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Glossary  
TM Transactional Memory 

Dataflow 
computation 

A dataflow computation is defined by a graph where the nodes are side-effect-free 
computations (functional computation) and the arcs represent dependencies. A node is 
activated and executed when its input dependencies have been satisfied, generating 
seamlessly parallel execution. 

Transaction A set of individual operations that need to be executed atomically, with guarantees of 
consistency and isolation 

Atomicity Transactions must appear to other transactions as if they occur in a single operation, or do not 
occur at all. 

Consistency One transaction must take the program from one consistent state to another. 

Isolation Transactions must act on isolation of each other. 

TM 
mechanisms 

The implementation of a TM system normally requires a means for detecting conflicts among 
executing transactions, and a means for versioning data used within a transaction to allow 
restoring the system state back to its origin should one or more transactions conflict. 

Conflict Two transactions conflict when the two transactions cannot be executed in parallel preserving 
the atomicity, consistency and isolation properties. There are data dependencies across the 
transactions (e.g. read-after-write or write-after-write) which would invalidate the parallel 
execution of those two transactions 

Eager conflict 
detection 

The TM system has a choice about when to check whether a number of transactions have a 
conflict. Eager attempts to detect the conflict during the execution of the transaction. 

Lazy conflict 
detection 

Lazy attempts to detect conflicts among the executing transactions when one of these 
attempts to commit. 

Eager 
versioning 

Eager versioning modifies directly memory and requires an undo log to restore the original 
state.  

Lazy versioning Lazy versioning buffers memory modifications done by a transactions and only once such 
transaction is allowed to commit, these modifications are propagated to memory visible by 
other threads.   

Nested 
transaction 

A transaction is nested when its execution is contained within the context of another 
transaction. Flattening treats the nested transactions as a merged single transaction. Open 
nesting has been proposed as a means to reducing unnecessary conflicts by allowing nested 
transactions to commit before their parent transaction has been done so.  

Strong vs weak 
isolation 

Strong isolation is where nothing can see the state within a transaction while it is executing. 
Weak isolation is where only other transactions are unable to see intermediate state, but other 
threads will not be prevented by the programming model from viewing the intermediate state. 
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Executive Summary 
This report contains descriptions of the current state of work within the programming model 
development, and is split into three parts covering the high productivity model, the synchronous 
dataflow model and the high performance models. 
 
The specific achievements and discussions are: 
High Productivity Model – Scala (Section 3) 
• Manchester University Transactions for Scala (MUTS) has been published in JPDC 2012. 
• Dataflow Scala library (DFScala) improved and made available as open-source; published in 
DFM2012. 
• Work analyzing how to combine dataflow and transactional memory for Lee’s algorithm is 
recognized as best paper award in MULTIPROG 2012. 
 
Synchronous Dataflow (Section 4) 
• INRIA extended the data-flow synchronous Heptagon language with futures. 
• The language comes with a formal proof of semantics preservation (elision of the 
asynchronous/parallelization annotations), and a compilation method extending the classical 
«compilation of parallelism» of synchronous languages. Best paper award at EMSOFT 2012. 
 
High Performance Model – C directives (Section 5) 
• StarSs (from BSC) has extended their compiler and runtime system to support speculation 
within while-loops, generating promising initial results for the Graph500 benchmark. 
• TFLUX (from UCY) has contrasted TFlux DDM with the PLASMA based programming 
model. This led to a publication at the Data-Flow Programming Models for Extreme Computing 
(DFM-2012). 
• HMPP (from CAPS) has a proposal for their pragma directives to support dataflow 
programming on GPUs.  
• INRIA has extended the streaming data-flow extensions of OpenMP, now called OpenStream, 
with first class streams, dynamic task creation, and modular compilation. 
 
Overall, the programming models, formal description and supporting tools are maturing and this 
deliverable provides an intermediate checkpoint of progress towards the final deliverable for this 
workpackage due next year. A large amount of research has been carried out in these three years in 
WP3 and we start to observe common aspects among the different programming models. The creation 
of the task graph is supported with different syntax but the core functionality of describing a side 
effect free computation as a node in the graph is prevalent. The inputs and outputs are specifically 
annotated and permit the generation of the dataflow graph. We can observe a divergence on how rich 
the set of in-built dependencies each programming model provides specific support for. This 
divergence is not related with whether the dataflow graph generated is general, but is associated with 
covering well certain patterns of dependencies and the level of sophistication expected from the 
compiler when a pragma is encountered. The work with HMPP provides an industrial perspective of 
what features/functionalities are well understood. 
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1 Introduction 
This document is an update on the work carried out in WP3. It is split into three distinct sections 
covering the work carried out on the high productivity programming model (Scala), on the 
synchronous concurrency (Heptagon) and on high performance models. Within the latter models, we 
cover progress with C-directive-based dataflow models (StarSs, TFLUX, HMPP, OpenStream). 
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1.1 Relation to other deliverables 
This deliverable describes the existing work carried out to extend and implement dataflow and 
transactional models and it is a continuation of D3.1 and D3.2 

1.2 Activity referred by this deliverable 
This deliverable covers the work being carried out under WP3 in year 3 (i.e. T3.4). 

1.3 Summary of previous work  
The previous deliverable reported the progress with defining the programming models and the 
outcome of the initial experiments completed successfully. We had developed working software 
prototypes able to execute on standard multi-core platforms. 
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2 Summary of Dataflow and Transactional Memory 
We present an executive summary of the decisions taken to combine dataflow and transactional 
memory. Full details can be found in D3.1, D3.2 & D3.3 and some key terms are defined in the 
Glossary of this deliverable. Appendix A summarizes the need for shared data in dataflow which 
motivates combining Transactional Memory and dataflow. 

Dataflow Threads 

The architecture and semantics is simplified when a transaction executes only within a single thread. 
Once a good understanding of Transactional Memory and Dataflow has been achieved, we intend to 
look into weakening these constraints. 

Versioning and Conflict Detection 

Because the project is fundamentally interested in an extensible system, it is felt that the 
communication required to provide the global observation needed to implement eager conflict 
detection coupled with the complexity it adds in order to provide correct execution and progress 
guarantees mean that it is better to opt for lazy conflict detection. This lazy detection can always be 
strengthened by checks at specified points within the transaction.  

Nesting 

Although true closed nested transactions are preferred, due to finite hardware resources and after a 
given depth, it will be reverted to flattened transactions. The first TM prototypes will implement 
flattening. Because of its non-intuitive semantics open nested transactions are not an option.  

Syntax 

Because of its clarity at a programmer level it is intended that TM syntax in the form of atomic blocks 
will be provided complete with supporting extensions.  

Synchronization 

In addition to providing atomic blocks it is intended that all forms of non-transactional 
synchronization construct are excluded as they break the atomicity of transactions.  

As an update to these decisions, we note that in WP6 we are investigating how to optimize the 
detection mechanism by taking advantage of the structure within a node (a set of cores) by having 
conflict detection options more frequent than lazy. 
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3 High Productivity Programming Model: Scala 
In this section we will describe the work carried out on the development of a high productivity 
programming model based on extensions to the Scala programming language. Currently this work 
consists of two main libraries which provide transactional memory and dataflow execution.  

MUTS http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/ 

DFScala http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala/ 

We provide updates on the new developments for these libraries and in particular how they can be 
applied to Lee’s routing algorithm. 

3.1 Manchester University Transactions for Scala (M UTS) 
In D3.3 we provided a first description of the implementation of software transactional memory in 
Scala without making modifications to the Scalac compiler. This was possible thanks to a novel 
mechanism reliant on closures for marking the transactional areas of the code. This removes the need 
for programmers using this model to use a special version of the Scala compiler, so making our work 
more widely applicable. 

The syntax provided by the closures is very simple and an example can be seen below. 

// Program code before a transaction 
... 
// The transaction 
val id = atomic { 
   threadId += 1 
   threadId 
}  
// More none transactional code 

We have conducted a survey considering all the main techniques to bring software transactional 
memory into Scala as well as fully explored the capabilities of our closure-based approach. This has 
been published as a journal publication [5]. Where possible in the survey we provided references to 
implementations that instantiate each technique. As part of this survey we documented for the first 
time several novel techniques developed in the implementation of MUTS for Scala. We ordered the 
implementation techniques on a scale moving from the least to the most invasive in terms of 
modifications to the compilation and run-time environment. This showed that, while the less invasive 
options are easier to implement and more common, they are more verbose and invasive in the codes 
using them, often requiring changes to the syntax and program structure throughout the code. 

There are a wide range of techniques for implementing the frontends of software TMs in Scala. This 
work through a combination of one or more of the following elements: Library Calls, Annotations, 
Byte-Code Rewriting and Compiler Modifications. Also Scala’s ability to define anonymous 
functions and to pass them into other functions as arguments (Closures) is important in many Scala 
software TMs. Table 1 maps the different available techniques to the software TMs that implement 
these techniques. 

Before we look at the different ways of implementing these frontends, we will briefly consider some 
of the points that these should be rated against. Table 2 provides a summary for each implementation 
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strategy of the properties that take a discrete value. We can observe that MUTS provides the most 
complete coverage offering a high productivity means of using TM in Scala. 

Java Compatible: Scala is Java compatible; however this does not mean that all frontends are 
automatically compatible with Java. Some require features of Scala that cannot be described in Java 
code without a high level of understanding of the workings of the Scala compiler. For example using 
frontends that require the passing of compiler inserted implicit parameters or the passing of functions 
as arguments to other functions is problematic in Java code. For techniques that are not Java 
compatible we note if the technique can be combined with techniques that are Java compatible to 
allow transactions accessing the same shared state to be constructed in both Scala and Java. 

Supports Strong Isolation: If a TM supports strong isolation no action of the programmer or user 
can result in transactional data being accessed from outside of a transaction. If instead only weak 
isolation is supported, it is possible to access data being manipulated in a transaction from outside of a 
transaction. This can then allow the non-committed state of a transaction to be observed and modified, 
potentially undermining the correctness of the code. Strong isolation can also be broken by the 
presence of non-transactional mutable data within a transaction; such data may exist as an 
optimisation. 

Supports Legacy Code: The use of code compiled by others is a routine part of writing programs, 
however not all STMs are able to instrument this code. This means that it is not possible to include 
within transactions compiled methods that contain side effects. Examples of such methods are those 
contained within the Scala mutable collections and the Java Util libraries. 

No Runtime Modifications: Some STMs form a simple library that can just be added to the 
classpath, others require the addition of more advanced JVM arguments, or the use of special 
compilers. 

Clarity of Code: Different methods of implementing transactional frontends require different 
syntaxes. These different syntaxes offer differing levels of complexity and verbosity. Excessive 
verboseness or complicated syntax can act as a barrier to the use of the transactional frontend, or 
result in difficulty reading and writing code that uses it. 

No Alternative Syntax: A specific point relating to clarity of code is that while some STM’s may be 
less verbose than others, some of these require that the code inside a transaction uses a different 
syntax to code outside a transaction. For example, an alternative assignment statement is required for 
some techniques. As the standard assignment operator can still be used, but may not be valid, such 
changes not only increase the application programmer workload, but also allow for the creation of 
subtle bugs. 

No Duplicate Methods: To call functions from both inside and outside a transaction some STMs 
required that the user constructs two copies of methods, one that is transactional and one that is not. 
Others are able to automatically construct a transactional and a non-transactional method from a 
single piece of user code. The ability to construct both methods from a single piece of code removes 
the opportunity for discrepancies between the two functions to be added when writing or maintaining 
the code, as well as reducing the workload for the programmer. 
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Guarantees Correct Transactions: Some STMs guarantee that all variables that need to be 
instrumented as part of a transaction will be, while others leave it to the programmer to ensure this. If 
the programmer fails to add all the required instrumentation then the transaction may no longer be 
correct and a race condition will have been introduced into the program. 

Table 1: Survey of techniques and available systems to add Software Transactional Memory to Scala 

Implementation Style Implementations 

Pure Libraries Explicit library calls ― 

Reference cells Multi-Verse 

CCSTM 

ScalaSTM 

RadonSTM 

Closures and reference cells CCSTM 

ScalaSTM 

 

Byte-code rewriting Class annotations Multi-Verse 

Method annotations MUTS 

Closures MUTS 

Parser Modifications MUTS 

Compiler Modifications ― 
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Table 2: Summary of approaches and their properties. 

 

3.2 Scala Dataflow Library (DFScala) 
To compliment MUTS and to enable the development of dataflow code for a number of the 
applications selected in WP2 (see D2.3 for performance results and current status of developed 
applications) we have constructed a library to support the creation and execution of dataflow threads. 
The design of DFScala has been published in [7] and we have made DFScala available as open source 
code at 

 http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala/. 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D3.4 
Deliverable name: Initial report comparing and contrasting the developed models 
File name: TERAFLUX-D34-v5.doc Page 14 of 39 

In particular, this year we have made improvements for performance, simplified the implementation 
to use less complex parts of Scala and improve tooling to help with the development of parallel 
applications with DFScala. 

One distinguishing feature of DFScala is the static checking of the dynamically constructed dataflow 
graph. This static checking ensures that at runtime there will be no mismatch of the arguments to 
functions. DFScala does not require the usage of special types and thus a node can be generated from 
any existing Scala function without complex refactoring of code. Each node in the dataflow graph is a 
function which cannot be subdivided; a function is sequential. To support nested parallelism within a 
function, subgraphs can be created which are wholly contained within a function, returning a value to 
the node upon completion.  
 

To improve friendliness, we have made changes that allow simplifying the creation of nodes in the 
graphs from: 
 

            val bThread = DFManager.createThread(cr eateGraph _) 
            bThread.arg1 = b 
            bThread.arg2 = divisions / 2 
            bThread.arg4 = routes 
            bThread.arg5 = solutionsReduceThread.to ken1 
            bThread.arg6 = remainingReduceThread.to ken1 
 

to a much shorter version: 
 

            val bThread = thread(createGraph _) 
            bThread(b, divisions / 2, Blank, routes , 
            solutionsReduceThread.token1, remaining ReduceThread.token1) 
 

The work on tools has focused on providing a simple visualization of the runtime schedule for 
dataflow graphs (Figure 1).  

Figure 1: Simple visualization of the runtime schedule for dataflow graphs 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D3.4 
Deliverable name: Initial report comparing and contrasting the developed models 
File name: TERAFLUX-D34-v5.doc Page 15 of 39 

3.3 Experiments with Lee’s algorithm 
To understand how to combine dataflow and transactional memory, we have used an established 
benchmark, Lee's algorithm for routing printed circuit boards, to make an assessment of their utility 
for creating efficient, simply written and correct parallel programs. Our experience was published in 
[6] and was awarded the best paper award. 
 
We have shown initial evidence of the combined model of dataflow and TM making the parallel 
implementation of our program simpler, at the same time as achieving a real world performance 
increase compared to coarse locks, even when all overhead is included (MUTS – Software 
Transactional Memory). 
 
Lee's algorithm solves the problem of finding independent routes between a set of pairs of points on a 
discrete grid. The applications originally proposed included drawing diagrams, wiring and optimal 
route finding, but the algorithm is now best known as a method for routing paths on a printed circuit 
board. There are later algorithms for route finding with less computational complexity, but Lee 
produces a shortest solution for any given route and board state, as opposed to using heuristics to 
arrive at a good-enough solution in less time. Figure 2 shows the output of one application of Lee's 
algorithm - routing paths on a printed circuit board - as generated by our implementation. 
 

 

Figure 2: Lee’s algorithm 

 
A simple overview of the Lee algorithm is that from the start point of the route it looks at all adjacent 
points and marks them as having cost one. From each point P so marked, it marks each adjacent point 
Padj as having cost cost(Padj) = cost(P) + 1, as long they were not already marked with a lower cost. If 
an adjacent point is already part of another route then using that point would cost more, by an 
arbitrary constant factor, as a bridge of one route over another needs to be built. This expansion, as it 
is called, continues until the end point is a member of the set of adjacent points. Typically, this 
expansion forms a circle around the start point, enveloping obstacles such as existing routes, and 
finishing at the end point. A trace is then run from the end point to the start point, always moving to a 
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point of lower cost until the start point is reached. This produces a route which can be marked on the 
grid. 
 
The key to the problem is that any set of subproblems still need to share access to a single resource; 
the grid. It is not simple for each thread to have an independent copy of the grid, as two threads could 
need use the same point for multiple routes and would then have to synchronise between themselves. 
This would add logic to the program that is unrelated to the algorithm that we are implementing. It is 
also not simple for each thread to have one part of the larger grid, as you cannot guarantee which parts 
a route will use before the expansion has been calculated and such a scheme would vastly increase the 
complexity of the program. However, given all routes on a circuit board it is unlikely that any two 
being routed at a particular time will conflict. The parallelism is there; it is just that it is hard to 
determine statically and is more apparent as the program is running. Work has already been done to 
use Lee to evaluate the runtime characteristics of a transactional program [8] and Lee is also known as 
Labyrinth in the STAMP benchmark suite. 
 
We used the MUTS library to create a parallel implementation by modifying a coarse-lock 
(coarselock) version. Where the coarselock acquires a resource with exclusion of all other threads, we 
can instead perform the action inside a transaction that will only allow other threads to read the same 
values as long as they do not write to them, and will automatically retry if such a conflict is found. 
  
// Atomically copy the shared data structure 
val privateBoardState = atomic { boardState.freeze } 
 
val expansion = expandRoute(board, route, privateBo ardState) 
val solution = traceRoute(board, route, expansion) 
 
// Atomically write to the shared data structure 
atomic { 

if (verifyRoute(route, solution, boardState)) 
layRoute(route, solution, boardState) 

else 
scheduleForRetry(route) 

} 

 
This transactional version can be transformed into using dataflow (DFScala).  The dataflow constructs 
provided allow us to express this creation of parallelism in a different way. Each route is a DFThread 
that will have its inputs ready at the start of the program's execution and so will all be runnable. 
DFScala will schedule them for us so that only a sensible number are running at any time. A final 
DFThread, the `collector thread' will be then created that has each route's DFThread as one of its 
arguments. This will therefore be run when the solutions are complete. This is a convenience 
construct provided by DFScala, as it is expected to be a common pattern, and replaces the 
synchronisation needed to create the list of solutions and the join operation to wait for all threads to 
finish that we used in coarselock. 
 
// Accepts solutions as arguments and build a list from them 
val solutionCollector = DFManager. 
createCollectorThread[Solution](routes.length) 
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for (route <- routes) { 
// Create a thread to solve a route 
val routeSolver = DFManager.createThread(solveRoute  _) 
routeSolver.arg1 = board 
routeSolver.arg2 = route  
routeSolver.arg3 = boardState 
// It will send the solutions to this function 
routeSolver.arg4 = solutionCollector.token1 

} 
 
The performance results published in [6] and summarized in Figure 3 bellow cover the scenario on 
desktop multi-cores. For next year, we will expand this analysis of the application and run on the 
Teraflux architecture and larger many-core systems. 

Figure 3: Speedup results for Lee’s algorithm. “seq” represents the sequential execution; “coarselock” 

represents the results obtained with a coarse-grain locking implementation; “muts” represents the results 

obtained with TM; “dataflow” represents the results obtained when combining dataflow and TM. 
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4 Synchronous concurrency 
Synchronous languages are devoted to the design and implementation of embedded software. They 
are particularly successful for safety-critical real-time systems. They facilitate the parallel modular 
specification and formal verification of systems to the generation of target embedded code. The 
synchronous model is based on the hypothesis of a logical global time scale shared by all processes 
which compute and communicate with each other instantaneously. This ideal model is then validated 
by computing the worst case execution time (WCET) of a single reaction. Nonetheless, global logical 
time may be difficult to preserve when the implementation is done on a parallel machine or 
performance is an issue. For example, when running a rare but long duration task concurrently with a 
frequent and faster task, the logical time step could naively be forced to be big enough for the longest 
task to fit in and short enough to keep up with the frequency of the small task. The classical solution is 
to decouple these tasks, running the long one across several steps. This is usually stated as the 
problem of « long duration tasks » in the literature. Several approaches have been considered in the 
past, always using distribution as a means to decouple the tasks, be it explicit language constructs to 
call external distributed functions or automatic/guided repartition techniques. The current practice of 
distribution is mostly manual with no warranty that it preserves the functional behaviour of the model. 
We believe that decoupling should be explicitly controlled by the programmer, within the 
synchronous language itself as a programming construct. The distribution will then be done according 
to this decoupling. The natural expression of decoupling is given by the notion of future introduced in 
Act1 and MultiLisp and present in modern languages like C++11, Java, F#.  

A future is the promise of the result of a computation. Whereas a call to f(x) couples the computation 
of f(x) and the return of the result y, the asynchronous call async f(x) returns instantaneously a future 
a. Possibly latter on, when the actual result is needed, !a will block until f(x) has finished and return 
the result y. With the help of futures, we claim that synchronous languages are fit, not only to design 
the control and computations, but also to program the decoupling and distribution.  

Our contributions can be summarized as follows. We consider a Lustre-like language extended with 
futures and explicit asynchronous function calls. This extension is modular and conservative w.r.t. the 
base language, in the following sense: a sequence of input/output values of the annotated 
(asynchronous) program is equal to the one of the not annotated one. In other words, the annotations 
preserve the original synchronous semantics. The implementation handles futures as a support library. 
They are treated like any value of an abstract type, the get operation !y is translated to the library one, 
and an asynchronous call async f(x) is a matter of wrapping it inside a concurrent task, managing 
inputs, and dealing with the filling of futures. The crucial memory boundedness of synchronous 
programs is preserved, as well as the ability to generate efficient sequential code for each separate 
process resulting from the distribution. The distributed program also stays free of deadlocks, livelocks 
and races.  

To our knowledge, the use of futures in a synchronous language is unprecedented. We show via 
numerous examples how to desynchronize long-running computations, how to express pipelining, 
fork-join, and data-parallelism patterns. This way, we achieve much higher expressiveness than 
coordination languages with comparable static properties. In particular, the language captures 
arbitrary data-dependent control flow and feedback. It also highlights the important reset operator, 
leveraging rarely exploited sources of data-parallelism in stateful functions.  
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We demonstrated that such desynchronization can be achieved within bounded memory, and without 
the need for a garbage collector. This is the first language with futures with such guarantees, making 
our parallel extension of Heptagon particularly interesting for embedded and real-time applications. 

This work was awarded the best paper award at EMSOFT 2012. The detailed semantics, a multitude 
of examples, and proofs can be found in [3]. 

A C backend with low-level futures and pthreads is available, complementing our earlier (less 
efficient) Java backend. For higher performance and integration with the TERAFLUX tool flow, an 
OpenStream backend is currently being finalized. The precise compilation method and experimental 
evaluation will be reported in the 4th year of the project. 
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5 High Performance Developers: C pragmas 

5.1 StarSs 
BSC is investigating how speculation can be brought into StarSs using Transactional Memory. StarSs, 
is a task based programming model for widely used Multi-core architectures. The programming 
model is based on data flow analysis and dynamic data dependency tracking by the runtime. 
Sometimes in order to extract more parallelism multiple tasks are allowed to simultaneously update 
memory locations. In such cases lock-based synchronization is used to maintain the correctness of the 
application. But locks suffer from the drawbacks of deadlock, livelock and priority inversion.  
We introduced Software Transactional Memory (STM) based concurrency control mechanism to 
manage parallel updates. The comparison of results between lock-based approach and STM-based 
approach shows that applications with high lock contention have better performance with STM based 
approach [9]. 

5.1.1 Speculation in StarSs 
StarSs provides synchronization constructs such as “wait-on” , to wait for a particular memory 
location to be updated before continuing execution and “barrier”, to block execution of all threads till 
each of them reaches a certain point of execution. Such constructs hamper the parallelism by leading 
to problems such as blocking of work generation and load balancing. The most common situations 
where these constructs are used are during if-condition and while-loops. Hence we speculate on the 
conditions of these loops. 
 
In case of an if-condition such as: 
T1(a); 
//#pragma css wait on(a) 
#pragma css speculate wait(a) values(b,c) 
if(a) 
{ 

T2(b); 
T3(c); 

} 
 
We speculate that the if-condition will be evaluated to true and generate the tasks T2 and T3 inside a 
transaction instead of waiting for task T1 to finish. Latter when the values of b and c are required we 
check for the validity of if-condition and either commit the results of b and c or abort transaction. 
 

5.1.2 Speculative execution of loops 
The iteration space of while-loops is unknown. The termination condition of i+1th iteration depends 
on values generated in i-th iteration. In such cases running multiple iterations in parallel becomes 
difficult. The parallelism available in such cases boils down to concurrency present in a single loop 
iteration. We are trying to speculate on the termination condition of the while-loop and spawn 
multiple iterations speculatively. There are 2 major issues to tackle in this case, 1. If there are cross 
iteration dependencies, then at best their execution can only be pipelined. Iterations which have been 
speculatively spawned, but would not appear in the original sequential loop, need to be undone. We 
use STM, to tackle this issue by executing every iteration of the while-loop inside a transaction. Later 
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the termination condition is verified and depending on its results, either the values updated in the loop 
are committed or the transaction is aborted. 
 
Syntax for speculation of loops in StarSs : 
#pragma css speculate wait(a) values(b,c) 
while(a) 
{ 

T2(b); 
T3(c); 
T1(a); 

//#pragma css wait on(a) 
} 
 
As shown above, just before starting of the loop, we annotate it with the speculate pragma, implying 
that the iterations of this loop can be executed speculatively. The wait clause contains the variables 
based on which the termination condition of the while loop is evaluated. The values clause contains 
variables whose results have to be protected.  
 
Compiler changes required: StarSs has a source to source compiler, which has been modified to 
interpret the loop following the speculate pragma as a speculative loop. The compiler creates a guard 
function which evaluates the loop condition. 
 
int css_guard__cssgenerated(void*speculate_params__ cssgenerated[1]) 
{ 

return (*((int *) speculate_params__cssgenerated[0] )); 
} 
 
A pointer to this function is passed as a parameter to the task. The variables used in the loop condition 
are packed into a void array and passed to this function as input. The function returns a value 
indicating whether the loop condition has evaluated to true or false. These tasks are marked as 
speculative tasks. 
 
Runtime changes required: In the runtime, an input dependency is added between speculative tasks 
and the variables involved in evaluating the guard-function. In this way, we ensure that even if the 
variables involved in guard-function are evaluated by different tasks, their value remains consistent 
while evaluating the validity of the speculative task. Later inside each thread which executes the 
speculative task, a transaction is started and a transactional copy is made of the variables passed to the 
values clause. The updates made by the task are made on these transactional copies. After the 
execution of the task, a check is made using the function pointer to the guard function to evaluate the 
validity of the task. Depending on this check, the task variables from the values clause are either 
committed of aborted. 
 
In this way, we speculatively execute multiple iterations of the loop, but abort the iterations which do 
not appear while running the loop sequentially. In order to control the amount of speculation, an 
environment variable (CSS_SPECULATION_TASKS) variable was added in the StarSs runtime. In 
the following set experiments that we report it is 10 by default, implying that the 10 iterations of the 
loop will be executed speculatively and then a wait is performed before continuing the execution for 
another 10 iterations. 
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5.1.3 First Experimental Results 
The proposal has been evaluated with the BFS algorithm of Graph500. The original sequential 
algorithm iterates over an entire graph using 64 unique search keys.  The termination BFS algorithm 
depends on complete traversal of the graph. The number of iterations needed to achieve this is 
unknown at compile time, hence a while-loop is used until every node/vertex in the graph has been 
visited. We speculate on this while-loop and the results obtained are shown in Figure 4. 
 

 

Figure 4 Performance of the Graph500 benchmark with StarSs+TM against regular StarSs. The chart show 

the benefits of dding TM to StarSs in this application 

5.1.4 Summary 
Since iteration space of while loops are unknown, we can only speculate on the execution of the loop 
over multiple iterations. Many irregular applications such as graph traversals and convergence 
algorithms suffer from this lack of knowledge of iteration space. But we have shown that by 
speculatively executing iterations of a loop we can extract good levels of parallelism. 
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5.2 HPC Applications with TFLUX DDM (UCY) 
High-Performance Computing (HPC) applications have traditionally been developed using simple 
parallel models such as OpenMP and/or MPI, or through the use of custom tuned linear algebra 
libraries. With the revisiting of dataflow models as a way to overcome the limitations of the von 
Neumann model, we propose to study how to exploit the Tflux Data-Driven Multithreading (DDM) 
model for the implementation of efficient HPC applications. In this section we wish to contrast [11]  
the DDM model with the PLASMA based model [10]. 

As a preliminary evaluation of whether DDM can be a viable candidate for a model to implement 
HPC applications, we focused on the implementation of three kernel applications: Matrix-Multiply, 
LU, and Cholesky decomposition. The novelty in implementation for these applications was that we 
combined DDM code with optimized numerical analysis code. Thus we created D-threads for the 
operation on different blocks of data and then for the real operations on the data we used the highly 
optimized numerical analysis kernel libraries.  With this approach we want to show that it is possible 
to get very high performance while using previously tuned code in combination with an efficient 
scheduling of the threads that operate on data blocks offered by the DDM model. 

In Figure 5, Figure 6 and Figure 7 we show the pseudocode and also the thread dependency graph for 
implementations of each application in this study. 

 
 

Pseudocode Dependency graph 

Figure 5 Pseudocode for the blocked matrix-multiply implementation and the thread dependency graph for 

the same applications 

Details for the analysis and implementation of the applications can be found in [1]. 

We evaluated the applications by executing them on a native multi-core machine using out DDM 
runtime with a software implementation of the TSU. For more details about TSU, see D6.1 and D6.2. 
We compare the results obtained with this setup with the execution of the same applications using the 
optimized PLASMA library. With this work, our objective was to study the scalability of the 
performance as the number of cores in the system is increased. On Figure 8, Figure 9 and Figure 10 
we show the charts with the performance for the three applications for executions with up to 48 cores. 
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Pseudocode(a) Dependency graph 

Figure 6 Pseudocode for the LU decomposition implementation and the thread dependency graph for the 

same applications 

 

Pseudocode Dependency graph 

Figure 7 Pseudo-code for the Cholesky decomposition implementation and the thread dependency graph for 

the same applications 
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Figure 8 Performance of Matrix Multiply implemented with DDM 

 

Figure 9 Performance of LU Decomposition implemented with DDM 

 

Figure 10 Performance of Cholesky Decomposition implemented with DDM 

It is possible to observe that the DDM implementation scales well as the number of cores increases. 
Some results do not follow the trend perfectly and we estimate that it is due to the fact that as we 
increase the number of cores, there are caching effects that change the performance of the 
applications. For example the increase of cores that surpass the number of cores in a die of the chip 
and thus result in the use of a separate partition of the L3 cache and also when we surpass the number 
of cores in a processor and thus some cores will be sharing the data across the caches in two different 
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chips. Also relevant to notice from the results is the fact that the results show that DDM surpasses the 
performance obtained by PLASMA in most cases and this difference is quite significant for the setups 
with large number of cores. 

The results observed in this study are very encouraging and show that DDM can handle the 
parallelization required for linear algebra applications for present and future multi and many-core 
systems. As such we will investigate the use of DDM as a viable candidate for HPC and look at ways 
to improve programmability such as the development of DDM libraries with relevant numerical 
analysis kernels, similarly to BLAS and PLASMA. 
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5.3 HMPP: a Directive-based Programming Model 
The OpenHMPP [4] (and OpenACC) programming model proposes a data parallel programming 
model based on the codelet concept. In TERAFLUX, CAPS has been investigating the extension of 
the current CAPS products with the data flow model designed by the Workpackage 3 in a manner that 
is compatible with the existing OpenHMPP implementation. The goal is to make available two 
different directives based models to the users; each implementing a different parallel programming 
approach: the first using the regular OpenHMPP concept, the second using an advanced data flow 
concept. Depending on the structure of a computation phase in the application, the user will use the 
most adequate parallel approach. The design of this extension has been performed according to the 
following consideration: 

- Minimize the number of changes to OpenHMPP; 

- Execution with current OpenHMPP model is correct. 

This extension consists of two main constructs: 
 

1) A new directive to define data flow regions; 
2) A variant of the callsite directives denoted “dfcallsite”. 

 
The data flow region is delimited using a DFRegion pragma on a statement block (denoted DFR in the 
remainder of this document) as shown below: 
 
#pragma hmpp DFRegion in(…), out(…)  

{  

     // set of statements  

}//end of data flow region  

 

Data flow regions can contain the following statements: 
- Procedure calls with a dfcallsite directive; 

- Statements that are not affected by the tasks computations. Output arguments of tasks cannot 
be used in non-dfcallsite statements.  

The statements in a DFR aim at creating the task graph. These statements can be arbitrarily complex 
but a task creation cannot depend on the result of one of the tasks. These statements are executed on 
the host system. 
 
Data flow regions shall have the same semantic as the sequential execution of the region (which 
represents a particular schedule of the tasks). In and out region arguments are contiguous memory 
blocks. Other memory blocks can be used as internal storage for the region. They are dead variables at 
the entry and the exit of the DFR. 
 
The proposed extension to OpenHMPP is based on the current concept of Codelets. They are pure 
functions that can be remotely executed in a given address space. 
In the context of this work, OpenHMPP codelets have a set of restrictions: 

- Codelets arguments are limited to scalar and mirrored data  

- Codelets code generation must not lead to data exchange or synchronization with the master 
program 
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Codelets falling in this category are denoted DFCodelets.  From the data flow model point of view, a 
DFCodelet can be seen as a data flow threads at execution. The DFCodelets must have the clauses: 

- args[*].mirror  

- args[*].transfer=manual  

to ensure the proper declaration for the argument mode management. A typical codelet declaration 
pattern is shown below: 
 

#pragma hmpp c1 codelet, args[A].io=in, args[C].io= out, &  
#pragma hmpp & args[*].mirror, args[*].transfer=man ual   

void compute1 (float *A, float *C);  

 

DFCodelet granularity can encompass from a few statements to a large set of statements. This later is 
targeted with this work since it is expected that, in general, the synchronization operations may be 
expensive. However, when considering the TERAFLUX system, this constraint may be alleviated 
thanks to the hardware based thread management. There are no restrictions made on the statements 
except that the code generation should lead to a unique accelerator kernel. This constraint is necessary 
to ensure that no synchronization between the device and the host is needed to execute a task. 
DFCodelets are expected to exhibit parallelism in their computation. This parallelism can then be used 
to exploit SIMD/SIMT parallelism available in many devices. This is taken care of by HMPP code 
generation. An example is given below: 
 
#pragma hmpp c1 codelet, args[A].io=in, args[C].io= out, &  
#pragma hmpp & args[*].mirror, args[*].transfer=man ual   

void compute1 (int j, float *A, float *C);  

#pragma hmpp c2 codelet, args[C].io=in, args[B].io= out, &  
#pragma hmpp & args[*].mirror, args[*].transfer=man ual   

void compute2 (float *B, float *C);  

#pragma hmpp c3 codelet, args[C].io=in, args[B].io= out, &  
#pragma hmpp & args[*].mirror, args[*].transfer=man ual   

void compute3 (float *B, float *C);  

 

#pragma  hmpp DFRegion in(A), out(B)  

{   

   for (i=0 ;i< n ;i++){  

   #pragma hmpp c1 dfcallsite, device="1”  

   compute1(i, A, C[i]) ;  

   }  

 

   for (i=0 ; i<n ;i++){  

     if (i=0)  

       #pragma hmpp c2 dfcallsite, device="2”  

       compute2(C[i], B) ;  

          else  

       #pragma hmpp c3 dfcallsite, device="3”  

       compute3(C[i], B) ;  

   }  

}//end of data flow region  
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5.4 OpenStream 
INRIA is working on streaming dataflow using a pragma-based approach. This deliverable extends 
our proposal of a streaming data-flow extension presented in earlier deliverables. We coined the name 
OpenStream for these data-flow streaming extensions of OpenMP: 

http://www.di.ens.fr/StreamingOpenMP 

OpenStream is an expressive programming model to allow the composition of tasks communicating 
through first-class data-flow streams, as well as separate compilation. We provide more general 
dynamic constructs to support complex data structures and unbounded fan-in and fan-out 
communications. In contrast with our previous work, we introduce strongly typed, first-class streams 
that may be freely combined with recursive computations and dynamic data structures, while 
preserving modular (separate) compilation. We also add variadic stream clauses to construct 
arbitrarily complex, dynamic, possibly nested task graphs, and we provide syntactic support for 
broadcast operations and for synchronization with futures. 

Higher expressiveness may improve productivity, but it often comes with performance overheads, 
impacting the compiler optimizations and increasing the complexity of the necessary runtime support. 
However, it is also an important asset: general point-to-point synchronization alleviates scheduling 
constraints of simpler programming models like Cilk. Detailed experiments to study the performance 
benefits and caveats of this extra expressiveness have been conducted, and published in [1].  

OpenStream relies on programmer annotations to specify the data flow between OpenMP tasks and to 
build the program task graph. Task graphs need be neither regular nor static, unlike the majority of the 
streaming languages. OpenStream programs allow dynamic connections between tasks, multiple tasks 
interleaving their communications in the same streams, and arbitrary and variable fan-in, fan-out and 
communication rates in a dynamically constructed task graph. The language also supports modular 
composition, separate compilation, and first-class streams (streams as arguments and return values). 
Despite this expressiveness, the model preserves functional determinism of Kahn networks by 
enforcing a precise interleaving of data in streams derived from the sequential control flow of the 
main program. 

The syntactic extension to the OpenMP 3.0 language specification consists in two additional clauses 
for task  constructs, the input  and output  clauses presented in Figure 11. The baseline syntax is 
the same as the one presented in D3.1. 

 

Figure 11 Usage of the input and output clauses in OpenStream 

Both clauses take a list of items, each describing a stream and its behaviour with regard to the task to 
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which the clause applies. If the item notation is in the abbreviated form stream , then the stream can 
only be accessed one element at a time through the same variable stream. In the second form, 
stream >> window , the programmer uses the C++-flavoured << >>  stream operators to connect 
a sliding window to a stream, gaining access to multiple stream elements, within the body of the task. 

Tasks compute on streams of values and not on individual values. To the programmer, streams are 
simple C scalars, transparently expanded into streams by the compiler. An array declaration (in plain 
C) defines the sliding window accessible within the task and its size, the horizon. The connection of a 
sliding window to a stream in an input  or output  clause allows to specify the burst, which is the 
number of elements by which the sliding window is shifted after each activation. In the previous 
figure, the input window Rwin  would be shifted by two elements, while the output window Wwin 
would be shifted by three elements. The data-flow case corresponds to horizon=burst. In the more 
general case where horizon>burst, the window elements beyond the burst are accessible to the task; 
for an output window, the burst and horizon must be equal. Task activation is enabled by the 
availability, on each input stream, of all horizon elements on the input window, and is driven by the 
control flow of the main OpenMP program. 

 

Figure 12 Syntax of the input and output clauses 

The example in Figure 12 illustrates the syntax of the input  and output  clauses. Task T1 uses the 
abbreviated syntax to produce one data element for stream x . The semantics of stream operations is to 

interleave accesses, as illustrated in Figure 13, in task creation order. 

 

Figure 13 Interleaved accesses to the stream "x". Tasks T1 and T2 are producers, T3 and T4 are consumers. 

This order is determined by the flow of control spawning tasks, called control program. In our 
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example, T1 introduces a delay in stream x . Task T2 is also a producer, adding two elements to stream 
x at each activation. Tasks can be guarded by arbitrary control flow, as is the case for T3, which reads 
three elements at a time and discards two elements. T4 also reads from x, interleaving its accesses to 
the stream with the accesses from T3. This interleaving is entirely determined by the schedule of the 
control program, in this case it is a sequence (T4, T3, T4, T4, T3, ...). 

In addition to input  and output  clauses, we provide a convenience clause for performing pure 
peek operations (i.e., when a task reads on a stream without advancing the stream, through a 0-burst 
access window). The peek  clause does not introduce any new semantics; it makes broadcast 
operations explicit. 

In a streaming context, broadcasting can be performed without copying, by allowing multiple tasks to 
read the same data in a stream without advancing the reading index. The peek  clause uses the same 

syntax as the input  clause, except that the burst  is disregarded, implicitly understood to be 0. To 
simplify the complementary operation of discarding elements from a stream, whether already read or 
not, we add a new tick  directive. It has similar semantics to a code-less task using an input  clause 
on a given stream: it advances the read index in streams, playing a similar role to advancing the 
logical clock represented by stream access indexes. The Figure 14 presents the syntax of peek  and 

tick , as well as the semantically equivalent code. 

 

Figure 14 Syntax of peek and tick clauses, and the semantically equivalent code 

One of the main roles of our streaming annotations is to describe, in a compact way, how the dynamic 
task graph of an application is built. To generate arbitrary task graphs, it is necessary to allow 
connecting tasks to dynamically variable numbers of streams. However, this poses a challenge due to 
the static nature of compiler directives: the number of streaming clauses present on a task’s pragma 
directive is inherently static. To specify a variable number of connections, we allow to simultaneously 
access multiple streams of an array through an array of windows. 

 

Figure 15 Example of how to allow multiple streams of an array, exploiting an array of windows 

The Figure 15 shows an example of an array of stream access windows connected, in a variadic 
clause, to multiple streams from an array of streams. The window window_array  gives 

simultaneous access to the first num_streams  streams in stream_array . The number of streams 
connected must be at most the size of the array. 

So far, we presented the declaration of stream variables as a plain C variable declaration. However, 
this poses problems for compiling streaming programs where streaming tasks occur in function calls, 
let alone programs divided in multiple translation units, and it makes type checking very difficult. To 
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enable modular compilation, we need an interface to pass streams as parameters to functions and to 
store stream references in data structures, making streams first class entities which can be manipulated 
like any C variable. Consistently with our compiler directive approach to streaming, we add variable 
and parameter declaration attributes to type streams. 

Streams are implicitly separated between a stack-allocated stream reference, which can be freely 
manipulated by the programmer, and the heap-allocated data structure used and managed by the 
runtime. In general, the user needs not know about the latter and can simply consider streams to 
behave like any stack-allocated variable. 

 

Figure 16 Different types of stream declarations 

Figure 16 shows the different types of stream declarations, as scalar variables, arrays of streams and 
arrays of stream references, and parameters to functions. Both streams and stream references can be 
manipulated in the same way, but stream references are not initialized and must be set by the 
programmer with an assignment. They are used for managing collections of streams, in particular for 
variadic streaming clauses. 

The management of stream data structures is generally done entirely by the runtime, which 
transparently updates a reference counter to ensure timely deallocation. However, some advanced uses 
of stream references require programmer intervention in the form of runtime calls to increment and 
decrement the reference counter; specifically when they escape the current scope of the stream 
variable because the stream is returned by a function or it is stored in a heap allocated data structure. 
We purposefully chose this explicit approach to resource management to avoid relying on a general-
purpose garbage collector. Indeed, a garbage collector would have to rule the whole heap memory. 
Since first-class streams allow handling most situations automatically, programmer intervention is 
seldom necessary; so far, we only used explicit reference counting in complex, compiler generated 
codes that would be written in simpler ways by a programmer, without requiring explicit reference 
counting. 

Finally, to allow recursion with concurrent tasks, and more importantly to enable the parallel 
execution of the control program, we add support for task nesting, valid for any arbitrary nesting of 
streaming and non-streaming tasks. 

As we target more than just structured nesting graphs, we need to be able to communicate streams to 
nested tasks, which allows them to further generate tasks accessing these streams. This is possible by 
passing streams by value to nested tasks, using the firstprivate  clause. This clause copies the 
stream reference alone and issues the proper runtime calls to ensure proper management of the stream 
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data structure (reference counting), without any further programmer involvement. Let us illustrate this 
on the recursive implementation of Fibonacci. 

 

Figure 17 Implementation of the recoursive Fibonacci alogirithm (portion of the main, and actual function) 

The right side of Figure 17 shows the main function of the program, which declares a stream , 
passed by copy to a first task that initiates the recursion and on which a second task will read the final 
result . The left side of the figure shows the recursive function taking as parameter a stream on 
which it writes its result. It further spawns two tasks to generate the remainder of the recursion. 

We mentioned above that a restriction on this type of nesting is necessary to preserve determinism. 
Indeed, the problem comes from the fact that we rely on the total order on read (or, independently, 
write) accesses to each stream, which derives from the order of generation of tasks performing such 
accesses, to guarantee the determinism of the schedule of data in streams. If the control program, 
which is the thread of control that reaches a task construct, is not sequential, then concurrency 
between the generation of tasks performing the same type of access to the same stream will lead to 
non-determinism. We must therefore ensure that the order of creation (not execution) of tasks 
producing to or consuming from each stream is preserved. This can either be achieved by ensuring 
that all tasks producing (or independently consuming) data in a stream are created by a single task, as 
is the case in the Fibonacci example, or that the order of creation is enforced through dependences in 
the task graph. 

To complete this feature list, we also demonstrated the embedding of dynamic futures and the 
translation of StarSs into OpenStream. This experiment is discussed in [1], with a summary of the 
translation from StarSs in D4.6. 

Finally, the presentation above used an informal semantics. We also defined a formal semantics for a 
subset of the OpenStream language. This semantics has been the occasion to coin a purposely 
designed formal model, called Control-Driven Data Flow (CDDF), generalizing a variety of 
imperative models of parallel computation. This formal model has been submitted to the ACM 
TOPLAS journal and is available as a research report [2]. We are extending this model to handle 
parallel task creation and refine its formal properties. This work will be reported in the fourth year. 
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6 Summary 
This document has described the research carried out in the WP3 of the Teraflux project during the 
third year. It is split into three distinct sections covering the work carried out on the high productivity 
programming model, on the synchronous concurrency and on high performance models. Within the 
latter models, we cover progress with C-directive-based dataflow models (StarSs, TFLUX, HMPP, 
OpenStream). The executive summary has presented the main achievements obtained during this year; 
including two best paper awards. 
 
In addition, it does contain the rationale for needing a means for handling shared mutable state in 
dataflow models. This deliverable has covered the work being carried out in T3.4. 
 
Overall, the programming models have past the initial definition stage and we start to observe 
maturity with respect to the tools available (see for example the open-source tools). These advances 
provide a solid foundation for the next year. Nonetheless, we start to observe common aspects among 
the different programming models. The creation of the dataflow task graph is supported with different 
syntax but the core functionality of describing a side effect free computation as a node in the graph is 
prevalent. The inputs and outputs are specifically annotated and permit the generation of the dataflow 
graph. We can observe a divergence on how rich a set of dependencies each programming model 
provides specific support for. We can also observe a divergence with respect to the extra information 
that can optimize the runtime scheduling of the dataflow graph. These divergences are not to do with 
whether the dataflow graph generated is general, but is associated with covering well certain patterns 
of dependencies and the level of sophistication expected from the compiler when a pragma is 
encountered. The work with HMPP provides an industrial perspective of what features/functionalities 
are well understood. 
 
Next year, the projects partners will provide the final dataflow computational models (i.e. T3.4 
Consolidated Dataflow Models) and learn from the interactions with WP2 (applications), WP4 
(compilation tools) and WP5 (execution on the Teraflux architecture). In particular, the formal 
definition and implementation of the memory types will occupy a lot of our time. 
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Appendix A  
The Need for Shared Mutable State in Dataflow Models 

It is widely accepted that a functional programming approach together with dataflow execution can 
lead to the efficient exploitation of implicit parallelism. This computational model is usually 
associated with styles of programming based on pure functions as these map readily on to the 
execution model. However there are many computations which cannot be easily or efficiently 
expressed in a pure functional style as they have a structure where the parallel manipulation of shared 
mutable state is fundamental to the problem being solved. In Teraflux we argue for a new 
computational model which combines Transactional Memory (TM) and Dataflow to overcome this 
limitation. Using a simple example, we illustrate why the parallel manipulation of mutable state is 
necessary and how the addition of TM to Dataflow can provide an elegant and efficient parallel 
computational model. 

Background on Dataflow 

In the 1970s and 1980s, there was a strong belief, amongst some, that dataflow approaches would 
provide the solution to general purpose parallel systems which were easy to program. However, there 
were three main impediments: 

1. Integrated circuit technology developed at a remarkable rate ensuring that serial instruction 
execution speeds were able to satisfy most performance requirements. 

2. Dataflow and associated models have a requirement for high communication rates. The level 
of integration available in the 70s and 80s did not permit efficient implementations of the 
necessary functionality. 

3. The absence of side effects in dataflow models (e.g. functional programming) permits easy 
parallelization. Unfortunately, there are many cases in real programs where the use of state is 
either necessary for efficiency or is a fundamental part of the problem being solved. In these 
circumstances, functional approaches are unsuitable. 

Nowadays only the third issue still needs to be addressed. Existing functional languages that have 
tried to address this need for shared state either its introduction can rapidly destroy both the 
mathematical cleanliness of the language with implications to the ability of exploiting parallelism 
with dataflow (SML, F#, Haskell), or introduces an implicit lock to protect against concurrent 
accesses (M-structures) which quickly become unfit for purpose due to the lack of composition of 
locks. M-structures quickly result in deadlocks caused by different access patterns within different 
threads. To write correct code with M-Structures is difficult and M-Structures are widely noted as a 
failure including by many of those behind their original development. 

An Example with Shared Mutable 

The Dataflow plus Transactions model can best be understood by studying an example. Such a study 
is necessarily simplified but should serve to illustrate the essence of the approach. Assume a graph 
where a value at each node represents some changing local parameter. This parameter might represent 
a physical load on a particular local resource. We want to maintain a continuous histogram of load 
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values in order to inform a load balancing system. In practice, it is likely that the structure would be a 
general graph but here we will assume a binary tree as this greatly simplifies the explanation. 

The natural way to express this is a recursive function which visits a node, updates a global histogram 
and then spawns new threads which visit the children. In addition to updating the histogram we want 
to know when an exploration of the tree has terminated. The basis of the computation might be a node 
definition and function of the following form: 
 
typedef struct node {  
   int old_value, new_value; 
   struct node *left, *right; 
} node; 
 
int visit (node* t) { 
   if (t == NULL) return 1; 
   histogram[t->old_value]--; 
   histogram[t->new_value]++; 
   t->old_value = t->new_value; 
   return visit(t->left) && visit(t->right); 
} 
while (visit (root));  
 
We have used an imperative style using C to express the program but the overall computation has two 
distinct forms. The first is functional in style and can lead to a highly parallel execution. The second is 
an imperative update of histogram values. 
 

We will assume a dynamic dataflow model where the dataflow nodes are threads executing the `visit' 
function at the level of a function body. The execution proceeds by constructing, for each function 
body, a new dataflow node for each new function call within the body together with a continuation 
node to receive the results of those newly created nodes. The continuation is subject to normal 
dataflow execution rules. This is essentially packet based graph reduction [8]. This will result in a 
parallel execution graph of the form shown in Figure 18  

 

Figure 18 Parallel Dataflow graph: nodes represents threads 
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The nodes at the bottom level are in the process of execution, this may either result in the generation 
of further nodes to explore more of the graph or, if the leaves have been reached, the return of values 
to a waiting continuation which is synchronized by dataflow firing rules. 

However, we have so far ignored the updates to the state of the global array histogram, these can 
clearly occur from any of the parallel executing `visit' nodes. Unless the update action (add and 
subtract) is performed atomically, the resulting values may be incorrect. In general, the updates will 
consist of a memory read, an arithmetic operation and a memory write which cannot be separated. In 
addition, we would like to keep the overall state of the histogram consistent by performing the 
operation on two entries as a single action. We could achieve this by explicit global locking of the 
histogram array. This can be done by either using a single coarse grain lock or a set of finer grain 
locks to improve performance. In either case the addition of this explicit locking would both add 
significant complication to the code and potentially have an impact on the runtime parallelism. 

Our proposal is to introduce transactions into the pure dataflow model. This involves a small 
modification to the visit function to indicate which parts of the code need to be executed atomically. 
Assuming the support of a TM system, our execution is going to proceed in one of two ways: 

a) In the absence of conflict, i.e. there are no other threads attempting to perform an operation on 
the same elements of the histogram array, the parallel execution will proceed uninterrupted. 

b) If conflict occurs, one of the conflicting threads will proceed uninterrupted but the others will 
serialize (e.g. by abandoning their execution and retrying) 

An important property of transactions is their isolation. The detection of conflict and possible retrying 
is transparent to the application (other than a possible increase in execution time). This ensures that, in 
a model which is otherwise functional, it is possible to generate implicit parallelism via dataflow 
execution, but provide the ability to manipulate shared state where necessary. 

 
Deficiencies of Alternative Formulations without Transactions 
As already discussed, it is widely accepted that a functional programming approach together with 
dataflow execution can lead to the efficient exploitation of implicit parallelism. The drawback of the 
approach is that it cannot easily handle state based computation. In order to appreciate the issues, we 
will consider expressing the described histogram example using current functional approaches. 
 
Infinite Histories  ̶  The classic way to deal with state in a functional program is to regard the updates 
to a variable as a sequence of state changes forming an infinite history. Any function wishing to 
change the state of a variable is passed it as a parameter and returns a new version which is the next in 
the sequence. This is passed in turn as a parameter to the next function which wants to update the 
state. 
 
The fundamental problem with this approach is that it is essentially serial. It is clearly not possible to 
have branches in a history which would result if such a variable were passed to multiple functions in 
parallel. It is therefore not possible to use this technique to produce a parallel version of the above 
program. 
 
Serialised State Manipulation   ̶  The infinite histories approach requires a function to take a parameter 
and produce an updated version as a result. In a purely functional world this requires the production of 
a new updated copy. If the variable is a monolithic structure, such as the histogram array in our 
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example, it may be necessary to copy a large structure whilst updating only a small part of it. This can 
be highly inefficient. 
 
However, as long as the serialisation of updates can be ensured, this is not strictly necessary and an 
updateable variable can be used. This is essentially the Monad approach where the type system is used 
to ensure the serial usage. Although this approach is powerful in achieving efficiency whilst 
maintaining clean properties of the language, it is again fundamentally serial. 
 
Partial Histograms  ̶  Rather than construct a histogram directly, we could write our `visit' function to 
return a partial histogram which represented the contribution of itself and all its descendent nodes. 
Our program would then construct a tree-like dataflow graph where the partial results were combined 
by the continuation functions and eventually returned from the root. This would have the following 
disadvantages: 

a) The complexity of the continuation would be increased significantly. 
b) The copying of data between parent and child computations could add significant overhead. 
c) The overall histogram would be updated only when the computation returned to the root. In a 

continuous system, such delays may well be unacceptable.  
This formulation becomes even more unattractive if we were operating on a more general graph 
where the issue of when and where to combine partial results would be more complex. 


