top) and the result of early
expansion (bottom).

Let us consider the example presented on Figure 7, where the programmer omitted a reduction clause.
The code is obviously incorrect. If the annotations are expanded early, even though it is possible for

the compiler to detect, at a later stage, the reduction in the function , there is no

information left about the original annotation, not even about the fact that this is a parallelized loop.

If the early abstraction pass was used instead, as soon as the compiler detects the dependence on , or
the reduction, it is possible to decide that the programmer made a mistake as he declared the loop to
be parallel.

4.8. Roadmap for future work
In order to experimentally validate our approach and evaluate the impact these techniques have on
real applications, we envisage the following roadmap:

• Evaluate the additional code coverage that can be achieved in the polyhedral representation by
using the additional semantics of OpenMP annotations in the programs of the OpenMP
Benchmark Suite.

• Consider streaming OpenMP dataflow streaming extensions carrying explicit dependence
information, to enhance the accuracy of data dependence analyses.

• Further evaluate the performance improvement this added coverage has on both the late-
expanded version and on the sequential version.

• Evaluate more precisely and more extensively the impact of missed optimization
opportunities on the OpenMP Benchmark Suite, by comparing the performance achieved
using the original OpenMP code with the classical early expansion to the performance
achieved using late expansion.

• Compare the performance results of early expansion to the results of both unoptimized late
expansion and optimized late expansion with specific concurrency optimization.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 19 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

5.Conclusions
We presented an alternative approach to the classical compilation flow of high-level annotation-based
parallel programming languages. This alternative solution enables sequential optimizations of parallel
codes, in particular it allows TERAFLUX efficiency layer programs to benefit from many
optimizations that until now were out of reach. Further uses of the intermediate representation include
the extension of the scope of polyhedral representation and optimization as well as static verification
of user annotations. Eventually we will be able to use this intermediate representtion to map different
TERAFLUX pragma-based languages to a common back-end targetting the TERAFLUX ISA.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 20 of 21

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

6. References
1. W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun.

The opentm transactional application programming interface.
In IEEE Intl. Conf. Parallel Architecture and Compilation Techniques (PACT'07), pages 376-387,
2007.

2. D. Barthou, J.-F. Collard, and P. Feautrier.
Fuzzy array dataflow analysis.
J. on Parallel and Distributed Computing, 40:210-226, 1997.

3. M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul.
The polyhedral model is more widely applicable than you think.
In Proceedings of the International Conference on Compiler Construction (ETAPS CC'10),
number 6011 in LNCS, Paphos, Cyprus, Mar. 2010. Springer Verlag.

4. P. M. Carpenter, D. Ródenas, X. Martorell, A. Ramírez, and E. Ayguadé.
A streaming machine description and programming model.
In SAMOS, pages 107-116, 2007.

5. C. Miranda, P. Dumont, A. Cohen, M. Duranton, and A. Pop. Erbium: A deterministic, concurrent
intermediate representation to map data-flow tasks to scalable, persistent streaming processes. In
Intl. Conf. on Compilers Architectures and Synthesis for Embedded Systems (CASES’10), October
2010.

6. J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta.
Hierarchical Task-Based Programming With StarSs.
Int. J. High Perform. Comput. Appl., 23(3):284-299, 2009.

7. A. Pop and A. Cohen. A stream-comptuting extension to OpenMP. In Intl. Conf. on High
Performance Embedded Architectures and Compilers (HiPEAC’11), January 2011.

8. S. B. R. Dolbeau and F. Bodin.
Hmpp: A hybrid multi-core parallel programming environment.
In Workshop on General Purpose Processing on Graphics Processing Units (GPGPU 2007),
2007.

9. The OpenMP Architecture Review Board.
OpenMP Application Program Interface.
http://www.openmp.org/mp-documents/spec30.pdf.

10.C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai.
Code generation and optimization for transactional memory constructs in an unmanaged language.
In ACM/IEEE Intl. Symp. on Code Generation and Optimization (CGO'07), pages 34-48, 2007.

Deliverable number: D4.2 – Dissemination Level: PU

Deliverable name: Design of the unified intermediate representation

File name: TERAFLUX-D42_v21final.odt Page 21 of 21

