
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 1 of 39

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D3.4 – Initial report comparing and contrasting the developed models

Due date of deliverable: 31st December 2012
Actual Submission: 20th December 2012

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable:

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Author Organization Change History
0.1 Mikel Lujan UNIMAN Initial template
0.2 Mikel Lujan UNIMAN Document structure
0.3 Mikel Lujan UNIMAN Added contribution from UNIMAN
0.4 Mikel Lujan UNIMAN Added contribution from UCY
0.5 Mikel Lujan UNIMAN Added contribution from CAPS
0.6 Mikel Lujan UNIMAN Added contribution from BSC
0.7 Mikel Lujan UNIMAN Added contribution from INRIA
0.8 Mikel Lujan UNIMAN Improved contribution from UCY
0.9 Mikel Lujan UNIMAN Improved contribution from BSC
1.0 Mikel Lujan UNIMAN Improved contribution from INRIA
1.1 Mikel Lujan UNIMAN Added executive summary & improved text

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 2 of 39

for cohesion.
1.2 Mikel Lujan UNIMAN Improvements suggested
1.3 Mikel Lujan UNIMAN Author names
1.4 Mikel Lujan UNIMAN Internal feedback and improved executive

summary.

Release Approval
Name Role Date
Mikel Lujan Originator 05-12-2012
Mikel Lujan WP leader 12-12-2012
Roberto Giorgi Project Coordinator for formal deliverable 14-12-2012

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 3 of 39

TABLE OF CONTENT

TABLE OF CONTENT .. 3

GLOSSARY ... 5

EXECUTIVE SUMMARY ... 6

1 INTRODUCTION .. 7

1.1 RELATION TO OTHER DELIVERABLES ... 8

1.2 ACTIVITY REFERRED BY THIS DELIVERABLE .. 8

1.3 SUMMARY OF PREVIOUS WORK .. 8

2 SUMMARY OF DATAFLOW AND TRANSACTIONAL MEMORY ... 9

3 HIGH PRODUCTIVITY PROGRAMMING MODEL: SCALA .. 10

3.1 MANCHESTER UNIVERSITY TRANSACTIONS FOR SCALA (MUTS) .. 10

3.2 SCALA DATAFLOW LIBRARY (DFSCALA) .. 13

3.3 EXPERIMENTS WITH LEE’S ALGORITHM ... 15

4 SYNCHRONOUS CONCURRENCY .. 18

5 HIGH PERFORMANCE DEVELOPERS: C PRAGMAS .. 20

5.1 STARSS .. 20

5.1.1 Speculation in StarSs ... 20

5.1.2 Speculative execution of loops .. 20

5.1.3 First Experimental Results ... 22

5.1.4 Summary ... 22

5.2 HPC APPLICATIONS WITH TFLUX DDM (UCY) ... 23

5.3 HMPP: A DIRECTIVE-BASED PROGRAMMING MODEL ... 27

5.4 OPENSTREAM ... 29

6 SUMMARY .. 34

APPENDIX A ... 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 4 of 39

The following list of authors will be updated to reflect the list of contributors to the writing of the document.

Daniel Goodman, Chris Seaton, Salman Khan, Behram Khan, Mikel Luján, Ian Watson
University of Manchester

Albert Cohen, Léonard Gérard, Antoniu Pop

INRIA

Lefteris Eleftheriades, Natalie Masrujeh, George Michael, Lambros Petrou, Andreas Diavastos,
Pedro Trancoso, Skevos Evripidou

University of Cyprus

Rahul Gayatri, Rosa M. Badia, Eduard Ayguadé
BSC

Laurent Morin, Stéphane Bihan, François Bodin

CAPS Enterprise

© 2009 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.

The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 5 of 39

Glossary
TM Transactional Memory

Dataflow
computation

A dataflow computation is defined by a graph where the nodes are side-effect-free
computations (functional computation) and the arcs represent dependencies. A node is
activated and executed when its input dependencies have been satisfied, generating
seamlessly parallel execution.

Transaction A set of individual operations that need to be executed atomically, with guarantees of
consistency and isolation

Atomicity Transactions must appear to other transactions as if they occur in a single operation, or do not
occur at all.

Consistency One transaction must take the program from one consistent state to another.

Isolation Transactions must act on isolation of each other.

TM
mechanisms

The implementation of a TM system normally requires a means for detecting conflicts among
executing transactions, and a means for versioning data used within a transaction to allow
restoring the system state back to its origin should one or more transactions conflict.

Conflict Two transactions conflict when the two transactions cannot be executed in parallel preserving
the atomicity, consistency and isolation properties. There are data dependencies across the
transactions (e.g. read-after-write or write-after-write) which would invalidate the parallel
execution of those two transactions

Eager conflict
detection

The TM system has a choice about when to check whether a number of transactions have a
conflict. Eager attempts to detect the conflict during the execution of the transaction.

Lazy conflict
detection

Lazy attempts to detect conflicts among the executing transactions when one of these
attempts to commit.

Eager
versioning

Eager versioning modifies directly memory and requires an undo log to restore the original
state.

Lazy versioning Lazy versioning buffers memory modifications done by a transactions and only once such
transaction is allowed to commit, these modifications are propagated to memory visible by
other threads.

Nested
transaction

A transaction is nested when its execution is contained within the context of another
transaction. Flattening treats the nested transactions as a merged single transaction. Open
nesting has been proposed as a means to reducing unnecessary conflicts by allowing nested
transactions to commit before their parent transaction has been done so.

Strong vs weak
isolation

Strong isolation is where nothing can see the state within a transaction while it is executing.
Weak isolation is where only other transactions are unable to see intermediate state, but other
threads will not be prevented by the programming model from viewing the intermediate state.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 6 of 39

Executive Summary
This report contains descriptions of the current state of work within the programming model
development, and is split into three parts covering the high productivity model, the synchronous
dataflow model and the high performance models.

The specific achievements and discussions are:
High Productivity Model – Scala (Section 3)
• Manchester University Transactions for Scala (MUTS) has been published in JPDC 2012.
• Dataflow Scala library (DFScala) improved and made available as open-source; published in
DFM2012.
• Work analyzing how to combine dataflow and transactional memory for Lee’s algorithm is
recognized as best paper award in MULTIPROG 2012.

Synchronous Dataflow (Section 4)
• INRIA extended the data-flow synchronous Heptagon language with futures.
• The language comes with a formal proof of semantics preservation (elision of the
asynchronous/parallelization annotations), and a compilation method extending the classical
«compilation of parallelism» of synchronous languages. Best paper award at EMSOFT 2012.

High Performance Model – C directives (Section 5)
• StarSs (from BSC) has extended their compiler and runtime system to support speculation
within while-loops, generating promising initial results for the Graph500 benchmark.
• TFLUX (from UCY) has contrasted TFlux DDM with the PLASMA based programming
model. This led to a publication at the Data-Flow Programming Models for Extreme Computing
(DFM-2012).
• HMPP (from CAPS) has a proposal for their pragma directives to support dataflow
programming on GPUs.
• INRIA has extended the streaming data-flow extensions of OpenMP, now called OpenStream,
with first class streams, dynamic task creation, and modular compilation.

Overall, the programming models, formal description and supporting tools are maturing and this
deliverable provides an intermediate checkpoint of progress towards the final deliverable for this
workpackage due next year. A large amount of research has been carried out in these three years in
WP3 and we start to observe common aspects among the different programming models. The creation
of the task graph is supported with different syntax but the core functionality of describing a side
effect free computation as a node in the graph is prevalent. The inputs and outputs are specifically
annotated and permit the generation of the dataflow graph. We can observe a divergence on how rich
the set of in-built dependencies each programming model provides specific support for. This
divergence is not related with whether the dataflow graph generated is general, but is associated with
covering well certain patterns of dependencies and the level of sophistication expected from the
compiler when a pragma is encountered. The work with HMPP provides an industrial perspective of
what features/functionalities are well understood.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 7 of 39

1 Introduction
This document is an update on the work carried out in WP3. It is split into three distinct sections
covering the work carried out on the high productivity programming model (Scala), on the
synchronous concurrency (Heptagon) and on high performance models. Within the latter models, we
cover progress with C-directive-based dataflow models (StarSs, TFLUX, HMPP, OpenStream).

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 8 of 39

1.1 Relation to other deliverables
This deliverable describes the existing work carried out to extend and implement dataflow and
transactional models and it is a continuation of D3.1 and D3.2

1.2 Activity referred by this deliverable
This deliverable covers the work being carried out under WP3 in year 3 (i.e. T3.4).

1.3 Summary of previous work
The previous deliverable reported the progress with defining the programming models and the
outcome of the initial experiments completed successfully. We had developed working software
prototypes able to execute on standard multi-core platforms.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 9 of 39

2 Summary of Dataflow and Transactional Memory
We present an executive summary of the decisions taken to combine dataflow and transactional
memory. Full details can be found in D3.1, D3.2 & D3.3 and some key terms are defined in the
Glossary of this deliverable. Appendix A summarizes the need for shared data in dataflow which
motivates combining Transactional Memory and dataflow.

Dataflow Threads

The architecture and semantics is simplified when a transaction executes only within a single thread.
Once a good understanding of Transactional Memory and Dataflow has been achieved, we intend to
look into weakening these constraints.

Versioning and Conflict Detection

Because the project is fundamentally interested in an extensible system, it is felt that the
communication required to provide the global observation needed to implement eager conflict
detection coupled with the complexity it adds in order to provide correct execution and progress
guarantees mean that it is better to opt for lazy conflict detection. This lazy detection can always be
strengthened by checks at specified points within the transaction.

Nesting

Although true closed nested transactions are preferred, due to finite hardware resources and after a
given depth, it will be reverted to flattened transactions. The first TM prototypes will implement
flattening. Because of its non-intuitive semantics open nested transactions are not an option.

Syntax

Because of its clarity at a programmer level it is intended that TM syntax in the form of atomic blocks
will be provided complete with supporting extensions.

Synchronization

In addition to providing atomic blocks it is intended that all forms of non-transactional
synchronization construct are excluded as they break the atomicity of transactions.

As an update to these decisions, we note that in WP6 we are investigating how to optimize the
detection mechanism by taking advantage of the structure within a node (a set of cores) by having
conflict detection options more frequent than lazy.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 10 of 39

3 High Productivity Programming Model: Scala
In this section we will describe the work carried out on the development of a high productivity
programming model based on extensions to the Scala programming language. Currently this work
consists of two main libraries which provide transactional memory and dataflow execution.

MUTS http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/

DFScala http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala/

We provide updates on the new developments for these libraries and in particular how they can be
applied to Lee’s routing algorithm.

3.1 Manchester University Transactions for Scala (M UTS)
In D3.3 we provided a first description of the implementation of software transactional memory in
Scala without making modifications to the Scalac compiler. This was possible thanks to a novel
mechanism reliant on closures for marking the transactional areas of the code. This removes the need
for programmers using this model to use a special version of the Scala compiler, so making our work
more widely applicable.

The syntax provided by the closures is very simple and an example can be seen below.

// Program code before a transaction
...
// The transaction
val id = atomic {
 threadId += 1
 threadId
}
// More none transactional code

We have conducted a survey considering all the main techniques to bring software transactional
memory into Scala as well as fully explored the capabilities of our closure-based approach. This has
been published as a journal publication [5]. Where possible in the survey we provided references to
implementations that instantiate each technique. As part of this survey we documented for the first
time several novel techniques developed in the implementation of MUTS for Scala. We ordered the
implementation techniques on a scale moving from the least to the most invasive in terms of
modifications to the compilation and run-time environment. This showed that, while the less invasive
options are easier to implement and more common, they are more verbose and invasive in the codes
using them, often requiring changes to the syntax and program structure throughout the code.

There are a wide range of techniques for implementing the frontends of software TMs in Scala. This
work through a combination of one or more of the following elements: Library Calls, Annotations,
Byte-Code Rewriting and Compiler Modifications. Also Scala’s ability to define anonymous
functions and to pass them into other functions as arguments (Closures) is important in many Scala
software TMs. Table 1 maps the different available techniques to the software TMs that implement
these techniques.

Before we look at the different ways of implementing these frontends, we will briefly consider some
of the points that these should be rated against. Table 2 provides a summary for each implementation

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 11 of 39

strategy of the properties that take a discrete value. We can observe that MUTS provides the most
complete coverage offering a high productivity means of using TM in Scala.

Java Compatible: Scala is Java compatible; however this does not mean that all frontends are
automatically compatible with Java. Some require features of Scala that cannot be described in Java
code without a high level of understanding of the workings of the Scala compiler. For example using
frontends that require the passing of compiler inserted implicit parameters or the passing of functions
as arguments to other functions is problematic in Java code. For techniques that are not Java
compatible we note if the technique can be combined with techniques that are Java compatible to
allow transactions accessing the same shared state to be constructed in both Scala and Java.

Supports Strong Isolation: If a TM supports strong isolation no action of the programmer or user
can result in transactional data being accessed from outside of a transaction. If instead only weak
isolation is supported, it is possible to access data being manipulated in a transaction from outside of a
transaction. This can then allow the non-committed state of a transaction to be observed and modified,
potentially undermining the correctness of the code. Strong isolation can also be broken by the
presence of non-transactional mutable data within a transaction; such data may exist as an
optimisation.

Supports Legacy Code: The use of code compiled by others is a routine part of writing programs,
however not all STMs are able to instrument this code. This means that it is not possible to include
within transactions compiled methods that contain side effects. Examples of such methods are those
contained within the Scala mutable collections and the Java Util libraries.

No Runtime Modifications: Some STMs form a simple library that can just be added to the
classpath, others require the addition of more advanced JVM arguments, or the use of special
compilers.

Clarity of Code: Different methods of implementing transactional frontends require different
syntaxes. These different syntaxes offer differing levels of complexity and verbosity. Excessive
verboseness or complicated syntax can act as a barrier to the use of the transactional frontend, or
result in difficulty reading and writing code that uses it.

No Alternative Syntax: A specific point relating to clarity of code is that while some STM’s may be
less verbose than others, some of these require that the code inside a transaction uses a different
syntax to code outside a transaction. For example, an alternative assignment statement is required for
some techniques. As the standard assignment operator can still be used, but may not be valid, such
changes not only increase the application programmer workload, but also allow for the creation of
subtle bugs.

No Duplicate Methods: To call functions from both inside and outside a transaction some STMs
required that the user constructs two copies of methods, one that is transactional and one that is not.
Others are able to automatically construct a transactional and a non-transactional method from a
single piece of user code. The ability to construct both methods from a single piece of code removes
the opportunity for discrepancies between the two functions to be added when writing or maintaining
the code, as well as reducing the workload for the programmer.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 12 of 39

Guarantees Correct Transactions: Some STMs guarantee that all variables that need to be
instrumented as part of a transaction will be, while others leave it to the programmer to ensure this. If
the programmer fails to add all the required instrumentation then the transaction may no longer be
correct and a race condition will have been introduced into the program.

Table 1: Survey of techniques and available systems to add Software Transactional Memory to Scala

Implementation Style Implementations

Pure Libraries Explicit library calls ―

Reference cells Multi-Verse

CCSTM

ScalaSTM

RadonSTM

Closures and reference cells CCSTM

ScalaSTM

Byte-code rewriting Class annotations Multi-Verse

Method annotations MUTS

Closures MUTS

Parser Modifications MUTS

Compiler Modifications ―

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 13 of 39

Table 2: Summary of approaches and their properties.

3.2 Scala Dataflow Library (DFScala)
To compliment MUTS and to enable the development of dataflow code for a number of the
applications selected in WP2 (see D2.3 for performance results and current status of developed
applications) we have constructed a library to support the creation and execution of dataflow threads.
The design of DFScala has been published in [7] and we have made DFScala available as open source
code at

 http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala/.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 14 of 39

In particular, this year we have made improvements for performance, simplified the implementation
to use less complex parts of Scala and improve tooling to help with the development of parallel
applications with DFScala.

One distinguishing feature of DFScala is the static checking of the dynamically constructed dataflow
graph. This static checking ensures that at runtime there will be no mismatch of the arguments to
functions. DFScala does not require the usage of special types and thus a node can be generated from
any existing Scala function without complex refactoring of code. Each node in the dataflow graph is a
function which cannot be subdivided; a function is sequential. To support nested parallelism within a
function, subgraphs can be created which are wholly contained within a function, returning a value to
the node upon completion.

To improve friendliness, we have made changes that allow simplifying the creation of nodes in the
graphs from:

 val bThread = DFManager.createThread(cr eateGraph _)
 bThread.arg1 = b
 bThread.arg2 = divisions / 2
 bThread.arg4 = routes
 bThread.arg5 = solutionsReduceThread.to ken1
 bThread.arg6 = remainingReduceThread.to ken1

to a much shorter version:

 val bThread = thread(createGraph _)
 bThread(b, divisions / 2, Blank, routes ,
 solutionsReduceThread.token1, remaining ReduceThread.token1)

The work on tools has focused on providing a simple visualization of the runtime schedule for
dataflow graphs (Figure 1).

Figure 1: Simple visualization of the runtime schedule for dataflow graphs

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 15 of 39

3.3 Experiments with Lee’s algorithm
To understand how to combine dataflow and transactional memory, we have used an established
benchmark, Lee's algorithm for routing printed circuit boards, to make an assessment of their utility
for creating efficient, simply written and correct parallel programs. Our experience was published in
[6] and was awarded the best paper award.

We have shown initial evidence of the combined model of dataflow and TM making the parallel
implementation of our program simpler, at the same time as achieving a real world performance
increase compared to coarse locks, even when all overhead is included (MUTS – Software
Transactional Memory).

Lee's algorithm solves the problem of finding independent routes between a set of pairs of points on a
discrete grid. The applications originally proposed included drawing diagrams, wiring and optimal
route finding, but the algorithm is now best known as a method for routing paths on a printed circuit
board. There are later algorithms for route finding with less computational complexity, but Lee
produces a shortest solution for any given route and board state, as opposed to using heuristics to
arrive at a good-enough solution in less time. Figure 2 shows the output of one application of Lee's
algorithm - routing paths on a printed circuit board - as generated by our implementation.

Figure 2: Lee’s algorithm

A simple overview of the Lee algorithm is that from the start point of the route it looks at all adjacent
points and marks them as having cost one. From each point P so marked, it marks each adjacent point
Padj as having cost cost(Padj) = cost(P) + 1, as long they were not already marked with a lower cost. If
an adjacent point is already part of another route then using that point would cost more, by an
arbitrary constant factor, as a bridge of one route over another needs to be built. This expansion, as it
is called, continues until the end point is a member of the set of adjacent points. Typically, this
expansion forms a circle around the start point, enveloping obstacles such as existing routes, and
finishing at the end point. A trace is then run from the end point to the start point, always moving to a

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 16 of 39

point of lower cost until the start point is reached. This produces a route which can be marked on the
grid.

The key to the problem is that any set of subproblems still need to share access to a single resource;
the grid. It is not simple for each thread to have an independent copy of the grid, as two threads could
need use the same point for multiple routes and would then have to synchronise between themselves.
This would add logic to the program that is unrelated to the algorithm that we are implementing. It is
also not simple for each thread to have one part of the larger grid, as you cannot guarantee which parts
a route will use before the expansion has been calculated and such a scheme would vastly increase the
complexity of the program. However, given all routes on a circuit board it is unlikely that any two
being routed at a particular time will conflict. The parallelism is there; it is just that it is hard to
determine statically and is more apparent as the program is running. Work has already been done to
use Lee to evaluate the runtime characteristics of a transactional program [8] and Lee is also known as
Labyrinth in the STAMP benchmark suite.

We used the MUTS library to create a parallel implementation by modifying a coarse-lock
(coarselock) version. Where the coarselock acquires a resource with exclusion of all other threads, we
can instead perform the action inside a transaction that will only allow other threads to read the same
values as long as they do not write to them, and will automatically retry if such a conflict is found.

// Atomically copy the shared data structure
val privateBoardState = atomic { boardState.freeze }

val expansion = expandRoute(board, route, privateBo ardState)
val solution = traceRoute(board, route, expansion)

// Atomically write to the shared data structure
atomic {

if (verifyRoute(route, solution, boardState))
layRoute(route, solution, boardState)

else
scheduleForRetry(route)

}

This transactional version can be transformed into using dataflow (DFScala). The dataflow constructs
provided allow us to express this creation of parallelism in a different way. Each route is a DFThread
that will have its inputs ready at the start of the program's execution and so will all be runnable.
DFScala will schedule them for us so that only a sensible number are running at any time. A final
DFThread, the `collector thread' will be then created that has each route's DFThread as one of its
arguments. This will therefore be run when the solutions are complete. This is a convenience
construct provided by DFScala, as it is expected to be a common pattern, and replaces the
synchronisation needed to create the list of solutions and the join operation to wait for all threads to
finish that we used in coarselock.

// Accepts solutions as arguments and build a list from them
val solutionCollector = DFManager.
createCollectorThread[Solution](routes.length)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 17 of 39

for (route <- routes) {
// Create a thread to solve a route
val routeSolver = DFManager.createThread(solveRoute _)
routeSolver.arg1 = board
routeSolver.arg2 = route
routeSolver.arg3 = boardState
// It will send the solutions to this function
routeSolver.arg4 = solutionCollector.token1

}

The performance results published in [6] and summarized in Figure 3 bellow cover the scenario on
desktop multi-cores. For next year, we will expand this analysis of the application and run on the
Teraflux architecture and larger many-core systems.

Figure 3: Speedup results for Lee’s algorithm. “seq” represents the sequential execution; “coarselock”

represents the results obtained with a coarse-grain locking implementation; “muts” represents the results

obtained with TM; “dataflow” represents the results obtained when combining dataflow and TM.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 18 of 39

4 Synchronous concurrency
Synchronous languages are devoted to the design and implementation of embedded software. They
are particularly successful for safety-critical real-time systems. They facilitate the parallel modular
specification and formal verification of systems to the generation of target embedded code. The
synchronous model is based on the hypothesis of a logical global time scale shared by all processes
which compute and communicate with each other instantaneously. This ideal model is then validated
by computing the worst case execution time (WCET) of a single reaction. Nonetheless, global logical
time may be difficult to preserve when the implementation is done on a parallel machine or
performance is an issue. For example, when running a rare but long duration task concurrently with a
frequent and faster task, the logical time step could naively be forced to be big enough for the longest
task to fit in and short enough to keep up with the frequency of the small task. The classical solution is
to decouple these tasks, running the long one across several steps. This is usually stated as the
problem of « long duration tasks » in the literature. Several approaches have been considered in the
past, always using distribution as a means to decouple the tasks, be it explicit language constructs to
call external distributed functions or automatic/guided repartition techniques. The current practice of
distribution is mostly manual with no warranty that it preserves the functional behaviour of the model.
We believe that decoupling should be explicitly controlled by the programmer, within the
synchronous language itself as a programming construct. The distribution will then be done according
to this decoupling. The natural expression of decoupling is given by the notion of future introduced in
Act1 and MultiLisp and present in modern languages like C++11, Java, F#.

A future is the promise of the result of a computation. Whereas a call to f(x) couples the computation
of f(x) and the return of the result y, the asynchronous call async f(x) returns instantaneously a future
a. Possibly latter on, when the actual result is needed, !a will block until f(x) has finished and return
the result y. With the help of futures, we claim that synchronous languages are fit, not only to design
the control and computations, but also to program the decoupling and distribution.

Our contributions can be summarized as follows. We consider a Lustre-like language extended with
futures and explicit asynchronous function calls. This extension is modular and conservative w.r.t. the
base language, in the following sense: a sequence of input/output values of the annotated
(asynchronous) program is equal to the one of the not annotated one. In other words, the annotations
preserve the original synchronous semantics. The implementation handles futures as a support library.
They are treated like any value of an abstract type, the get operation !y is translated to the library one,
and an asynchronous call async f(x) is a matter of wrapping it inside a concurrent task, managing
inputs, and dealing with the filling of futures. The crucial memory boundedness of synchronous
programs is preserved, as well as the ability to generate efficient sequential code for each separate
process resulting from the distribution. The distributed program also stays free of deadlocks, livelocks
and races.

To our knowledge, the use of futures in a synchronous language is unprecedented. We show via
numerous examples how to desynchronize long-running computations, how to express pipelining,
fork-join, and data-parallelism patterns. This way, we achieve much higher expressiveness than
coordination languages with comparable static properties. In particular, the language captures
arbitrary data-dependent control flow and feedback. It also highlights the important reset operator,
leveraging rarely exploited sources of data-parallelism in stateful functions.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 19 of 39

We demonstrated that such desynchronization can be achieved within bounded memory, and without
the need for a garbage collector. This is the first language with futures with such guarantees, making
our parallel extension of Heptagon particularly interesting for embedded and real-time applications.

This work was awarded the best paper award at EMSOFT 2012. The detailed semantics, a multitude
of examples, and proofs can be found in [3].

A C backend with low-level futures and pthreads is available, complementing our earlier (less
efficient) Java backend. For higher performance and integration with the TERAFLUX tool flow, an
OpenStream backend is currently being finalized. The precise compilation method and experimental
evaluation will be reported in the 4th year of the project.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 20 of 39

5 High Performance Developers: C pragmas

5.1 StarSs
BSC is investigating how speculation can be brought into StarSs using Transactional Memory. StarSs,
is a task based programming model for widely used Multi-core architectures. The programming
model is based on data flow analysis and dynamic data dependency tracking by the runtime.
Sometimes in order to extract more parallelism multiple tasks are allowed to simultaneously update
memory locations. In such cases lock-based synchronization is used to maintain the correctness of the
application. But locks suffer from the drawbacks of deadlock, livelock and priority inversion.
We introduced Software Transactional Memory (STM) based concurrency control mechanism to
manage parallel updates. The comparison of results between lock-based approach and STM-based
approach shows that applications with high lock contention have better performance with STM based
approach [9].

5.1.1 Speculation in StarSs
StarSs provides synchronization constructs such as “wait-on” , to wait for a particular memory
location to be updated before continuing execution and “barrier”, to block execution of all threads till
each of them reaches a certain point of execution. Such constructs hamper the parallelism by leading
to problems such as blocking of work generation and load balancing. The most common situations
where these constructs are used are during if-condition and while-loops. Hence we speculate on the
conditions of these loops.

In case of an if-condition such as:
T1(a);
//#pragma css wait on(a)
#pragma css speculate wait(a) values(b,c)
if(a)
{

T2(b);
T3(c);

}

We speculate that the if-condition will be evaluated to true and generate the tasks T2 and T3 inside a
transaction instead of waiting for task T1 to finish. Latter when the values of b and c are required we
check for the validity of if-condition and either commit the results of b and c or abort transaction.

5.1.2 Speculative execution of loops
The iteration space of while-loops is unknown. The termination condition of i+1th iteration depends
on values generated in i-th iteration. In such cases running multiple iterations in parallel becomes
difficult. The parallelism available in such cases boils down to concurrency present in a single loop
iteration. We are trying to speculate on the termination condition of the while-loop and spawn
multiple iterations speculatively. There are 2 major issues to tackle in this case, 1. If there are cross
iteration dependencies, then at best their execution can only be pipelined. Iterations which have been
speculatively spawned, but would not appear in the original sequential loop, need to be undone. We
use STM, to tackle this issue by executing every iteration of the while-loop inside a transaction. Later

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 21 of 39

the termination condition is verified and depending on its results, either the values updated in the loop
are committed or the transaction is aborted.

Syntax for speculation of loops in StarSs :
#pragma css speculate wait(a) values(b,c)
while(a)
{

T2(b);
T3(c);
T1(a);

//#pragma css wait on(a)
}

As shown above, just before starting of the loop, we annotate it with the speculate pragma, implying
that the iterations of this loop can be executed speculatively. The wait clause contains the variables
based on which the termination condition of the while loop is evaluated. The values clause contains
variables whose results have to be protected.

Compiler changes required: StarSs has a source to source compiler, which has been modified to
interpret the loop following the speculate pragma as a speculative loop. The compiler creates a guard
function which evaluates the loop condition.

int css_guard__cssgenerated(void*speculate_params__ cssgenerated[1])
{

return (*((int *) speculate_params__cssgenerated[0]));
}

A pointer to this function is passed as a parameter to the task. The variables used in the loop condition
are packed into a void array and passed to this function as input. The function returns a value
indicating whether the loop condition has evaluated to true or false. These tasks are marked as
speculative tasks.

Runtime changes required: In the runtime, an input dependency is added between speculative tasks
and the variables involved in evaluating the guard-function. In this way, we ensure that even if the
variables involved in guard-function are evaluated by different tasks, their value remains consistent
while evaluating the validity of the speculative task. Later inside each thread which executes the
speculative task, a transaction is started and a transactional copy is made of the variables passed to the
values clause. The updates made by the task are made on these transactional copies. After the
execution of the task, a check is made using the function pointer to the guard function to evaluate the
validity of the task. Depending on this check, the task variables from the values clause are either
committed of aborted.

In this way, we speculatively execute multiple iterations of the loop, but abort the iterations which do
not appear while running the loop sequentially. In order to control the amount of speculation, an
environment variable (CSS_SPECULATION_TASKS) variable was added in the StarSs runtime. In
the following set experiments that we report it is 10 by default, implying that the 10 iterations of the
loop will be executed speculatively and then a wait is performed before continuing the execution for
another 10 iterations.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 22 of 39

5.1.3 First Experimental Results
The proposal has been evaluated with the BFS algorithm of Graph500. The original sequential
algorithm iterates over an entire graph using 64 unique search keys. The termination BFS algorithm
depends on complete traversal of the graph. The number of iterations needed to achieve this is
unknown at compile time, hence a while-loop is used until every node/vertex in the graph has been
visited. We speculate on this while-loop and the results obtained are shown in Figure 4.

Figure 4 Performance of the Graph500 benchmark with StarSs+TM against regular StarSs. The chart show

the benefits of dding TM to StarSs in this application

5.1.4 Summary
Since iteration space of while loops are unknown, we can only speculate on the execution of the loop
over multiple iterations. Many irregular applications such as graph traversals and convergence
algorithms suffer from this lack of knowledge of iteration space. But we have shown that by
speculatively executing iterations of a loop we can extract good levels of parallelism.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 23 of 39

5.2 HPC Applications with TFLUX DDM (UCY)
High-Performance Computing (HPC) applications have traditionally been developed using simple
parallel models such as OpenMP and/or MPI, or through the use of custom tuned linear algebra
libraries. With the revisiting of dataflow models as a way to overcome the limitations of the von
Neumann model, we propose to study how to exploit the Tflux Data-Driven Multithreading (DDM)
model for the implementation of efficient HPC applications. In this section we wish to contrast [11]
the DDM model with the PLASMA based model [10].

As a preliminary evaluation of whether DDM can be a viable candidate for a model to implement
HPC applications, we focused on the implementation of three kernel applications: Matrix-Multiply,
LU, and Cholesky decomposition. The novelty in implementation for these applications was that we
combined DDM code with optimized numerical analysis code. Thus we created D-threads for the
operation on different blocks of data and then for the real operations on the data we used the highly
optimized numerical analysis kernel libraries. With this approach we want to show that it is possible
to get very high performance while using previously tuned code in combination with an efficient
scheduling of the threads that operate on data blocks offered by the DDM model.

In Figure 5, Figure 6 and Figure 7 we show the pseudocode and also the thread dependency graph for
implementations of each application in this study.

Pseudocode Dependency graph

Figure 5 Pseudocode for the blocked matrix-multiply implementation and the thread dependency graph for

the same applications

Details for the analysis and implementation of the applications can be found in [1].

We evaluated the applications by executing them on a native multi-core machine using out DDM
runtime with a software implementation of the TSU. For more details about TSU, see D6.1 and D6.2.
We compare the results obtained with this setup with the execution of the same applications using the
optimized PLASMA library. With this work, our objective was to study the scalability of the
performance as the number of cores in the system is increased. On Figure 8, Figure 9 and Figure 10
we show the charts with the performance for the three applications for executions with up to 48 cores.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 24 of 39

Pseudocode(a) Dependency graph

Figure 6 Pseudocode for the LU decomposition implementation and the thread dependency graph for the

same applications

Pseudocode Dependency graph

Figure 7 Pseudo-code for the Cholesky decomposition implementation and the thread dependency graph for

the same applications

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 25 of 39

Figure 8 Performance of Matrix Multiply implemented with DDM

Figure 9 Performance of LU Decomposition implemented with DDM

Figure 10 Performance of Cholesky Decomposition implemented with DDM

It is possible to observe that the DDM implementation scales well as the number of cores increases.
Some results do not follow the trend perfectly and we estimate that it is due to the fact that as we
increase the number of cores, there are caching effects that change the performance of the
applications. For example the increase of cores that surpass the number of cores in a die of the chip
and thus result in the use of a separate partition of the L3 cache and also when we surpass the number
of cores in a processor and thus some cores will be sharing the data across the caches in two different

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 26 of 39

chips. Also relevant to notice from the results is the fact that the results show that DDM surpasses the
performance obtained by PLASMA in most cases and this difference is quite significant for the setups
with large number of cores.

The results observed in this study are very encouraging and show that DDM can handle the
parallelization required for linear algebra applications for present and future multi and many-core
systems. As such we will investigate the use of DDM as a viable candidate for HPC and look at ways
to improve programmability such as the development of DDM libraries with relevant numerical
analysis kernels, similarly to BLAS and PLASMA.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 27 of 39

5.3 HMPP: a Directive-based Programming Model
The OpenHMPP [4] (and OpenACC) programming model proposes a data parallel programming
model based on the codelet concept. In TERAFLUX, CAPS has been investigating the extension of
the current CAPS products with the data flow model designed by the Workpackage 3 in a manner that
is compatible with the existing OpenHMPP implementation. The goal is to make available two
different directives based models to the users; each implementing a different parallel programming
approach: the first using the regular OpenHMPP concept, the second using an advanced data flow
concept. Depending on the structure of a computation phase in the application, the user will use the
most adequate parallel approach. The design of this extension has been performed according to the
following consideration:

- Minimize the number of changes to OpenHMPP;

- Execution with current OpenHMPP model is correct.

This extension consists of two main constructs:

1) A new directive to define data flow regions;
2) A variant of the callsite directives denoted “dfcallsite”.

The data flow region is delimited using a DFRegion pragma on a statement block (denoted DFR in the
remainder of this document) as shown below:

#pragma hmpp DFRegion in(…), out(…)

{

 // set of statements

}//end of data flow region

Data flow regions can contain the following statements:
- Procedure calls with a dfcallsite directive;

- Statements that are not affected by the tasks computations. Output arguments of tasks cannot
be used in non-dfcallsite statements.

The statements in a DFR aim at creating the task graph. These statements can be arbitrarily complex
but a task creation cannot depend on the result of one of the tasks. These statements are executed on
the host system.

Data flow regions shall have the same semantic as the sequential execution of the region (which
represents a particular schedule of the tasks). In and out region arguments are contiguous memory
blocks. Other memory blocks can be used as internal storage for the region. They are dead variables at
the entry and the exit of the DFR.

The proposed extension to OpenHMPP is based on the current concept of Codelets. They are pure
functions that can be remotely executed in a given address space.
In the context of this work, OpenHMPP codelets have a set of restrictions:

- Codelets arguments are limited to scalar and mirrored data

- Codelets code generation must not lead to data exchange or synchronization with the master
program

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 28 of 39

Codelets falling in this category are denoted DFCodelets. From the data flow model point of view, a
DFCodelet can be seen as a data flow threads at execution. The DFCodelets must have the clauses:

- args[*].mirror

- args[*].transfer=manual

to ensure the proper declaration for the argument mode management. A typical codelet declaration
pattern is shown below:

#pragma hmpp c1 codelet, args[A].io=in, args[C].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual

void compute1 (float *A, float *C);

DFCodelet granularity can encompass from a few statements to a large set of statements. This later is
targeted with this work since it is expected that, in general, the synchronization operations may be
expensive. However, when considering the TERAFLUX system, this constraint may be alleviated
thanks to the hardware based thread management. There are no restrictions made on the statements
except that the code generation should lead to a unique accelerator kernel. This constraint is necessary
to ensure that no synchronization between the device and the host is needed to execute a task.
DFCodelets are expected to exhibit parallelism in their computation. This parallelism can then be used
to exploit SIMD/SIMT parallelism available in many devices. This is taken care of by HMPP code
generation. An example is given below:

#pragma hmpp c1 codelet, args[A].io=in, args[C].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual

void compute1 (int j, float *A, float *C);

#pragma hmpp c2 codelet, args[C].io=in, args[B].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual

void compute2 (float *B, float *C);

#pragma hmpp c3 codelet, args[C].io=in, args[B].io= out, &
#pragma hmpp & args[*].mirror, args[*].transfer=man ual

void compute3 (float *B, float *C);

#pragma hmpp DFRegion in(A), out(B)

{

 for (i=0 ;i< n ;i++){

 #pragma hmpp c1 dfcallsite, device="1”

 compute1(i, A, C[i]) ;

 }

 for (i=0 ; i<n ;i++){

 if (i=0)

 #pragma hmpp c2 dfcallsite, device="2”

 compute2(C[i], B) ;

 else

 #pragma hmpp c3 dfcallsite, device="3”

 compute3(C[i], B) ;

 }

}//end of data flow region

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 29 of 39

5.4 OpenStream
INRIA is working on streaming dataflow using a pragma-based approach. This deliverable extends
our proposal of a streaming data-flow extension presented in earlier deliverables. We coined the name
OpenStream for these data-flow streaming extensions of OpenMP:

http://www.di.ens.fr/StreamingOpenMP

OpenStream is an expressive programming model to allow the composition of tasks communicating
through first-class data-flow streams, as well as separate compilation. We provide more general
dynamic constructs to support complex data structures and unbounded fan-in and fan-out
communications. In contrast with our previous work, we introduce strongly typed, first-class streams
that may be freely combined with recursive computations and dynamic data structures, while
preserving modular (separate) compilation. We also add variadic stream clauses to construct
arbitrarily complex, dynamic, possibly nested task graphs, and we provide syntactic support for
broadcast operations and for synchronization with futures.

Higher expressiveness may improve productivity, but it often comes with performance overheads,
impacting the compiler optimizations and increasing the complexity of the necessary runtime support.
However, it is also an important asset: general point-to-point synchronization alleviates scheduling
constraints of simpler programming models like Cilk. Detailed experiments to study the performance
benefits and caveats of this extra expressiveness have been conducted, and published in [1].

OpenStream relies on programmer annotations to specify the data flow between OpenMP tasks and to
build the program task graph. Task graphs need be neither regular nor static, unlike the majority of the
streaming languages. OpenStream programs allow dynamic connections between tasks, multiple tasks
interleaving their communications in the same streams, and arbitrary and variable fan-in, fan-out and
communication rates in a dynamically constructed task graph. The language also supports modular
composition, separate compilation, and first-class streams (streams as arguments and return values).
Despite this expressiveness, the model preserves functional determinism of Kahn networks by
enforcing a precise interleaving of data in streams derived from the sequential control flow of the
main program.

The syntactic extension to the OpenMP 3.0 language specification consists in two additional clauses
for task constructs, the input and output clauses presented in Figure 11. The baseline syntax is
the same as the one presented in D3.1.

Figure 11 Usage of the input and output clauses in OpenStream

Both clauses take a list of items, each describing a stream and its behaviour with regard to the task to

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 30 of 39

which the clause applies. If the item notation is in the abbreviated form stream , then the stream can
only be accessed one element at a time through the same variable stream. In the second form,
stream >> window , the programmer uses the C++-flavoured << >> stream operators to connect
a sliding window to a stream, gaining access to multiple stream elements, within the body of the task.

Tasks compute on streams of values and not on individual values. To the programmer, streams are
simple C scalars, transparently expanded into streams by the compiler. An array declaration (in plain
C) defines the sliding window accessible within the task and its size, the horizon. The connection of a
sliding window to a stream in an input or output clause allows to specify the burst, which is the
number of elements by which the sliding window is shifted after each activation. In the previous
figure, the input window Rwin would be shifted by two elements, while the output window Wwin
would be shifted by three elements. The data-flow case corresponds to horizon=burst. In the more
general case where horizon>burst, the window elements beyond the burst are accessible to the task;
for an output window, the burst and horizon must be equal. Task activation is enabled by the
availability, on each input stream, of all horizon elements on the input window, and is driven by the
control flow of the main OpenMP program.

Figure 12 Syntax of the input and output clauses

The example in Figure 12 illustrates the syntax of the input and output clauses. Task T1 uses the
abbreviated syntax to produce one data element for stream x . The semantics of stream operations is to

interleave accesses, as illustrated in Figure 13, in task creation order.

Figure 13 Interleaved accesses to the stream "x". Tasks T1 and T2 are producers, T3 and T4 are consumers.

This order is determined by the flow of control spawning tasks, called control program. In our

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 31 of 39

example, T1 introduces a delay in stream x . Task T2 is also a producer, adding two elements to stream
x at each activation. Tasks can be guarded by arbitrary control flow, as is the case for T3, which reads
three elements at a time and discards two elements. T4 also reads from x, interleaving its accesses to
the stream with the accesses from T3. This interleaving is entirely determined by the schedule of the
control program, in this case it is a sequence (T4, T3, T4, T4, T3, ...).

In addition to input and output clauses, we provide a convenience clause for performing pure
peek operations (i.e., when a task reads on a stream without advancing the stream, through a 0-burst
access window). The peek clause does not introduce any new semantics; it makes broadcast
operations explicit.

In a streaming context, broadcasting can be performed without copying, by allowing multiple tasks to
read the same data in a stream without advancing the reading index. The peek clause uses the same

syntax as the input clause, except that the burst is disregarded, implicitly understood to be 0. To
simplify the complementary operation of discarding elements from a stream, whether already read or
not, we add a new tick directive. It has similar semantics to a code-less task using an input clause
on a given stream: it advances the read index in streams, playing a similar role to advancing the
logical clock represented by stream access indexes. The Figure 14 presents the syntax of peek and

tick , as well as the semantically equivalent code.

Figure 14 Syntax of peek and tick clauses, and the semantically equivalent code

One of the main roles of our streaming annotations is to describe, in a compact way, how the dynamic
task graph of an application is built. To generate arbitrary task graphs, it is necessary to allow
connecting tasks to dynamically variable numbers of streams. However, this poses a challenge due to
the static nature of compiler directives: the number of streaming clauses present on a task’s pragma
directive is inherently static. To specify a variable number of connections, we allow to simultaneously
access multiple streams of an array through an array of windows.

Figure 15 Example of how to allow multiple streams of an array, exploiting an array of windows

The Figure 15 shows an example of an array of stream access windows connected, in a variadic
clause, to multiple streams from an array of streams. The window window_array gives

simultaneous access to the first num_streams streams in stream_array . The number of streams
connected must be at most the size of the array.

So far, we presented the declaration of stream variables as a plain C variable declaration. However,
this poses problems for compiling streaming programs where streaming tasks occur in function calls,
let alone programs divided in multiple translation units, and it makes type checking very difficult. To

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 32 of 39

enable modular compilation, we need an interface to pass streams as parameters to functions and to
store stream references in data structures, making streams first class entities which can be manipulated
like any C variable. Consistently with our compiler directive approach to streaming, we add variable
and parameter declaration attributes to type streams.

Streams are implicitly separated between a stack-allocated stream reference, which can be freely
manipulated by the programmer, and the heap-allocated data structure used and managed by the
runtime. In general, the user needs not know about the latter and can simply consider streams to
behave like any stack-allocated variable.

Figure 16 Different types of stream declarations

Figure 16 shows the different types of stream declarations, as scalar variables, arrays of streams and
arrays of stream references, and parameters to functions. Both streams and stream references can be
manipulated in the same way, but stream references are not initialized and must be set by the
programmer with an assignment. They are used for managing collections of streams, in particular for
variadic streaming clauses.

The management of stream data structures is generally done entirely by the runtime, which
transparently updates a reference counter to ensure timely deallocation. However, some advanced uses
of stream references require programmer intervention in the form of runtime calls to increment and
decrement the reference counter; specifically when they escape the current scope of the stream
variable because the stream is returned by a function or it is stored in a heap allocated data structure.
We purposefully chose this explicit approach to resource management to avoid relying on a general-
purpose garbage collector. Indeed, a garbage collector would have to rule the whole heap memory.
Since first-class streams allow handling most situations automatically, programmer intervention is
seldom necessary; so far, we only used explicit reference counting in complex, compiler generated
codes that would be written in simpler ways by a programmer, without requiring explicit reference
counting.

Finally, to allow recursion with concurrent tasks, and more importantly to enable the parallel
execution of the control program, we add support for task nesting, valid for any arbitrary nesting of
streaming and non-streaming tasks.

As we target more than just structured nesting graphs, we need to be able to communicate streams to
nested tasks, which allows them to further generate tasks accessing these streams. This is possible by
passing streams by value to nested tasks, using the firstprivate clause. This clause copies the
stream reference alone and issues the proper runtime calls to ensure proper management of the stream

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 33 of 39

data structure (reference counting), without any further programmer involvement. Let us illustrate this
on the recursive implementation of Fibonacci.

Figure 17 Implementation of the recoursive Fibonacci alogirithm (portion of the main, and actual function)

The right side of Figure 17 shows the main function of the program, which declares a stream ,
passed by copy to a first task that initiates the recursion and on which a second task will read the final
result . The left side of the figure shows the recursive function taking as parameter a stream on
which it writes its result. It further spawns two tasks to generate the remainder of the recursion.

We mentioned above that a restriction on this type of nesting is necessary to preserve determinism.
Indeed, the problem comes from the fact that we rely on the total order on read (or, independently,
write) accesses to each stream, which derives from the order of generation of tasks performing such
accesses, to guarantee the determinism of the schedule of data in streams. If the control program,
which is the thread of control that reaches a task construct, is not sequential, then concurrency
between the generation of tasks performing the same type of access to the same stream will lead to
non-determinism. We must therefore ensure that the order of creation (not execution) of tasks
producing to or consuming from each stream is preserved. This can either be achieved by ensuring
that all tasks producing (or independently consuming) data in a stream are created by a single task, as
is the case in the Fibonacci example, or that the order of creation is enforced through dependences in
the task graph.

To complete this feature list, we also demonstrated the embedding of dynamic futures and the
translation of StarSs into OpenStream. This experiment is discussed in [1], with a summary of the
translation from StarSs in D4.6.

Finally, the presentation above used an informal semantics. We also defined a formal semantics for a
subset of the OpenStream language. This semantics has been the occasion to coin a purposely
designed formal model, called Control-Driven Data Flow (CDDF), generalizing a variety of
imperative models of parallel computation. This formal model has been submitted to the ACM
TOPLAS journal and is available as a research report [2]. We are extending this model to handle
parallel task creation and refine its formal properties. This work will be reported in the fourth year.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 34 of 39

6 Summary
This document has described the research carried out in the WP3 of the Teraflux project during the
third year. It is split into three distinct sections covering the work carried out on the high productivity
programming model, on the synchronous concurrency and on high performance models. Within the
latter models, we cover progress with C-directive-based dataflow models (StarSs, TFLUX, HMPP,
OpenStream). The executive summary has presented the main achievements obtained during this year;
including two best paper awards.

In addition, it does contain the rationale for needing a means for handling shared mutable state in
dataflow models. This deliverable has covered the work being carried out in T3.4.

Overall, the programming models have past the initial definition stage and we start to observe
maturity with respect to the tools available (see for example the open-source tools). These advances
provide a solid foundation for the next year. Nonetheless, we start to observe common aspects among
the different programming models. The creation of the dataflow task graph is supported with different
syntax but the core functionality of describing a side effect free computation as a node in the graph is
prevalent. The inputs and outputs are specifically annotated and permit the generation of the dataflow
graph. We can observe a divergence on how rich a set of dependencies each programming model
provides specific support for. We can also observe a divergence with respect to the extra information
that can optimize the runtime scheduling of the dataflow graph. These divergences are not to do with
whether the dataflow graph generated is general, but is associated with covering well certain patterns
of dependencies and the level of sophistication expected from the compiler when a pragma is
encountered. The work with HMPP provides an industrial perspective of what features/functionalities
are well understood.

Next year, the projects partners will provide the final dataflow computational models (i.e. T3.4
Consolidated Dataflow Models) and learn from the interactions with WP2 (applications), WP4
(compilation tools) and WP5 (execution on the Teraflux architecture). In particular, the formal
definition and implementation of the memory types will occupy a lot of our time.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 35 of 39

References

[1] Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and data-flow compilation of
OpenMP streaming programs. ACM Transactions on Architecture and Code Optimization (TACO),
selected for presentation at the HiPEAC 2013 Conf., January 2013.
[2] Antoniu Pop and Albert Cohen. Control-Driven Data Flow. Research Report RR-8015, INRIA,
July 2012.
[3] Albert Cohen, Léonard Gérard, and Marc Pouzet. Programming parallelism with futures in Lustre.
In ACM Conf. on Embedded Software (EMSOFT), Tampere, Finland, October 2012. Best paper
award.
[4] HMPP User’s Manual. CAPS enterprise, 2012.

[5] Daniel Goodman and Behram Khan and Salman Khan and Mikel Luján and Ian Watson . Software
transactional memories for Scala. Journal of Parallel and Distributed Computing, 2012.
http://dx.doi.org/10.1016/j.jpdc.2012.09.015

[6] C. Seaton, D. Goodman, M. Luján, and I. Watson. Applying dataflow and transactions to Lee
routing. In Proceedings of the 7th Workshop on Programmability Issues for Heterogeneous
Multicores (MULTIPROG), 2012. Best Paper Award.

[7] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, and I. Watson. DFScala: High
level dataflow support for Scala. In Proceedings of the 2nd International Workshop on Data-Flow
Models For Extreme Scale Computing (DFM), 2012.

[8] Ian Watson, Chris Kirkham and Mikel Luján. A Study of a Transactional Parallel Routing
Algorithm. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques - PACT, pp. 388-398, 2007.

[9] Rahulkumar Gayatri, Rosa M. Badia, Eduard Ayguadé, Mikel Luján, Ian Watson. Transactional
Access to Shared Memory in StarSs, a Task Based Programming Model. Euro-Par 2012: 514-525.

[10] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou, and H. Ltaief. PLASMA Users
Guide. Technical report, ICL, UTK, 2009.

[11] C. Christofi, G. Michael, P. Trancoso and P. Evripidou, "Exploring HPC Parallelism with Data-
Driven Multithreading," in DFM 2012, Minneapolis, 2012.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 36 of 39

Appendix A
The Need for Shared Mutable State in Dataflow Models

It is widely accepted that a functional programming approach together with dataflow execution can
lead to the efficient exploitation of implicit parallelism. This computational model is usually
associated with styles of programming based on pure functions as these map readily on to the
execution model. However there are many computations which cannot be easily or efficiently
expressed in a pure functional style as they have a structure where the parallel manipulation of shared
mutable state is fundamental to the problem being solved. In Teraflux we argue for a new
computational model which combines Transactional Memory (TM) and Dataflow to overcome this
limitation. Using a simple example, we illustrate why the parallel manipulation of mutable state is
necessary and how the addition of TM to Dataflow can provide an elegant and efficient parallel
computational model.

Background on Dataflow

In the 1970s and 1980s, there was a strong belief, amongst some, that dataflow approaches would
provide the solution to general purpose parallel systems which were easy to program. However, there
were three main impediments:

1. Integrated circuit technology developed at a remarkable rate ensuring that serial instruction
execution speeds were able to satisfy most performance requirements.

2. Dataflow and associated models have a requirement for high communication rates. The level
of integration available in the 70s and 80s did not permit efficient implementations of the
necessary functionality.

3. The absence of side effects in dataflow models (e.g. functional programming) permits easy
parallelization. Unfortunately, there are many cases in real programs where the use of state is
either necessary for efficiency or is a fundamental part of the problem being solved. In these
circumstances, functional approaches are unsuitable.

Nowadays only the third issue still needs to be addressed. Existing functional languages that have
tried to address this need for shared state either its introduction can rapidly destroy both the
mathematical cleanliness of the language with implications to the ability of exploiting parallelism
with dataflow (SML, F#, Haskell), or introduces an implicit lock to protect against concurrent
accesses (M-structures) which quickly become unfit for purpose due to the lack of composition of
locks. M-structures quickly result in deadlocks caused by different access patterns within different
threads. To write correct code with M-Structures is difficult and M-Structures are widely noted as a
failure including by many of those behind their original development.

An Example with Shared Mutable

The Dataflow plus Transactions model can best be understood by studying an example. Such a study
is necessarily simplified but should serve to illustrate the essence of the approach. Assume a graph
where a value at each node represents some changing local parameter. This parameter might represent
a physical load on a particular local resource. We want to maintain a continuous histogram of load

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 37 of 39

values in order to inform a load balancing system. In practice, it is likely that the structure would be a
general graph but here we will assume a binary tree as this greatly simplifies the explanation.

The natural way to express this is a recursive function which visits a node, updates a global histogram
and then spawns new threads which visit the children. In addition to updating the histogram we want
to know when an exploration of the tree has terminated. The basis of the computation might be a node
definition and function of the following form:

typedef struct node {
 int old_value, new_value;
 struct node *left, *right;
} node;

int visit (node* t) {
 if (t == NULL) return 1;
 histogram[t->old_value]--;
 histogram[t->new_value]++;
 t->old_value = t->new_value;
 return visit(t->left) && visit(t->right);
}
while (visit (root));

We have used an imperative style using C to express the program but the overall computation has two
distinct forms. The first is functional in style and can lead to a highly parallel execution. The second is
an imperative update of histogram values.

We will assume a dynamic dataflow model where the dataflow nodes are threads executing the `visit'
function at the level of a function body. The execution proceeds by constructing, for each function
body, a new dataflow node for each new function call within the body together with a continuation
node to receive the results of those newly created nodes. The continuation is subject to normal
dataflow execution rules. This is essentially packet based graph reduction [8]. This will result in a
parallel execution graph of the form shown in Figure 18

Figure 18 Parallel Dataflow graph: nodes represents threads

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 38 of 39

The nodes at the bottom level are in the process of execution, this may either result in the generation
of further nodes to explore more of the graph or, if the leaves have been reached, the return of values
to a waiting continuation which is synchronized by dataflow firing rules.

However, we have so far ignored the updates to the state of the global array histogram, these can
clearly occur from any of the parallel executing `visit' nodes. Unless the update action (add and
subtract) is performed atomically, the resulting values may be incorrect. In general, the updates will
consist of a memory read, an arithmetic operation and a memory write which cannot be separated. In
addition, we would like to keep the overall state of the histogram consistent by performing the
operation on two entries as a single action. We could achieve this by explicit global locking of the
histogram array. This can be done by either using a single coarse grain lock or a set of finer grain
locks to improve performance. In either case the addition of this explicit locking would both add
significant complication to the code and potentially have an impact on the runtime parallelism.

Our proposal is to introduce transactions into the pure dataflow model. This involves a small
modification to the visit function to indicate which parts of the code need to be executed atomically.
Assuming the support of a TM system, our execution is going to proceed in one of two ways:

a) In the absence of conflict, i.e. there are no other threads attempting to perform an operation on
the same elements of the histogram array, the parallel execution will proceed uninterrupted.

b) If conflict occurs, one of the conflicting threads will proceed uninterrupted but the others will
serialize (e.g. by abandoning their execution and retrying)

An important property of transactions is their isolation. The detection of conflict and possible retrying
is transparent to the application (other than a possible increase in execution time). This ensures that, in
a model which is otherwise functional, it is possible to generate implicit parallelism via dataflow
execution, but provide the ability to manipulate shared state where necessary.

Deficiencies of Alternative Formulations without Transactions
As already discussed, it is widely accepted that a functional programming approach together with
dataflow execution can lead to the efficient exploitation of implicit parallelism. The drawback of the
approach is that it cannot easily handle state based computation. In order to appreciate the issues, we
will consider expressing the described histogram example using current functional approaches.

Infinite Histories ̶ The classic way to deal with state in a functional program is to regard the updates
to a variable as a sequence of state changes forming an infinite history. Any function wishing to
change the state of a variable is passed it as a parameter and returns a new version which is the next in
the sequence. This is passed in turn as a parameter to the next function which wants to update the
state.

The fundamental problem with this approach is that it is essentially serial. It is clearly not possible to
have branches in a history which would result if such a variable were passed to multiple functions in
parallel. It is therefore not possible to use this technique to produce a parallel version of the above
program.

Serialised State Manipulation ̶ The infinite histories approach requires a function to take a parameter
and produce an updated version as a result. In a purely functional world this requires the production of
a new updated copy. If the variable is a monolithic structure, such as the histogram array in our

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: D3.4
Deliverable name: Initial report comparing and contrasting the developed models
File name: TERAFLUX-D34-v5.doc Page 39 of 39

example, it may be necessary to copy a large structure whilst updating only a small part of it. This can
be highly inefficient.

However, as long as the serialisation of updates can be ensured, this is not strictly necessary and an
updateable variable can be used. This is essentially the Monad approach where the type system is used
to ensure the serial usage. Although this approach is powerful in achieving efficiency whilst
maintaining clean properties of the language, it is again fundamentally serial.

Partial Histograms ̶ Rather than construct a histogram directly, we could write our `visit' function to
return a partial histogram which represented the contribution of itself and all its descendent nodes.
Our program would then construct a tree-like dataflow graph where the partial results were combined
by the continuation functions and eventually returned from the root. This would have the following
disadvantages:

a) The complexity of the continuation would be increased significantly.
b) The copying of data between parent and child computations could add significant overhead.
c) The overall histogram would be updated only when the computation returned to the root. In a

continuous system, such delays may well be unacceptable.
This formulation becomes even more unattractive if we were operating on a more general graph
where the issue of when and where to combine partial results would be more complex.

