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Glossary
™

Dataflow
computation

Transaction
Atomicity

Consistency
Isolation

™
mechanisms

Conflict

Eager conflict
detection

Lazy conflict
detection

Eager
versioning

Lazy versioning

Nested
transaction

Transactional Memory

A dataflow computation is defined by a graph whéhe nodes are side-effect-free
computations (functional computation) and the amegresent dependencies. A node is
activated and executed when its input dependenbiese been satisfied, generating
seamlessly parallel execution.

A set of individual operations that chde be executed atomically, with guarantees of
consistency and isolation

Transactions must appear to other tratigas as if they occur in a single operation, omdo
occur at all.

One transaction must take the program éne consistent state to another.
Transactions must act on isolation oteatter.

The implementation of a TM system normally requaleseans for detecting conflicts among
executing transactions, and a means for versiodatg used within a transaction to allow
restoring the system state back to its origin sthome or more transactions conflict.

Two transactions conflict when the twortsactions cannot be executed in parallel preserving
the atomicity, consistency and isolation propertiEisere are data dependencies across the
transactions (e.g. read-after-write or write-aftgite) which would invalidate the parallel
execution of those two transactions

The TM system has a choice about when to checkhehet number of transactions have a
conflict. Eager attempts to detect the conflictidgithe execution of the transaction.

Lazy attempts to detect conflicts among the exagutransactions when one of these
attempts to commit.

Eager versioning modifies directly memory and reggiian undo log to restore the original
state.

Lazy versioning buffers memory niioditions done by a transactions and only once such
transaction is allowed to commit, these modificasi@re propagated to memory visible by
other threads.

A transaction is nested when its execution is doath within the context of another
transaction. Flattening treats the nested trarmastas a merged single transaction. Open
nesting has been proposed as a means to reduamegassary conflicts by allowing nested
transactions to commit before their parent transadtas been done so.

Strong vs weak Strong isolation is where nothing can see the stédten a transaction while it is executing.

isolation

Weak isolation is where only other transactionsuarable to see intermediate state, but other
threads will not be prevented by the programmingl@hérom viewing the intermediate state.
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Executive Summary

This report contains descriptions of the currerdtestof work within the programming model
development, and is split into three parts covetimg high productivity model, the synchronous
dataflow model and the high performance models.

The specific achievements and discussions are:
High Productivity Model — Scala (Section 3)

. Manchester University Transactions for Scala (M) fias been published in JPDC 2012.

. Dataflow Scala library (DFScala) improved and magailable as open-source; published in
DFM2012.

. Work analyzing how to combine dataflow and tratismal memory for Lee’s algorithm is

recognized as best paper award in MULTIPROG 2012.

Synchronous Dataflow (Section 4)

. INRIA extended the data-flow synchronous Heptalgmguage with futures.

. The language comes with a formal proof of sengantpreservation (elision of the
asynchronous/parallelization annotations), and anpdation method extending the classical
«compilation of parallelism» of synchronous langesmd3est paper award at EMSOFT 2012.

High Performance Model — C directives (Section 5)

. StarSs (from BSC) has extended their compiler mmdime system to support speculation
within while-loops, generating promising initialstdts for the Graph500 benchmark.

. TFLUX (from UCY) has contrasted TFlux DDM with dhPLASMA based programming
model. This led to a publication at the Data-Flovogpamming Models for Extreme Computing
(DFM-2012).

. HMPP (from CAPS) has a proposal for their pragdieectives to support dataflow
programming on GPUs.

. INRIA has extended the streaming data-flow exterssof OpenMP, now called OpenStream,
with first class streams, dynamic task creatiow, mwodular compilation.

Overall, the programming models, formal descriptaomd supporting tools are maturing and this
deliverable provides an intermediate checkpoinprfgress towards the final deliverable for this
workpackage due next year. A large amount of rebelas been carried out in these three years in
WP3 and we start to observe common aspects amertdjffarent programming models. The creation
of the task graph is supported with different synbait the core functionality of describing a side
effect free computation as a node in the graphresgbent. The inputs and outputs are specifically
annotated and permit the generation of the datafiaph. We can observe a divergence on how rich
the set of in-built dependencies each programmirggah provides specific support for. This
divergence is not related with whether the dataftpaph generated is general, but is associated with
covering well certain patterns of dependencies tedlevel of sophistication expected from the
compiler when a pragma is encountered. The work Wi¥IPP provides an industrial perspective of
what features/functionalities are well understood.

Deliverable number: D3.4
Deliverable namenitial report comparing and contrasting the develged models
File name: TERAFLUX-D34-v5.doc Page 6 of 39



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

This document is an update on the work carriedimWP3. It is split into three distinct sections
covering the work carried out on the high produttivorogramming model (Scala), on the
synchronous concurrency (Heptagon) and on highopeence models. Within the latter models, we
cover progress with C-directive-based dataflow no@starSs, TFLUX, HMPP, OpenStream).

High
Efficiency

High
Developers

Productivity
Developers

Computational
Model

Dataflow

C plus pragmas
UCY, BSC, INRIA, CAPS
TFLUX, StarSs, HMPP

UNIMAN Stream OpenMP
(OpenStream)

Scala

Computational
Transactional Model

Memory
Dataflow

WP4 Gce OpensStream

Teratlux

Multi-cores

architecture

Embedded
Computing
Developers

Heptagon
INRIA

Synchronous
dataflow

Deliverable number: D3.4

Deliverable namenitial report comparing and contrasting the develged models

File name: TERAFLUX-D34-v5.doc

Page 7 of 39



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.1 Reation to other deliverables

This deliverable describes the existing work cdrraut to extend and implement dataflow and
transactional models and it is a continuation ofiDéhd D3.2

1.2 Activity referred by this deliverable
This deliverable covers the work being carriedunder WP3 in year 3 (i.e. T3.4).

1.3 Summary of previous work

The previous deliverable reported the progress @éfining the programming models and the
outcome of the initial experiments completed susftdly. We had developed working software
prototypes able to execute on standard multi-ctatégoms.

Deliverable number: D3.4
Deliverable namenitial report comparing and contrasting the develged models
File name: TERAFLUX-D34-v5.doc Page 8 of 39



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Summary of Dataflow and Transactional Memory

We present an executive summary of the decisiokentdao combine dataflow and transactional
memory. Full details can be found in D3.1, D3.2 & ® and some key terms are defined in the
Glossary of this deliverable. Appendix A summarites need for shared data in dataflow which
motivates combining Transactional Memory and davef

Dataflow Threads

The architecture and semantics is simplified whéramsaction executes only within a single thread.
Once a good understanding of Transactional MemodyRataflow has been achieved, we intend to
look into weakening these constraints.

Versioning and Conflict Detection

Because the project is fundamentally interestedam extensible system, it is felt that the

communication required to provide the global obsgon needed to implement eager conflict
detection coupled with the complexity it adds imlerto provide correct execution and progress
guarantees mean that it is better to opt for lamyflict detection. This lazy detection can alwags b

strengthened by checks at specified points witmnttansaction.

Nesting

Although true closed nested transactions are pefedue to finite hardware resources and after a
given depth, it will be reverted to flattened tractions. The first TM prototypes will implement
flattening. Because of its non-intuitive semantpen nested transactions are not an option.

Syntax

Because of its clarity at a programmer level intended that TM syntax in the form of atomic blsck
will be provided complete with supporting extension

Synchronization

In addition to providing atomic blocks it is inteedl that all forms of non-transactional
synchronization construct are excluded as theykreaatomicity of transactions.

As an update to these decisions, we note that it We are investigating how to optimize the
detection mechanism by taking advantage of thectstrel within a node (a set of cores) by having
conflict detection options more frequent than lazy.
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3 High Productivity Programming Model: Scala

In this section we will describe the work carriedt @n the development of a high productivity
programming model based on extensions to the Swalgramming language. Currently this work
consists of two main libraries which provide trasig&mal memory and dataflow execution.

MUTS http://apt.cs.man.ac.uk/projects/ TERAFLUX/MUTS/

DFScalahttp://apt.cs.man.ac.uk/projects/ TERAFLUX/DFEScala/

We provide updates on the new developments forethbgries and in particular how they can be
applied to Lee’s routing algorithm.

3.1 Manchester University Transactions for Scala (M  UTS)

In D3.3 we provided a first description of the implentation of software transactional memory in
Scala without making modifications to the Scalampiber. This was possible thanks to a novel
mechanism reliant on closures for marking the @atisnal areas of the code. This removes the need
for programmers using this model to use a speeidion of the Scala compiler, so making our work
more widely applicable.

The syntax provided by the closures is very sinaplé an example can be seen below.
/I Program code before a transaction

/I The transaction

val id = atomic {
threadld += 1
threadld

}

/I More none transactional code

We have conducted a survey considering all the neghniques to bring software transactional
memory into Scala as well as fully explored theatalities of our closure-based approach. This has
been published as a journal publication [5]. Whasesible in the survey we provided references to
implementations that instantiate each techniquepds of this survey we documented for the first
time several novel techniques developed in theemphtation of MUTS for Scala. We ordered the
implementation techniques on a scale moving from lmast to the most invasive in terms of
modifications to the compilation and run-time eowiment. This showed that, while the less invasive
options are easier to implement and more commay, dne more verbose and invasive in the codes
using them, often requiring changes to the synitakpmogram structure throughout the code.

There are a wide range of techniques for implemgritie frontends of software TMs in Scala. This
work through a combination of one or more of thofeing elements: Library Calls, Annotations,
Byte-Code Rewriting and Compiler Modifications. élsScala’s ability to define anonymous
functions and to pass them into other functionargsiments (Closures) is important in many Scala
software TMs. Table 1 maps the different availablehniques to the software TMs that implement
these techniques.

Before we look at the different ways of implemegtihese frontends, we will briefly consider some
of the points that these should be rated agairdileT2 provides a summary for each implementation
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strategy of the properties that take a discreteevalVe can observe that MUTS provides the most
complete coverage offering a high productivity meahusing TM in Scala.

Java Compatible Scala is Java compatible; however this does neamthat all frontends are
automatically compatible with Java. Some requiguiees of Scala that cannot be described in Java
code without a high level of understanding of thekings of the Scala compiler. For example using
frontends that require the passing of compilerrieseimplicit parameters or the passing of function
as arguments to other functions is problematic dwaJcode. For techniques that are not Java
compatible we note if the technique can be combingd techniques that are Java compatible to
allow transactions accessing the same sharedtsthgeconstructed in both Scala and Java.

Supports Strong Isolation If a TM supports strong isolation no action oé torogrammer or user
can result in transactional data being accessead botside of a transaction. If instead only weak
isolation is supported, it is possible to accesa Haing manipulated in a transaction from outside
transaction. This can then allow the non-commistiade of a transaction to be observed and modified,
potentially undermining the correctness of the cd8&ong isolation can also be broken by the
presence of non-transactional mutable data withitramsaction; such data may exist as an
optimisation.

Supports Legacy Code The use of code compiled by others is a routiae of writing programs,
however not all STMs are able to instrument thidecdr his means that it is not possible to include
within transactions compiled methods that contéile ®ffects. Examples of such methods are those
contained within the Scala mutable collections #redJava Util libraries.

No Runtime Modifications: Some STMs form a simple library that can just dmtled to the
classpath, others require the addition of more mck@ JVM arguments, or the use of special
compilers.

Clarity of Code: Different methods of implementing transactionabntends require different
syntaxes. These different syntaxes offer differlagels of complexity and verbosity. Excessive
verboseness or complicated syntax can act as sebtorthe use of the transactional frontend, or
result in difficulty reading and writing code thaes it.

No Alternative Syntax A specific point relating to clarity of code isat while some STM’s may be
less verbose than others, some of these requitetithacode inside a transaction uses a different
syntax to code outside a transaction. For exanmapl@lternative assignment statement is required for
some techniques. As the standard assignment opeaatostill be used, but may not be valid, such
changes not only increase the application progranwaekload, but also allow for the creation of
subtle bugs.

No Duplicate Methods To call functions from both inside and outsidéransaction some STMs
required that the user constructs two copies ohots, one that is transactional and one that is not
Others are able to automatically construct a tretimzal and a non-transactional method from a
single piece of user code. The ability to consthath methods from a single piece of code removes
the opportunity for discrepancies between the twetions to be added when writing or maintaining
the code, as well as reducing the workload forpttogrammer.
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Guarantees Correct Transactions Some STMs guarantee that all variables that neede
instrumented as part of a transaction will be, @bilhers leave it to the programmer to ensure Ithis.
the programmer fails to add all the required insgatation then the transaction may no longer be
correct and a race condition will have been intoailinto the program.

Table 1: Survey of techniques and available systems to add Software Transactional Memory to Scala

Implementation Style Implementations
Pure Libraries Explicit library calls —
Reference cells Multi-Verse
CCSTM
ScalaSTM
RadonSTM
Closures and reference cells CCSTM
ScalaSTM
Byte-code rewriting Class annotations Multi-Verse
Method annotations MUTS
Closures MUTS
Parser Modifications MUTS
Compiler Modifications —
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Table 2: Summary of approaches and their properties.
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3.2 Scala Dataflow Library (DFScala)

To compliment MUTS and to enable the developmentdafaflow code for a number of the
applications selected in WP2 (see D2.3 for perfoicearesults and current status of developed
applications) we have constructed a library to supihe creation and execution of dataflow threads.
The design of DFScala has been published in [7v@mtiave made DFScala available as open source
code at

http://apt.cs.man.ac.uk/projects/ TERAFLUX/DFEScala/
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In particular, this year we have made improvemémtgperformance, simplified the implementation
to use less complex parts of Scala and improvengdb help with the development of parallel
applications with DFScala.

One distinguishing feature of DFScala is the steliecking of the dynamically constructed dataflow
graph. This static checking ensures that at runtimeee will be no mismatch of the arguments to
functions. DFScala does not require the usageafiabtypes and thus a node can be generated from
any existing Scala function without complex refaictg of code. Each node in the dataflow graph is a
function which cannot be subdivided; a functiorségiuential. To support nested parallelism within a
function, subgraphs can be created which are wirolhtained within a function, returning a value to
the node upon completion.

To improve friendliness, we have made changesallaw simplifying the creation of nodes in the
graphs from:

val bThread = DFManager.createThread(cr eateGraph )
bThread.argl = b

bThread.arg2 = divisions / 2

bThread.arg4 = routes

bThread.arg5 = solutionsReduceThread.to kenl
bThread.arg6 = remainingReduceThread.to kenl

to a much shorter version:

val bThread = thread(createGraph _)
bThread(b, divisions / 2, Blank, routes ,
solutionsReduceThread.tokenl, remaining ReduceThread.tokenl)

The work on tools has focused on providing a simpsualization of the runtime schedule for
dataflow graphs (Figure 1).

- Ty e uracaa )(OD_E "
gir (e lienlla}[Q earch Google or enter an adress ¢ leace J (0]
DFScala Scope m Example Table = Graph

vt 34.54% ([

Thread  Parent Recelved Sant Childron Croated Started Finished Dumation  State
dstafow program frished @ ¢ D L #3 ] [ #2 1 03 ] 074n  0Bls 08 oo  QLneD
11.838 {23 tnimnea O OO LETPR TN T "R T finished |
II:E:%:ZZ‘Z O O o 00 OO0 osts  oss  am  ose  (CIEED
11838 @9 = @D arg 1 O O O [ o2 ] 1485 11285 1183  O5hs [ finishad ]
np | o) o 00 DO COCDOD = = on o= D
HF w10 Y 04 TUR O 0O 0O OO0 OO0 1488 148 218 o (e
e @ O oD O vm 72 rem e QDD
osie D o QD =5 O 0o O MO s wn 2 on CZD
iy -~ o J v I o5 MO = 2% m s CID
a74 XD o @EED aro 1 O OO O 2318 wse nzms  ove  QLEaad

==
|==—x=]

Figure 1: Simple visualization of the runtime schedule for dataflow graphs
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3.3 Experiments with Lee’s algorithm

To understand how to combine dataflow and transaati memory, we have used an established
benchmark, Lee's algorithm for routing printed gitdoards, to make an assessment of their utility
for creating efficient, simply written and corrgudrallel programs. Our experience was published in
[6] and was awarded the best paper award.

We have shown initial evidence of the combined rhadedataflow and TM making the parallel

implementation of our program simpler, at the saime as achieving a real world performance
increase compared to coarse locks, even when afrhead is included (MUTS — Software
Transactional Memory).

Lee's algorithm solves the problem of finding inelegent routes between a set of pairs of points on a
discrete grid. The applications originally proposeduded drawing diagrams, wiring and optimal
route finding, but the algorithm is now best knoasia method for routing paths on a printed circuit
board. There are later algorithms for route findingh less computational complexity, but Lee
produces a shortest solution for any given roui@ lavard state, as opposed to using heuristics to
arrive at a good-enough solution in less time. F@g2 shows the output of one application of Lee's
algorithm - routing paths on a printed circuit libaas generated by our implementation.

Figure 2: Lee’s algorithm

A simple overview of the Lee algorithm is that frohe start point of the route it looks at all adjaic
points and marks them as having cost one. From gaich P so marked, it marks each adjacent point
Pag; @s having cost cosi(f) = cost(P) + 1, as long they were not already exnkith a lower cost. If

an adjacent point is already part of another rabt:n using that point would cost more, by an
arbitrary constant factor, as a bridge of one rawter another needs to be built. This expansioit, as
is called, continues until the end point is a memiiethe set of adjacent points. Typically, this
expansion forms a circle around the start poinvekping obstacles such as existing routes, and
finishing at the end point. A trace is then rumirthe end point to the start point, always movim@ t
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point of lower cost until the start point is reagh&his produces a route which can be marked on the
grid.

The key to the problem is that any set of subproblstill need to share access to a single resource;
the grid. It is not simple for each thread to hameéndependent copy of the grid, as two thread&lcou
need use the same point for multiple routes anddvtien have to synchronise between themselves.
This would add logic to the program that is unedato the algorithm that we are implementing. It is
also not simple for each thread to have one pahefarger grid, as you cannot guarantee whicts par
a route will use before the expansion has beenleaél and such a scheme would vastly increase the
complexity of the program. However, given all rautn a circuit board it is unlikely that any two
being routed at a particular time will conflict. &lparallelism is there; it is just that it is haod
determine statically and is more apparent as tbgram is running. Work has already been done to
use Lee to evaluate the runtime characteristiestednsactional program [8] and Lee is also knosvn a
Labyrinth in the STAMP benchmark suite.

We used the MUTS library to create a parallel immatation by modifying a coarse-lock
(coarselock) version. Where the coarselock acqainesource with exclusion of all other threads, we
can instead perform the action inside a transadtianwill only allow other threads to read the sam
values as long as they do not write to them, atidawiomatically retry if such a conflict is found.

/I Atomically copy the shared data structure
val privateBoardState = atomic { boardState.freeze }

val expansion = expandRoute(board, route, privateBo ardState)
val solution = traceRoute(board, route, expansion)

/I Atomically write to the shared data structure
atomic {
if (verifyRoute(route, solution, boardState))
layRoute(route, solution, boardState)
else
scheduleForRetry(route)

This transactional version can be transformeduisiog dataflow (DFScala). The dataflow constructs
provided allow us to express this creation of peliam in a different way. Each route is a DFThread
that will have its inputs ready at the start of gregram's execution and so will all be runnable.
DFScala will schedule them for us so that only ms##e number are running at any time. A final
DFThread, the “collector thread' will be then ceelathat has each route's DFThread as one of its
arguments. This will therefore be run when the tsmhs are complete. This is a convenience
construct provided by DFScala, as it is expectedbéoa common pattern, and replaces the
synchronisation needed to create the list of smhstiand the join operation to wait for all thre&als
finish that we used in coarselock.

/I Accepts solutions as arguments and build a list from them
val solutionCollector = DFManager.
createCollectorThread[Solution](routes.length)
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for (route <- routes) {
Il Create a thread to solve a route
val routeSolver = DFManager.createThread(solveRoute )
routeSolver.argl = board
routeSolver.arg2 = route
routeSolver.arg3 = boardState
/' 1t will send the solutions to this function
routeSolver.arg4 = solutionCollector.tokenl

}

The performance results published in [6] and suriredrin Figure 3 bellow cover the scenario on
desktop multi-cores. For next year, we will expdhi$ analysis of the application and run on the
Teraflux architecture and larger many-core systems.
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Figure 3: Speedup results for Lee’s algorithm. “seq” represents the sequential execution; “coarselock”
represents the results obtained with a coarse-grain locking implementation; “muts” represents the results
obtained with TM; “dataflow” represents the results obtained when combining dataflow and TM.
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4 Synchronous concurrency

Synchronous languages are devoted to the desigingidmentation of embedded software. They
are particularly successful for safety-critical lftiae systems. They facilitate the parallel modula
specification and formal verification of systemsth®e generation of target embedded code. The
synchronous model is based on the hypothesis ofjiadl global time scale shared by all processes
which compute and communicate with each other miateeously. This ideal model is then validated
by computing the worst case execution time (WCHET single reaction. Nonetheless, global logical
time may be difficult to preserve when the impletadion is done on a parallel machine or
performance is an issue. For example, when rurmirage but long duration task concurrently with a
frequent and faster task, the logical time stedccaaively be forced to be big enough for the I@ige
task to fit in and short enough to keep up withftegquency of the small task. The classical sotuiso

to decouple these tasks, running the long one scseseral steps. This is usually stated as the
problem of « long duration tasks » in the literatugeveral approaches have been considered in the
past, always using distribution as a means to g#edbte tasks, be it explicit language construats t
call external distributed functions or automatiddea repartition techniques. The current practite o
distribution is mostly manual with no warranty tlitgbreserves the functional behaviour of the model
We believe that decoupling should be explicitly ttolked by the programmer, within the
synchronous language itself as a programming aaeistFhe distribution will then be done according
to this decoupling. The natural expression of dptog is given by the notion dtiture introduced in
Actl and MultiLisp and present in modern langudidesC++11, Java, F#.

A future is the promise of the result of a compotatWhereas a call to f(x) couples the computation
of f(x) and the return of the result y, the asywocious call async f(x) returns instantaneously aréut

a. Possibly latter on, when the actual result eded, 'a will block until f(x) has finished and uet

the result y. With the help of futures, we claimtteynchronous languages are fit, not only to desig
the control and computations, but also to progfaendecoupling and distribution.

Our contributions can be summarized as follows.ddesider a Lustre-like language extended with
futures and explicit asynchronous function callsisTextension is modular and conservative w.rd. th
base language, in the following sense: a sequericénput/output values of the annotated
(asynchronous) program is equal to the one of dteannotated one. In other words, the annotations
preserve the original synchronous semantics. Tipéeimentation handles futures as a support library.
They are treated like any value of an abstract,tifpeget operation ly is translated to the libramg,

and an asynchronous call async f(x) is a matterrafpping it inside a concurrent task, managing
inputs, and dealing with the filling of futures. §fkcrucial memory boundedness of synchronous
programs is preserved, as well as the ability toegate efficient sequential code for each separate
process resulting from the distribution. The digited program also stays free of deadlocks, likeloc
and races.

To our knowledge, the use of futures in a synchusnlanguage is unprecedented. We show via
numerous examples how to desynchronize long-runnorgputations, how to express pipelining,

fork-join, and data-parallelism patterns. This waye achieve much higher expressiveness than
coordination languages with comparable static ptagse In particular, the language captures
arbitrary data-dependent control flow and feedbdickliso highlights the important reset operator,

leveraging rarely exploited sources of data-pdisitein stateful functions.
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We demonstrated that such desynchronization cachieved within bounded memory, and without
the need for a garbage collector. This is the fasguage with futures with such guarantees, making
our parallel extension of Heptagon particularlyenesting for embedded and real-time applications.

This work was awarded the best paper award at EMSZOR2. The detailed semantics, a multitude
of examples, and proofs can be found in [3].

A C backend with low-level futures and pthreadsaisilable, complementing our earlier (less
efficient) Java backend. For higher performance iatefration with the TERAFLUX tool flow, an
OpenStream backend is currently being finalizede Pphecise compilation method and experimental
evaluation will be reported in the 4th year of gheject.

Deliverable number: D3.4
Deliverable namenitial report comparing and contrasting the develged models
File name: TERAFLUX-D34-v5.doc Page 19 of 39



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 High Performance Developers: C pragmas

5.1 StarSs

BSC is investigating how speculation can be brougbtStarSs using Transactional Memory. StarSs,
is a task based programming model for widely usedtiMore architectures. The programming
model is based on data flow analysis and dynamia d@pendency tracking by the runtime.
Sometimes in order to extract more parallelism iplgttasks are allowed to simultaneously update
memory locations. In such cases lock-based synation is used to maintain the correctness of the
application. But locks suffer from the drawbacksle&dlock, livelock and priority inversion.

We introduced Software Transactional Memory (STMpdxl concurrency control mechanism to
manage parallel updates. The comparison of rebeliween lock-based approach and STM-based
approach shows that applications with high locktention have better performance with STM based
approach [9].

5.1.1 Speculation in StarSs

StarSs provides synchronization constructs sucliwait-on”, to wait for a particular memory
location to be updated before continuing execudiod“barrier”, to block execution of all threads till
each of them reaches a certain point of execu8ach constructs hamper the parallelism by leading
to problems such as blocking of work generation kadl balancing. The most common situations
where these constructs are used are during if-tondand while-loops. Hence we speculate on the
conditions of these loops.

In case of an if-condition such as:

Ti(a);

/] #pragnma css wait on(a)

#pragma css specul ate wait(a) val ues(b,c)
if(a)

T2(b);
T3(c);
}

We speculate that the if-condition will be evalabte true and generate the tasks T2 and T3 inside a
transaction instead of waiting for task T1 to finikatter when the values of b and c are required w
check for the validity of if-condition and eithesromit the results of b and ¢ or abort transaction.

5.1.2 Speculative execution of loops

The iteration space of while-loops is unknown. Témenination condition of+1th iteration depends
on values generated irth iteration. In such cases running multiple iteragion parallel becomes
difficult. The parallelism available in such cad®sls down to concurrency present in a single loop
iteration. We are trying to speculate on the teatidm condition of the while-loop and spawn
multiple iterations speculatively. There are 2 magsues to tackle in this case, 1. If there aossr
iteration dependencies, then at best their exatuzm only be pipelined. Iterations which have been
speculatively spawned, but would not appear inattiginal sequential loop, need to be undone. We
use STM, to tackle this issue by executing evemation of the while-loop inside a transaction.dtat
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the termination condition is verified and dependimgits results, either the values updated indbe |
are committed or the transaction is aborted.

Syntax for speculation of loops in StarSs :
#pragna css specul ate wait(a) val ues(b,c)

whi | e(a)
{
T2(b);
T3(c);
T1(a);
/] #pragnma css wait on(a)
}

As shown above, just before starting of the loop,amnotate it with thepeculatepragma, implying
that the iterations of this loop can be executeztglatively. The wait clause contains the variables
based on which the termination condition of thelevloop is evaluated. Thealuesclause contains
variables whose results have to be protected.

Compiler changes required: StarSs has a sourceuces compiler, which has been modified to
interpret the loop following the speculate pragmeaapeculative loop. The compiler creates a guard
function which evaluates the loop condition.

int css_guard___cssgenerated(void*speculate_params__ cssgenerated[1])

return (*((int *) speculate_params__ cssgenerated[0] ));

A pointer to this function is passed as a parantettre task. The variables used in the loop camit
are packed into a void array and passed to thistiim as input. The function returns a value
indicating whether the loop condition has evaluatedrue or false. These tasks are marked as
speculative tasks.

Runtime changes requireth the runtime, an input dependency is added betvepeculative tasks
and the variables involved in evaluating the guardtion. In this way, we ensure that even if the
variables involved in guard-function are evaluabgddifferent tasks, their value remains consistent
while evaluating the validity of the speculativeskalLater inside each thread which executes the
speculative task, a transaction is started andresactional copy is made of the variables pass#teto
values clause. The updates made by the task are madeese thansactional copies. After the
execution of the task, a check is made using thetifon pointer to the guard function to evaluate th
validity of the task. Depending on this check, thsk variables from thealuesclause are either
committed of aborted.

In this way, we speculatively execute multiple at@ns of the loop, but abort the iterations which
not appear while running the loop sequentially.ohder to control the amount of speculation, an
environment variabl¢CSS_SPECULATION_TASKSvariable was added in the StarSs runtime. In
the following set experiments that we report iL@sby default, implying that the 10 iterations bét
loop will be executed speculatively and thewait is performed before continuing the execution for
another 10 iterations.
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5.1.3 First Experimental Results

The proposal has been evaluated with the BFS #hgorof Graph500. The original sequential

algorithm iterates over an entire graph using G4uasearch keys. The termination BFS algorithm
depends on complete traversal of the graph. Thebaurof iterations needed to achieve this is
unknown at compile time, hence a while-loop is usetll every node/vertex in the graph has been
visited. We speculate on this while-loop and theults obtained are shown in Figure 4.

Graph500: scale = 19, edge-factor = 18
400 . ‘

SPECULATION —+—
NO SPECULATION ---x---

300 | .

unis]

250 1

Time[sew

200 B

150 b

100 1 | |
1 2 4 8 16

Numher ol threads

Figure 4 Performance of the Graph500 benchmark with StarSs+TM against regular StarSs. The chart show
the benefits of dding TM to StarSs in this application

5.1.4 Summary

Since iteration space of while loops are unknowa,can only speculate on the execution of the loop
over multiple iterations. Many irregular applicat® such as graph traversals and convergence
algorithms suffer from this lack of knowledge oerdtion space. But we have shown that by

speculatively executing iterations of a loop we eatract good levels of parallelism.
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5.2 HPC Applications with TFLUX DDM (UCY)

High-Performance Computing (HPC) applications hareglitionally been developed using simple
parallel models such as OpenMP and/or MPI, or tifinothe use of custom tuned linear algebra
libraries. With the revisiting of dataflow models a way to overcome the limitations of the von
Neumann model, we propose to study how to exphatTflux Data-Driven Multithreading (DDM)
model for the implementation of efficient HPC apptions. In this section we wish to contrast [11]
the DDM model with the PLASMA based model [10].

As a preliminary evaluation of whether DDM can beiable candidate for a model to implement
HPC applications, we focused on the implementatibthree kernel applications: Matrix-Multiply,
LU, and Cholesky decomposition. The novelty in iempéntation for these applications was that we
combined DDM code with optimized numerical analystgle. Thus we created D-threads for the
operation on different blocks of data and thentlfiar real operations on the data we used the highly
optimized numerical analysis kernel libraries. Wthis approach we want to show that it is possible
to get very high performance while using previouslped code in combination with an efficient
scheduling of the threads that operate on dat&sloffered by the DDM model.

In Figure 5, Figure 6 and Figure 7 we show the geeade and also the thread dependency graph for
implementations of each application in this study.

for i = 1 €to' B S
for j =1 to B

{load block C(i, j) intoc cache}

for k =1 to B
{load block A(i,k) into cache} Loop
{locad block B (k, j) into cache}
C(i,3) = C(i,3) + A(i,k) * B(k,J)
{do a matrix multiply on blocks}

{write block C(i, j) back to memory}

Consider A,B and C to be N by N matrices of b by b blocks
where b= N/B E

Pseudocode Dependency graph

Figure 5 Pseudocode for the blocked matrix-multiply implementation and the thread dependency graph for
the same applications

Details for the analysis and implementation ofdpelications can be found in [1].

We evaluated the applications by executing therma orative multi-core machine using out DDM
runtime with a software implementation of the T$dr more details about TSU, see D6.1 and D6.2.
We compare the results obtained with this setup thi¢ execution of the same applications using the
optimized PLASMA library. With this work, our objgee was to study the scalability of the
performance as the number of cores in the systantisased. On Figure 8, Figure 9 and Figure 10
we show the charts with the performance for thedtapplications for executions with up to 48 cores.
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for k =1 to B
{factorize bleock A(k,k)}
for i = k+1 to B
{triangular sclve block A(k,1)}
for i = k+1 to B
{apply swap on block A(k,1i)}
for 1 = k+1 to B
for j = k+1 to B
A(i,J) = A(i,3) + A(i,k) = A(k,])
{do a matrix multiply on blocks}

Factorization

Triangular Solve

Matrix Multiply

Consider A to be a N by N matrix of b by b blocks

Pseudocode(a) Dependency graph

Figure 6 Pseudocode for the LU decomposition implementation and the thread dependency graph for the
same applications

for k =1 to B
{factorize block A(k,k)}
for i = k+1 to B
{triangular solve A(i,k)<——(k,k)}
for i = k+1 to B
{symmetric rank-k upadate A(i,i)<——A(i,}
for j = i+l to B
A(j,1) = A(3,1) + A(3,k) * A(i,k)
{do a matrix multiply on blocks}

@ ractorization
Triangular
- ..
M Matrix multiply
- 2
rank-k update

Consider A to be a N by N matrix of b by b blocks

Pseudocode Dependency graph

Figure 7 Pseudo-code for the Cholesky decomposition implementation and the thread dependency graph for
the same applications
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Figure 8 Performance of Matrix Multiply implemented with DDM
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Figure 9 Performance of LU Decomposition implemented with DDM
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Figure 10 Performance of Cholesky Decomposition implemented with DDM

It is possible to observe that the DDM implemewtatscales well as the number of cores increases.
Some results do not follow the trend perfectly aved estimate that it is due to the fact that as we
increase the number of cores, there are cachingcteffthat change the performance of the
applications. For example the increase of corelsdingass the number of cores in a die of the chip
and thus result in the use of a separate partitidhe L3 cache and also when we surpass the number
of cores in a processor and thus some cores wghbeng the data across the caches in two differen
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chips. Also relevant to notice from the resultghis fact that the results show that DDM surpadses t
performance obtained by PLASMA in most cases aisddifference is quite significant for the setups
with large number of cores.

The results observed in this study are very engiugaand show that DDM can handle the
parallelization required for linear algebra apgimas for present and future multi and many-core
systems. As such we will investigate the use of D&dva viable candidate for HPC and look at ways
to improve programmability such as the developm&DDM libraries with relevant numerical
analysis kernels, similarly to BLAS and PLASMA.
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5.3 HMPP: a Directive-based Programming Model

The OpenHMPP [4] (and OpenACC) programming modelppses a data parallel programming
model based on the codelet concept. In TERAFLUXPGAas been investigating the extension of
the current CAPS products with the data flow matédigned by the Workpackage 3 in a manner that
is compatible with the existing OpenHMPP implem&ata The goal is to make available two
different directives based models to the usersh éaplementing a different parallel programming
approach: the first using the regular OpenHMPP epfiadhe second using an advanced data flow
concept. Depending on the structure of a computaittase in the application, the user will use the
most adequate parallel approach. The design ofettiension has been performed according to the
following consideration:

- Minimize the number of changes to OpenHMPP;
- Execution with current OpenHMPP model is correct.

This extension consists of two main constructs:

1) A new directive to define data flow regions;
2) A variant of the callsite directives denoted “dfsié”.

The data flow region is delimited using a DFRegioagma on a statement block (denoted DFR in the
remainder of this document) as shown below:

#pragma hmpp DFRegion in(...), out(...)

I set of statements
Ylend of data flow region

Data flow regions can contain the following stateise
- Procedure calls with a dfcallsite directive;

- Statements that are not affected by the tasks catipos. Output arguments of tasks cannot
be used in non-dfcallsite statements.

The statements in a DFR aim at creating the teslgrThese statements can be arbitrarily complex
but a task creation cannot depend on the resolefof the tasks. These statements are executed on
the host system.

Data flow regions shall have the same semantidhasséquential execution of the region (which
represents a particular schedule of the tasksanth out region arguments are contiguous memory
blocks. Other memory blocks can be used as intstnehge for the region. They are dead variables at
the entry and the exit of the DFR.

The proposed extension to OpenHMPP is based owguirent concept of Codelets. They are pure
functions that can be remotely executed in a gagdress space.
In the context of this work, OpenHMPP codelets haget of restrictions:

- Codelets arguments are limited to scalar and neid-data

- Codelets code generation must not lead to dataaegehor synchronization with the master
program
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Codelets falling in this category are denoted DF&letd. From the data flow model point of view, a
DFCodelet can be seen as a data flow threads etitexe. The DFCodelets must have the clauses:

- args[*].mirror

- args[*].transfer=manual
to ensure the proper declaration for the argumesdarmanagement. A typical codelet declaration
pattern is shown below:

#pragma hmpp cl codelet, args[A].io=in, args[C].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual
void computel (float *A, float *C);

DFCodelet granularity can encompass from a fevestants to a large set of statements. This later is
targeted with this work since it is expected thatgeneral, the synchronization operations may be
expensive. However, when considering the TERAFLUXtam, this constraint may be alleviated
thanks to the hardware based thread managemerne &he no restrictions made on the statements
except that the code generation should lead tacueraccelerator kernel. This constraint is neggssa
to ensure that no synchronization between the degind the host is needed to execute a task.
DFCodelets are expected to exhibit parallelisnheirtcomputation. This parallelism can then be used
to exploit SIMD/SIMT parallelism available in mamevices. This is taken care of by HMPP code
generation. An example is given below:

#pragma hmpp cl codelet, args[A].io=in, args[C].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual
void computel (int}, float *A, float *C);

#pragma hmpp c2 codelet, args[C].io=in, args[B].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual
void compute2 (float *B, float *C);

#pragma hmpp c3 codelet, args[C].io=in, args[B].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual

void compute3 (float *B, float *C);
#pragma hmpp DFRegion in(A), out(B)
{

for (=0 ;i< n ;i++){

#pragma hmpp c1 dfcallsite, device="1"
computel(i, A, CJ[i]) ;

}

for (=0 ; i<n ;i++){
if (I=0)
#pragma hmpp c2 dfcallsite, device="2"
compute2(CJi], B) ;
else
#pragma hmpp c3 dfcallsite, device="3"
compute3(Cl[i], B) ;

}/end of data flow region
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5.4 OpenStream

INRIA is working on streaming dataflow using a pragbased approach. This deliverable extends
our proposal of a streaming data-flow extensiorsgméed in earlier deliverables. We coined the name
OpenStream for these data-flow streaming extensib@penMP:

http://www.di.ens.fr/StreamingOpenMP

OpenStream is an expressive programming modelldav ahe composition of tasks communicating
through first-class data-flow streams, as well agasate compilation. We provide more general
dynamic constructs to support complex data strestuand unbounded fan-in and fan-out
communications. In contrast with our previous wawk, introduce strongly typed, first-class streams
that may be freely combined with recursive compotest and dynamic data structures, while
preserving modular (separate) compilation. We aslol variadic stream clauses to construct
arbitrarily complex, dynamic, possibly nested taglkphs, and we provide syntactic support for
broadcast operations and for synchronization wutbres.

Higher expressiveness may improve productivity, ibuiften comes with performance overheads,
impacting the compiler optimizations and increadimg complexity of the necessary runtime support.
However, it is also an important asset: generahtgio-point synchronization alleviates scheduling
constraints of simpler programming models like Cilletailed experiments to study the performance
benefits and caveats of this extra expressiversss lheen conducted, and published in [1].

OpensStream relies on programmer annotations tdfgpghe data flow between OpenMP tasks and to
build the program task graph. Task graphs neeckliieen regular nor static, unlike the majority loét
streaming languages. OpenStream programs allowndgr@onnections between tasks, multiple tasks
interleaving their communications in the same stiaand arbitrary and variable fan-in, fan-out and
communication rates in a dynamically constructesk tgraph. The language also supports modular
composition, separate compilation, and first-clsiseams (streams as arguments and return values).
Despite this expressiveness, the model preservestidnal determinism of Kahn networks by
enforcing a precise interleaving of data in strealmsved from the sequential control flow of the
main program.

The syntactic extension to the OpenMP 3.0 langspgeification consists in two additional clauses
for task constructs, thenput andoutput clauses presented in Figure 11. The baselinesysta
the same as the one presented in D3.1.

qnputioutput (list) A 'G:'nt s, Rwin[Rhorizon]; &
list s:= list, item int Wwin[Whorizon];
| item input (s >> Rwin[Rburst]) E.g.:
item = stream o .
stream >> window i EW'_T-‘_:! Rhorizon = 4
e e ;I Wpéfk [T TITTT] SR T
stream ::= var
| array[expr] - SIS poks Whorizon = 6
expr $:= var _Ww_.i'._ﬁ_l”-_l Wburst = 3
o8 | value J \ output (s << Wwin[Wburst])/

Figure 11 Usage of the input and output clauses in OpenStream

Both clauses take a list of items, each describisgeam and its behaviour with regard to the task

Deliverable number: D3.4
Deliverable namenitial report comparing and contrasting the develged models
File name: TERAFLUX-D34-v5.doc Page 29 of 39



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

which the clause applies. If the item notatiomishie abbreviated forstream , then the stream can
only be accessed one element at a time throughsdahee variablestream In the second form,

stream >> window , the programmer uses the C++-flavoured>> stream operators to connect
a sliding window to a stream, gaining access tdipialstream elements, within the body of the task.

Tasks compute on streams of values and not onithdil/ values. To the programmer, streams are
simple C scalars, transparently expanded intorsisday the compiler. An array declaration (in plain
C) defines the sliding window accessible within tagk and its size, tHeorizon The connection of a
sliding window to a stream in anput or output clause allows to specify th®irst which is the
number of elements by which the sliding window ligfted after each activation. In the previous
figure, the input windowRwin would be shifted by two elements, while the outputdow Wwin
would be shifted by three elements. The data-flaseccorresponds tworizon=burst In the more
general case whetwrizorrburst, the window elements beyond the burst are acdessilihe task;
for an output window, the burst and horizon mustdagial. Task activation is enabled by the
availability, on each input stream, of albrizonelements on the input window, and is driven by the
control flow of the main OpenMP program.

#pragma omp task output {x) [/ Task Ti1

s | T1 |
for (i = 0; i < N; ++i) { '
int window_a[2], window_b[3];

#pragma omp task output (% << window_a[2]) // Task T2
window_al0] = ...; window_a[1] = ...;
if (1% 2) { Stream "x"
#pragma omp task input (x >> window_b[2]) // Task T3
use (window_b[0], window_b[1]);
}
#pragma omp task input (x) [/ Task T4
use (x);
e

Figure 12 Syntax of the input and output clauses

The example in Figure 12 illustrates the syntathefinput andoutput clauses. Task T1 uses the
abbreviated syntax to produce one data elememstfeanx. The semantics of stream operations is to
interleave accesses, as illustrate#fiigure 13, in task creation order.

F: producers E]

Stream "x" LLLI LT LA TT T 1T ]

Figure 13 Interleaved accesses to the stream "x". Tasks T1 and T2 are producers, T3 and T4 are consumers.

This order is determined by the flow of control wping tasks, calleccontrol program In our

Deliverable number: D3.4
Deliverable namenitial report comparing and contrasting the develged models
File name: TERAFLUX-D34-v5.doc Page 30 of 39



Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

example, T1 introduces a delay in streanTask T2 is also a producer, adding two elemenstream

x at each activation. Tasks can be guarded byrarpitontrol flow, as is the case for T3, whichdga
three elements at a time and discards two elemé#talso reads from x, interleaving its accesses to
the stream with the accesses from T3. This inteigais entirely determined by the schedule of the
control program, in this case it is a sequence (84,14, T4, T3, ...).

In addition toinput andoutput clauses, we provide a convenience clause for penig pure
peek operations (i.e., when a task reads on anstwégthout advancing the stream, through a 0-burst
access window). Th@eek clause does not introduce any new semantics; kemdroadcast
operations explicit.

In a streaming context, broadcasting can be peddmwithout copying, by allowing multiple tasks to
read the same data in a stream without advancimgetiding index. Thpeek clause uses the same
syntax as thénput clause, except that theirst is disregarded, implicitly understood to be 0. To
simplify the complementary operation of discardetgments from a stream, whether already read or
not, we add a newck directive. It has similar semantics to a code-task using amput clause

on a given stream: it advances the read indexraaists, playing a similar role to advancing the
logical clock represented by stream access indétes Figure 14 presents the syntaxpeek and

tick , as well as the semantically equivalent code.

int win[horizon]; int win[horizon] ;
// implicit O-burst

#pragma omp task peek (x >> win) #pragma omp task input (x >> win[0])

// advance clock by ‘‘burst?’ #pragma omp task input (x >> win[burst])}
#pragma omp tick (x >> burst) i;

Figure 14 Syntax of peek and tick clauses, and the semantically equivalent code

One of the main roles of our streaming annotatisitis describe, in a compact way, how the dynamic
task graph of an application is built. To generatbitrary task graphs, it is necessary to allow
connecting tasks to dynamically variable numberstefams. However, this poses a challenge due to
the static nature of compiler directives: the numiifestreaming clauses present on a task’s pragma
directive is inherently static. To specify a vateabhumber of connections, we allow to simultanepusl
access multiple streams of an array through ary afresindows.

int stream_array[N] __attribute__((stream));
int window_array[num_streams] [num_elements] ;

#pragma omp task input (stream_array >> window_array[num_streams] [num_elements])
. = window_array[0..num_streams-1] [0..num_elements-1];

Figure 15 Example of how to allow multiple streams of an array, exploiting an array of windows

The Figure 15 shows an example of an array of straecess windows connected, irvariadic
clause to multiple streams from an array of streams. Miadow window_array  gives
simultaneous access to the finstm_streams streams irstream_array . The number of streams
connected must be at most the size of the array.

So far, we presented the declaration of streanablas as a plain C variable declaration. However,
this poses problems for compiling streaming progravhere streaming tasks occur in function calls,
let alone programs divided in multiple translatiomts, and it makes type checking very difficule. T
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enable modular compilation, we need an interfacpaiss streams as parameters to functions and to
store stream references in data structures, makiagms first class entities which can be manipdlat
like any C variable. Consistently with our compitbrective approach to streaming, we add variable
and parameter declaration attributes to type stseam

Streams are implicitly separated between a stdokakbd stream reference, which can be freely
manipulated by the programmer, and the heap-aidcdata structure used and managed by the
runtime. In general, the user needs not know abfmtlatter and can simply consider streams to
behave like any stack-allocated variable.

// Declare a typed stream
int scalar_stream __attribute__((stream)});

// Declare a typed array of streams (allocates runtime data on the heap)
int stream_arrayl[size] __attribute__((stream));

// Declare a typed array of stream references (no allocation of runtime data)
int stream_ref_arrayl[size] __attribute__{((stream_ref));

// Function taking an array of streams as parameter
void foo (int =[] __attribute__((stream)));

// Call-site for a function taking an array of streams as parameter
foo (stream_array) ;

Figure 16 Different types of stream declarations

Figure 16 shows the different types of stream datitans, as scalar variables, arrays of streams and
arrays of stream references, and parameters téidoac Both streams and stream references can be
manipulated in the same way, but stream refereacesnot initialized and must be set by the
programmer with an assignment. They are used foragiag collections of streams, in particular for
variadic streaming clauses.

The management of stream data structures is génedahe entirely by the runtime, which
transparently updates a reference counter to etisugly deallocation. However, some advanced uses
of stream references require programmer interveriticthe form of runtime calls to increment and
decrement the reference counter; specifically witiey escape the current scope of the stream
variable because the stream is returned by a famcti it is stored in a heap allocated data stractu
We purposefully chose this explicit approach toumese management to avoid relying on a general-
purpose garbage collector. Indeed, a garbage tmil@mould have to rule the whole heap memory.
Since first-class streams allow handling most sibna automatically, programmer intervention is
seldom necessary; so far, we only used explicéregice counting in complex, compiler generated
codes that would be written in simpler ways by agpammer, without requiring explicit reference
counting.

Finally, to allow recursion with concurrent taskad more importantly to enable the parallel
execution of the control program, we add suppartdsk nesting, valid for any arbitrary nesting of
streaming and non-streaming tasks.

As we target more than just structured nestingliggape need to be able to communicate streams to
nested tasks, which allows them to further gendeeies accessing these streams. This is possible by
passing streams by value to nested tasks, usinfirsharivate clause. This clause copies the

stream reference alone and issues the proper mictfis to ensure proper management of the stream
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data structure (reference counting), without amyhier programmer involvement. Let us illustrates thi
on the recursive implementation of Fibonacci.

void stream_fibo (int n, int cutoff, int sout
int x;
if (n <= cutoff) {
#pragma omp task output (sout << x)
¥ = sequential_fibo (n);

_attribute__((stream))) {

} else {
int s1 __attribute__ ((stream)); // Main:
int 82 __attribute__ ((stream)); int stream __attribute__ {({(stream));
int numiters = ...;

#pragma omp task firstprivate (s1) int cutoff = ...;

stream_fibe (n - 1, cutoff, s1); int result;
#pragma omp task firstprivate (s2)

stream_fibo (n - 2, cutoff, s2); #pragma omp task firstprivate (stream)
#ipragma omp task input (si, s2) \ stream_fibo (n, cutoff, stream);

output (sout << x)

x =81 + a32; #pragma omp task input (stream >> result)

1} printf ("Fibo result: /d", result);

Figure 17 Implementation of the recoursive Fibonacci alogirithm (portion of the main, and actual function)

The right side of Figure 17 shows the main functadnthe program, which declaressceam ,
passed by copy to a first task that initiates #eirsion and on which a second task will read ithed f
result . The left side of the figure shows the recursivaction taking as parameter a stream on
which it writes its result. It further spawns tvasks to generate the remainder of the recursion.

We mentioned above that a restriction on this typeesting is necessary to preserve determinism.
Indeed, the problem comes from the fact that ws oel the total order on read (or, independently,
write) accesses to each stream, which derives thamorder of generation of tasks performing such
accesses, to guarantee the determinism of the wehetl data in streams. If theontrol program
which is the thread of control that reaches a tamhstruct, is not sequential, then concurrency
between the generation of tasks performing the dgpe of access to the same stream will lead to
non-determinism. We must therefore ensure thataitwer of creation (not execution) of tasks
producing to or consuming from each stream is pvese This can either be achieved by ensuring
that all tasks producing (émdependentlyyonsuming) data in a stream are created by aestagk, as

is the case in the Fibonacci example, or that tHeroof creation is enforced through dependences in
the task graph.

To complete this feature list, we also demonstratesl embedding of dynamic futures and the
translation of StarSs into OpenStream. This expaminis discussed in [1], with a summary of the
translation from StarSs in D4.6.

Finally, the presentation above used an informalasgics. We also defined a formal semantics for a
subset of the OpenStream language. This semargiesbben the occasion to coin a purposely
designed formal model, called Control-Driven Datbbwr (CDDF), generalizing a variety of
imperative models of parallel computation. Thisnfat model has been submitted to the ACM
TOPLAS journal and is available as a research te2pr We are extending this model to handle
parallel task creation and refine its formal prajest This work will be reported in the fourth year
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6 Summary

This document has described the research carriethdbhe WP3 of the Teraflux project during the
third year. It is split into three distinct sectiooovering the work carried out on the high proihitgt
programming model, on the synchronous concurrendyan high performance models. Within the
latter models, we cover progress with C-directiasdrl dataflow models (StarSs, TFLUX, HMPP,
OpenStream). The executive summary has presergadaim achievements obtained during this year;
including two best paper awards.

In addition, it does contain the rationale for iegda means for handling shared mutable state in
dataflow models. This deliverable has covered thekweing carried out in T3.4.

Overall, the programming models have past theainidiefinition stage and we start to observe
maturity with respect to the tools available (seedxample the open-source tools). These advances
provide a solid foundation for the next year. Nbwieddss, we start to observe common aspects among
the different programming models. The creationhef dataflow task graph is supported with different
syntax but the core functionality of describingdeseffect free computation as a node in the giaph
prevalent. The inputs and outputs are specificaiiyotated and permit the generation of the dataflow
graph. We can observe a divergence on how richt @fsdependencies each programming model
provides specific support for. We can also obsardévergence with respect to the extra information
that can optimize the runtime scheduling of thefliatv graph. These divergences are not to do with
whether the dataflow graph generated is generalistassociated with covering well certain patterns
of dependencies and the level of sophisticationeetgqa from the compiler when a pragma is
encountered. The work with HMPP provides an indaisprerspective of what features/functionalities
are well understood.

Next year, the projects partners will provide tlwealf dataflow computational models (i.e. T3.4
Consolidated Dataflow Models) and learn from théeliactions with WP2 (applications), WP4
(compilation tools) and WP5 (execution on the Tlewafarchitecture). In particular, the formal
definition and implementation of the memory typal eccupy a lot of our time.
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Appendix A
The Need for Shared Mutable State in Dataflow Modal

It is widely accepted that a functional programmapproach together with dataflow execution can
lead to the efficient exploitation of implicit pdledism. This computational model is usually

associated with styles of programming based on fumnetions as these map readily on to the
execution model. However there are many computatiwvhich cannot be easily or efficiently

expressed in a pure functional style as they hasteuature where the parallel manipulation of stiare
mutable state is fundamental to the problem beiolyed. In Teraflux we argue for a new

computational model which combines Transactionahmidey (TM) and Dataflow to overcome this

limitation. Using a simple example, we illustratbywthe parallel manipulation of mutable state is
necessary and how the addition of TM to Dataflow paovide an elegant and efficient parallel
computational model.

Background on Dataflow

In the 1970s and 1980s, there was a strong belirgngst some, that dataflow approaches would
provide the solution to general purpose parallstays which were easy to program. However, there
were three main impediments:

1. Integrated circuit technology developed at a rewalk rate ensuring that serial instruction
execution speeds were able to satisfy most perfoceneequirements.

2. Dataflow and associated models have a requirenoerttijh communication rates. The level
of integration available in the 70s and 80s did petmit efficient implementations of the
necessary functionality.

3. The absence of side effects in dataflow models ferctional programming) permits easy
parallelization. Unfortunately, there are many easereal programs where the use of state is
either necessary for efficiency or is a fundamepéat of the problem being solved. In these
circumstances, functional approaches are unsuitable

Nowadays only the third issue still needs to bereskkd. Existing functional languages that have
tried to address this need for shared state eitBeintroduction can rapidly destroy both the
mathematical cleanliness of the language with icapibns to the ability of exploiting parallelism
with dataflow (SML, F#, Haskell), or introduces a&nplicit lock to protect against concurrent
accesses (M-structures) which quickly become dofitpurpose due to the lack of composition of
locks. M-structures quickly result in deadlocks s&di by different access patterns within different
threads. To write correct code with M-Structureslifficult and M-Structures are widely noted as a
failure including by many of those behind theirgimal development.

An Example with Shared Mutable

The Dataflow plus Transactions model can best loergtood by studying an example. Such a study
is necessarily simplified but should serve to iflate the essence of the approach. Assume a graph
where a value at each node represents some chdagaigarameter. This parameter might represent
a physical load on a particular local resource. Wéat to maintain a continuous histogram of load
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values in order to inform a load balancing systenpractice, it is likely that the structure woudd a
general graph but here we will assume a binaryasethis greatly simplifies the explanation.

The natural way to express this is a recursivetfanavhich visits a node, updates a global histogra
and then spawns new threads which visit the childire addition to updating the histogram we want
to know when an exploration of the tree has termaithaThe basis of the computation might be a node
definition and function of the following form:

typedef struct node {
int old_value, new_value;
struct node *left, *right;

} node;

int visit (node* t) {
if (t == NULL) return 1;
histogram[t->old_value]--;
histogram[t->new_value]++;
t->old_value = t->new_value;
return visit(t->left) && visit(t->right);

while (visit (root));

We have used an imperative style using C to exghesprogram but the overall computation has two
distinct forms. The first is functional in stylecanan lead to a highly parallel execution. The sdde
an imperative update of histogram values.

We will assume a dynamic dataflow model where t@ftbw nodes are threads executing the “visit'
function at the level of a function body. The ex@ému proceeds by constructing, for each function
body, a new dataflow node for each new functioh wihin the body together with a continuation

node to receive the results of those newly createdes. The continuation is subject to normal
dataflow execution rules. This is essentially padkased graph reduction [8]. This will result in a
parallel execution graph of the form shown in Fegi8

%

Figure 18 Parallel Dataflow graph: nodes represents threads
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The nodes at the bottom level are in the procesx@tution, this may either result in the genematio
of further nodes to explore more of the graph fathé leaves have been reached, the return of w¥alue
to a waiting continuation which is synchronizeddataflow firing rules.

However, we have so far ignored the updates tostate of the global array histogram, these can
clearly occur from any of the parallel executingsitv nodes. Unless the update action (add and
subtract) is performed atomically, the resultinduea may be incorrect. In general, the updates will
consist of a memory read, an arithmetic operatimtha@memory write which cannot be separated. In
addition, we would like to keep the overall stafetle histogram consistent by performing the
operation on two entries as a single action. Wddcaahieve this by explicit global locking of the
histogram array. This can be done by either usisghgle coarse grain lock or a set of finer grain
locks to improve performance. In either case thditeh of this explicit locking would both add
significant complication to the code and potenjialhve an impact on the runtime parallelism.

Our proposal is to introduce transactions into thee dataflow model. This involves a small
modification to the visit function to indicate whi@arts of the code need to be executed atomically.
Assuming the support of a TM system, our executayoing to proceed in one of two ways:

a) In the absence of conflict, i.e. there are no othexads attempting to perform an operation on
the same elements of the histogram array, thelpbeakecution will proceed uninterrupted.

b) If conflict occurs, one of the conflicting threadsl proceed uninterrupted but the others will
serialize (e.g. by abandoning their execution atiying)

An important property of transactions is thiewlation The detection of conflict and possible retrying
is transparent to the application (other than aiptesincrease in execution time). This ensures tha
a model which is otherwise functional, it is po$sio generate implicit parallelism via dataflow
execution, but provide the ability to manipulaterglu state where necessary.

Deficiencies of Alternative Formulations withoutmsactions

As already discussed, it is widely accepted th&tretional programming approach together with
dataflow execution can lead to the efficient exliion of implicit parallelism. The drawback of the

approach is that it cannot easily handle statedbesmputation. In order to appreciate the issues, w
will consider expressing the described histograang{e using current functional approaches.

Infinite Histories— The classic way to deal with state in a functiggragram is to regard the updates
to a variable as a sequence of state changes fpramninfinite history. Any function wishing to
change the state of a variable is passed it asamgter and returns a new version which is the imext
the sequence. This is passed in turn as a paratoetee next function which wants to update the
state.

The fundamental problem with this approach is thist essentially serial. It is clearly not possiltb
have branches in a history which would result grsa variable were passed to multiple functions in
parallel. It is therefore not possible to use tieishnique to produce a parallel version of the abov
program.

Serialised State Manipulation The infinite histories approach requires a functo take a parameter
and produce an updated version as a result. Imedypfiunctional world this requires the productiain
a new updated copy. If the variable is a monoligtfacture, such as the histogram array in our
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example, it may be necessary to copy a large stigthilst updating only a small part of it. Thenc
be highly inefficient.

However, as long as the serialisation of updataedeasensured, this is not strictly necessary and an
updateable variable can be used. This is essgrti@lMonad approach where the type system is used
to ensure the serial usage. Although this appraapbwerful in achieving efficiency whilst

maintaining clean properties of the language, dtgain fundamentally serial.

Partial Histograms Rather than construct a histogram directly, wad@vrite our “visit' function to
return a partial histogram which represented thtritaution of itself and all its descendent nodes.
Our program would then construct a tree-like datafjraph where the partial results were combined
by the continuation functions and eventually re¢grfrom the root. This would have the following
disadvantages:

a) The complexity of the continuation would be inceshsignificantly.

b) The copying of data between parent and child coatjmuts could add significant overhead.

c) The overall histogram would be updated only whendbmputation returned to the root. In a

continuous system, such delays may well be unaabkpt

This formulation becomes even more unattractivevef were operating on a more general graph

where the issue of when and where to combine paesalts would be more complex.
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