Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME
THEME
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D3.3 — Report on the Lessons learned about the imgeetion of
Programming Models with the Applications, Compilerand Architecture

Due date of deliverable: 31 December 2011
Actual Submission: 31 December 2011

Start date of the project: Januafy 2010 Duration: 48 months
Lead contractor for the deliverable: UNIMAN

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiunti§ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable number: D3.3
Deliverable nameReport on the Lessons learned about the interactioof Programming Models

with the Applications, Compiler and Architecture
File name: TERAFLUX-D33-v8.doc Page 1 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Date Author Organization | Change History

0.1 8.11.2011 Daniel Goodman UNIMAN Initial documen
constructed

0.2 30.11.2011 Mikel Lujan UNIMAN Assembled the resived
contributions

0.3 1.12.2011 Mikel Lujan UNIMAN Contributions from
Inria

0.4 5.12.2011 Mikel Lujan UNIMAN Complete document

0.5 7.12.2011 Mikel Lujan UNIMAN Feedback

0.6 14.12.2011 Mikel Lujan UNIMAN Updated author Ist

0.7 22.12.2011 Mikel Lujan UNIMAN Update based of
internal review

Release Approval

Name Role Date

Mikel Lujan Originator 22.12.2011

lan Watson WP Leader 22.12.2011

Roberto, Giorgi Project Coordinator for formal deli verable | 30.12.2011

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture
File name: TERAFLUX-D33-v8.doc

Page 2 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

GLOSSARY ...uiiiiuunretiiniiissinteesiisisisssssssessnssssssss 6
EXECUTIVE SUMIMARY ...ccuiiiiiuiiiiienniiiiensiiiiensiiiiessioimessioisessostesssstessossessssstessnsssssanse 7
1 INTRODUCGTION ...uuuiiuueeetiiniiisssnneeetisssnnsns 10
1.1 RELATION TO OTHER DELIVERABLES ...veeuvvteutteesteeeseesssesssseassseessssessesssssesensesesssessessnsessssesssesssssessssensessnssesenses 14
1.2 ACTIVITIES REFERRED BY THIS DELIVERABLE ...eeuvveeuteesuteesuteesuteesseesbeessseesseessseessseessseesssesssseessseessesssessnseesssens 14

2 SUMMARY OF DATAFLOW AND TRANSACTIONAL MEMORYcccccittmuiiimeniiiieniiniensssnsessssssssssssssssssennns 15
3 HIGH PRODUCTIVITY PROGRAMMING MODEL: SCALA.......ccvureriiiiiisssnnnenisssssssssnssssssssssssssssssssssssssnnes 16
3.1 MANCHESTER UNIVERSITY TRANSACTIONS FOR SCALA (MUTS) ..cviiiiiiiiceiiee ettt ettt e 16
3.2 DATAFLOW LIBRARY (DFLIB) ...uuveieitreeeeerieesiteeessiteeeestteeesenessseessseesasssesessnsssesssasessssssessnssssasssssesssnssssennnsnes 16
3.2.1 Thread Creation and Argument SELEINGccoeeceueeeeeeeeeeiieeee e eeectea e e e e esettee e ataaaeeesssaraaaeeeaans 17
3.2.2 NeSted DALAFIOW GIAPRAS.........c...eeeeeeeeeeeeee et eeee ettt e et e e e et e e et e e e s aa e e e e stteaesssssseesssaaassssenanans 17

3.3 DATAFLOW COLLECTIONS (DFCOLLECTIONS) ...uuvvteeitteeeeiureeeeeuseeeeesseeeessseeeeassnseeeasseseasssesesassseesassesessssesesssenas 17
3.4 ARCHITECTURE CONSIDERATIONS IN SCALA. ..c.utteeuteeriteenuteesteeesseesteessseesseessseessseesseessseessseessseessesssesenseesssens 18
R R 1Y -1 1 Lo T o VA B« 1=K R PORUPUPUPUPSPPPPP 18
B L= (=T N B 1 T = Lo KOOSR PPPPRN 18

4 SYNCHRONOUS CONCURRENCYcccccuuuee Ceeteeseesiresrestastretrettattrettatattrestastastatsrastastatsressastansrannnns 20
4.1 CONTROLLED DESYNCHRONIZATION w..uvtteutteeuteeesueesuseesuseesuseesusessssesssssesssesesssesssessnssesnsesssseesseesseessessssessssens 21
4.2 EXPRESSION OF DATA PARALLELISM ... uuiitttteteeeeeiittteeeeesasistteeeeeesaa s sseeeeeeeesaunsaeeeeeesaannnsaeeeeeesaannnseeeeeeeeeann 24
4.3 STATUS OF THE WORK AND PERSPECTIVES ...eeuvteetterureeeseesseesseesseeesssessseesssssesssssesssesssessnseesssesssseesssesssessseens 24

5 HIGH PERFORMANCE DEVELOPERS: C PRAGIMIASciituiiiiitniiiienniiiiessiiniessisiessiesisssssssssssssssssssssasssssses 25
5.1 CONSTRUCTION OF SOFTWARE TRANSACTIONAL MEMORY IN STARSS ..uvveitreeriierieesieesreesseesseeesseeesssseesseessseees 25
5.1.1 Use of TM to guarantee mutual exclusion in STAISSccccueeeeieeeeeiiiieee e eeecitieee e e ese e e e ccrereaaeeeeas 25
5.1.2 Use of TM to guarantee perform task speculation in StQrSseccvveeecveeesiiveeeeiiieeeecieveeaesireeenn, 27

5.2 T LUK -ttt ettt ettt ettt ettt e ettt et e et e e e e s a bbb et e e e e e s ab bttt e e e e e e aabeeeeeeeaeaaabtanbeeeeeeeee e nnbeteeeeeeaannnaeaeeeesaanrnaen 27
5.3 HMPP: A DIRECTIVE-BASED PROGRAMMING IMODELeeuvverurieeeeesiteesieesiteesieeesseeessaesssseesnseesseesnseesssesssesnsees 29
5.3.1 HMPP Accelerated Regions ANA FUNCLIONSuveeeeeeeeesiiieeeeeeeesiteeeaeeesecataaaaeaaeeessssenaaaeeeans 30
5.3.2 HMPP MUlti-GPU PQItitiONINGoveecveesieeeieiesiieeitesieesie sttt et esiee st e steesstaesateesaseesasaessseeseas 31

5.4 DATAFLOW EXTENSIONS TO OPENMP AND INTERACTION WITH WP ..ottt 32
5.4.1 Lessons learnt from the dataflow extensions to OPENMPcoeecueeeeceeeesiiieeeeiieeeeieieeeesirieen, 32
5.4.2 Lessons learnt in the integration plan and compilation fIOW...............ccccueveeeeeciviveeeeeeeecciciiireeeeeea, 33

6 SUMIMARYiiiiunnteiiiiiiisssnnneesissssssssssssessessssssssssssssssssss 35
REFERENCGESccuuiiiiiiiiieeiiiiieeiiieneiiiiessiiiiessoimessossessssssessssssssssessessssssessssssssssssssssssssssssssssnssssssnssssssnssssssnssssans 36

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactiof Programming Models

with the Applications, Compiler and Architecture
File name: TERAFLUX-D33-v8.doc

Page 3 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdfleet the list of contributors to the writing ofdh
document.

Daniel Goodman, Salman Khan, Mikel Lujan, lan Watsm
University of Manchester

Albert Cohen, Léonard Gérard, Antoniu Pop
INRIA

Andreas Diavastos, Samer Arandi, Petros Panayi, Peal Trancoso, Skevos Evripidou
University of Cyprus

Rahul Gayatri, Rosa M. Badia
BSC

Laurent Morin, Stéphane Bihan, Francois Bodin
CAPS Enterprise

© 2009 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published iry]tdr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owstep on the Intellectual Properties describedis tiocument.

The authors and the publishers make no expressieaptied warranty of any kind and assume no resibdites for errors
or omissions. No liability is assumed for inciddr@aconsequential damages in connection with w@irag out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Licer®®e information in this document is a work in pregg, jointly
developed by the members of TERAFLUX Consortium ("RERUX") and is provided for informational use only.

The technology disclosed herein may be protectedhieyor more patents, copyrights, trademarks andide secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technology related materials.
Any use of the protected technology and relateceri@tbeyond the terms of the License without therpwritten consent
of TERAFLUX is prohibited. This document containgterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuimat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iatéd or apparent from the nature of such mate(fals example,
references to publicly available forms or documgnts

Disclosure or use of this document or any matenatained herein, other than as expressly

permitted, is prohibited without the prior writtennsent of TERAFLUX or such other party that mayngm@ermission to
use its proprietary material. The trademarks, logoal service marks displayed in this documenttlaeregistered and
unregistered trademarks of TERAFLUX, its members dsdlicensors. The copyright and trademarks owisd
TERAFLUX, whether registered or unregistered, may Ime used in connection with any product or senitat is not
owned, approved or distributed by TERAFLUX, and nmt be used in any manner that is likely to cacsstomer
confusion or that disparages TERAFLUX. Nothing comd in this document should be construed as granty
implication, estoppel, or otherwise, any licenseright to use any copyright without the expressttem consent of
TERAFLUX, its licensors or a third party owner afyasuch trademark.

Printed in Sena, Italy, Europe.

Part numberplease refer to the File name in the document footer.

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXPBCIFICATION IS PROVIDED BY

TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT AQHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR

CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER(INCLUDING, WITHOUT

LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LST BUSINESS, REVENUE, PROFITS, DATA

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactiof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 4 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT,TRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF $IH DAMAGES.

Deliverable number: D3.3
Deliverable nameReport on the Lessons learned about the interactiof Programming Models

with the Applications, Compiler and Architecture
File name: TERAFLUX-D33-v8.doc Page 5 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Glossary

™ Transactional Memory

Dataflow A dataflow computation is defined by a graph wheéhe nodes are side-effect-free

computation computations (functional computation) and the amegresent dependencies. A node is
activated and executed when its input dependenbis been satisfied, generating
seamlessly parallel execution.

Transaction A set of individual operations that cdhde be executed atomically, with guarantees of
consistency and isolation

Atomicity Transactions must appear to other tratisas as if they occur in a single operation, omdb
occur at all.

Consistency One transaction must take the program éne consistent state to another.

Isolation Transactions must act on isolation otheather.

™ The implementation of a TM system normally requaeseans for detecting conflicts among

mechanisms executing transactions, and a means for versiodatg used within a transaction to allow
restoring the system state back to its origin sthomle or more transactions conflict.

Conflict Two transactions conflict when the twortsactions cannot be executed in parallel preserving
the atomicity, consistency and isolation propertiEsere are data dependencies across the
transactions (e.g. read-after-write or write-aftgite) which would invalidate the parallel
execution of those two transactions

Eager conflict The TM system has a choice about when to checkh&het number of transactions have a
detection conflict. Eager attempts to detect the conflictidgithe execution of the transaction.

Lazy conflict Lazy attempts to detect conflicts among the exagutransactions when one of these
detection attempts to commit.

Eager Eager versioning modifies directly memory and reggiian undo log to restore the original
versioning state.

Lazy versioning Lazy versioning buffers memory niieditions done by a transactions and only once such
transaction is allowed to commit, these modificasiare propagated to memory visible by
other threads.

Nested A transaction is nested when its execution is doath within the context of another

transaction transaction. Flattening treats the nested trarmmastas a merged single transaction. Open
nesting has been proposed as a means to reduamegassary conflicts by allowing nested
transactions to commit before their parent transadtas been done so.

Strong vs weak Strong isolation is where nothing can see the stdten a transaction while it is executing.
isolation Weak isolation is where only other transactionsuarable to see intermediate state, but other
threads will not be prevented by the programmingl@hérom viewing the intermediate state.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 6 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This report contains descriptions of the currerdtestof work within the programming model
development, and is split into three parts covetimg high productivity model, the synchronous
dataflow model and the high performance models.

The specific achievements and discussions are:
High Productivity Model — Scala (Section 3)

* Manchester University Transactions for Scala (MUT&Xtended to allow less invasive
operation and better functionality.

» Dataflow library (DFLib) implemented providing coBeala dataflow functionality.

» Parallel collections library built on top of DFLib allow dataflow computation to be added to
existing code by changing which library structuaes used.

» Lessons for the language design derived from thiaflD& architecture.
Synchronous Dataflow (Section 4)

» Lessons learned about the explicit control of thealel desynchronization of a concurrent
dataflow synchronous program.

» A simple language extension to explicit the desyocization of a concurrent synchronous
dataflow program.

* A systematic compilation method targeting concurréatures”, themselves expressible in
terms of TStar dataflow primitives or dataflow stm@ng operations.

High Performance Model — C directives (Section 5)

» StarSs (from BSC) has extended their runtime systetincorporate software transactional
memory code.

* TFLUX (from UCY) has proposed new pragma directivies incorporate transactional
memory and has performed experiments combining theitime system with a software
transactional memory library.

« HMPP (from CAPS) has extended their pragma direstiveaching version 3) to support the
software development of codes to execute on mutiyGcenarios.

* A new OpenHMPP forum (led by CAPS) has been forteedstablish an open standard for
programming HPC many-cores. Teraflux provides inpub dataflow directives; (visit
http://www.openhmpp.org).

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 7 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

* Lessons learned (INRIA) from the refinement of @genMP dataflow streaming extensions,
with a formal semantics, proofs of determinism,igief (runtime) deadlock detection and
debugging algorithms.

* Generalization (INRIA) of the work streaming conapibn algorithm to support arbitrary
dynamic creation of tasks and dynamic communicaties (algorithm presented in D4.4).

* Lessons learned (INRIA) and new design of a simlergration flow, leveraging OpenMP
dataflow streams combined with Owner Writable Meynd©OWM) frames to pass the
dependence patterns of the other efficiency langsiafirough the GCC-based backend
compiler.

Overall, the programming models have been definmitial experiments have been completed
successfully and we have developed working proegypble to execute on standard multi-core
platforms. In these first two years, we have assuroertain simplifications for the usage of
transactional memory within dataflow threads. Newe¢ present a brief motivation for adding
transactional memory to the dataflow computationatiel.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 8 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 9 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

This document is an update on the work carriedimWVP3. It is split into three distinct sections
covering the work carried out on the high produttiyprogramming model, on the synchronous
concurrency and on high performance models. Withe latter models, we cover progress with C-
directive-based dataflow models (StarSs, TFLUX, HVIBpenMP).

The Need for Shared Mutable State in Dataflow Modal

It is widely acceptedhat a functional programming approach togethéhn wataflow execution
can lead to the efficient exploitation of impligiarallelism This computational model is usually
associated with styles of programming based on funetions as these map readily on to the
execution model. However there are many computatisich cannot be easily or efficiently
expressed in a pure functional style as they hasteuature where the parallel manipulation of stiare
mutable state is fundamental to the problem beiolyed. In Teraflux we argue for a new
computational model which combines Transactionahide (TM) and Dataflow to overcome this
limitation. Using a simple example, we illustratéywthe parallel manipulation of mutable state is
necessary and how the addition of TM to Dataflom paovide an elegant and efficient parallel
computational model.

Background on Dataflow

In the 1970s and 1980s, there was a strong bealiefngst some, that dataflow approaches would
provide the solution to general purpose parallstays which were easy to program. However, there
were three main impediments:

1. Integrated circuit technology developed at a rewalk rate ensuring that serial instruction
execution speeds were able to satisfy most perfoceneequirements.

2. Dataflow and associated models have a requireneeritigh communication rates. The level
of integration available in the 70s and 80s did petmit efficient implementations of the
necessary functionality.

3. The absence of side effects in dataflow models. fergctional programming) permits easy
parallelisation. Unfortunately, there are many sasereal programs where the use of state is
either necessary for efficiency or is a fundameptat of the problem being solved. In these
circumstances, functional approaches are unsuitable

Nowadays only the third issue still needs to beeskkd. Existing functional languages that haeel tri

to address this need for shared state have théeprdbat either its introduction can rapidly degtro
both the mathematical cleanliness of the languagh implications to the ability of exploiting
parallelism with dataflow (SML, F#, Haskell), ortioduces an implicit lock to protect against
concurrent accesses (M-structures) which quicklgobee unfit for purpose due to the lack of
composition of locks. M-structures quickly resutt deadlocks caused by different access patterns
within different threads. To write correct code lwi¥-Structures is difficult and M-Structures are
widely noted as a failure including by many of tadeehind their original development.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 10 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

An Example with Shared Mutable

The Dataflow plus Transactions model can best loergtood by studying an example. Such a study
is necessarily simplified but should serve to illage the essence of the approach. Assume a graph
where a value at each node represents some chdogaigparameter. This parameter might represent
a physical load on a particular local resource. Wéat to maintain a continuous histogram of load
values in order to inform a load balancing systenpractice, it is likely that the structure woudd a
general graph but here we will assume a binaryasethis greatly simplifies the explanation.

The natural way to express this is a recursivetfanavhich visits a node, updates a global
histogram and then spawns new threads which Wsithildren. In addition to updating the
histogram we want to know when an exploration efttiee has terminated. The basis of the

computation might be a node definition and functbthe following form:
t ypedef struct node {

int old value, new val ue;

struct node *left, *right;
} node;

int visit (node* t) {
if (t == NULL) return 1;
hi stogran{t->ol d_val ue]--;
hi st ograni t - >new_val ue] ++;
t->ol d_val ue = t->new val ue;
return visit(t->left) & visit(t->right);

}
while (visit (root));

We have used an imperative style using C to exghesprogram but the overall computation
has two distinct forms. The first is functionalstyle and can lead to a highly parallel
execution. The second is an imperative updatestbfiam values.

We will assume a dynamic dataflow model where thgftow nodes are threads executing the “visit'
function at the level of a function body. The exemu proceeds by constructing, for each function
body, a new dataflow node for each new functioh within the body together with a continuation

node to receive the results of those newly createdes. The continuation is subject to normal
dataflow execution rules. This is essentially padi@sed graph reduction [8]. This will result in a
parallel execution graph of the form shown below

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 11 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

21
©

The nodes at the bottom level are in the procegxefution, this may either result in the genematio
of further nodes to explore more of the graph foihé leaves have been reached, the return of value
to a waiting continuation which is synchroniseddayaflow firing rules.

However, we have so far ignored the updates tosthte of the global arralyi st ogr am
these can clearly occur from any of the paralletogiting “visit' nodes. Unless the update
action (add and subtract) is performed atomicdheg, resulting values may be incorrect. In
general, the updates will consist of a memory reedarithmetic operation and a memory
write which cannot be separated. In addition, wellddike to keep the overall state of the
histogram consistent by performing the operatiorivem entries as a single action. We could
achieve this by explicit global locking of the lmgtam array. This can be done by either
using a single coarse grain lock or a set of fgrain locks to improve performance. In either
case the addition of this explicit locking wouldtlv@dd significant complication to the code
and potentially have an impact on the runtime palram.

Our proposal is to introduce transactions intoghee dataflow model. This involves a small
modification to the visit function to indicate whigarts of the code need to be executed
atomically. Assuming the support of a TM system, our execuisogoing to proceed in one of two
ways:

a) In the absence of conflict, i.e. there are no othexads attempting to perform an operation on
the same elements of the histogram array, thelpbeakecution will proceed uninterrupted.

b) If conflict occurs, one of the conflicting thread#l proceed uninterrupted but the others will
serialize (e.g. by abandoning their execution a&tging)

An important property of transactions is thisdlation. The detection of conflict and possible retrying
is transparent to the application (other than aipésincrease in execution time). This ensures tha
a model which is otherwise functional, it is po$sibo generate implicit parallelism via dataflow
execution, but provide the ability to manipulaterglu state where necessary.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 12 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Deficiencies of Alternative Formulations without Transactions

As already discussed, it is widely accepted thamational programming approach together
with dataflow execution can lead to the efficienpleitation of implicit parallelism. The
drawback of the approach is that it cannot easalydie state based computation. In order to
appreciate the issues, we will consider exprestiegdescribed histogram example using
current functional approaches.

Infinite Histories— The classic way to deal with state in a functiggragram is to regard the
updates to a variable as a sequence of state chérgang an infinite history. Any function
wishing to change the state of a variable is pagsesia parameter and returns a new version
which is the next in the sequence. This is passddrn as a parameter to the next function
which wants to update the state.

The fundamental problem with this approach is th#ét essentially serial. It is clearly not
possible to have branches in a history which waakllt if such a variable were passed to
multiple functions in parallel. It is therefore npbssible to use this technique to produce a
parallel version of the above program.

Serialised State Manipulation The infinite histories approach requires a funttio take a
parameter and produce an updated version as & fesalpurely functional world this
requires the production of a new updated copyhdfvariable is a monolithic structure, such
as the histogram array in our example, it may messary to copy a large structure whilst
updating only a small part of it. This can be hyginlefficient.

However, as long as the serialisation of updatasheaensured, this is not strictly necessary
and an updateable variable can be used. Thisestslty the Monad approach where the
type system is used to ensure the serial usageoddh this approach is powerful in
achieving efficiency whilst maintaining clean projes of the language, it is again
fundamentally serial.

Partial Histograms Rather than construct a histogram directly, wadaavrite our "visit'
function to return a partial histogram which regrged the contribution of itself and all its
descendent nodes. Our program would then congriiee-like dataflow graph where the
partial results were combined by the continuatiamctions and eventually returned from the
root. This would have the following disadvantages:
a) The complexity of the continuation would be inceghsignificantly.
b) The copying of data between parent and child coatjmuts could add significant
overhead.
c) The overall histogram would be updated only whendbmputation returned to the
root. In a continuous system, such delays may meelinacceptable.
This formulation becomes even more unattractiveref were operating on a more general

graph where the issue of when and where to conganel results would be more complex.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 13 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1.1 Relation to other deliverables

This deliverable describes the existing work carr@it to extend and implement dataflow and
transactional models and it is a continuation of1ID&nd D3.2. The extensions of this model have
relations with the Teraflux architecture (D6.1, P& D7.1) and fault tolerance (D5.1 & D5.2). The

implementation has relations with the compilatioagesses described in D4.1.

1.2 Activities referred by this deliverable
This deliverable covers the work being carriedunder WP3 (i.e. T3.1, T3.2 & T3.3).

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 14 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Summary of Dataflow and Transactional Memory

We present an executive summary of the decisiokentdao combine dataflow and transactional
memory. Full details can be found in D3.1 & D3.2l@ome key terms are defined in the Glossary of
this deliverable.

Dataflow Threads

The architecture and semantics is simplified wheraasaction executes only within a single thread.
Once a good understanding of Transactional MemndyRataflow has been achieved, we intend to
look into weakening these constraints.

Versioning and Conflict Detection

Because the project is fundamentally interestedatin extensible system, it is felt that the

communication required to provide the global obaBon needed to implement eager conflict
detection coupled with the complexity it adds irder to provide correct execution and progress
guarantees mean that it is better to opt for lamyflict detection. This lazy detection can alwags b

strengthened by checks at specified points witmenttansaction.

Nesting

Although true closed nested transactions are pegfedue to finite hardware resources and after a
given depth, it will be reverted to flattened tractsons. The first TM prototypes will implement
flattening. Because of its non intuitive seman@ipen nested transactions are not an option.

Syntax

Because of its clarity at a programmer level iniended that TM syntax in the form of atomic blsck
will be provided complete with supporting extension

Synchronization

In addition to providing atomic blocks it is intezatithat all forms of non transactional synchromdirat
construct are excluded as they break the atonotitsansactions.

As an update to these decisions, we note that if6 WP are investigating how to optimize the
detection mechanism by taking advantage of thectstre within a node (a set of cores) by having
conflict detection options more frequent than lazy.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 15 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 High Productivity Programming Model: Scala

In this section we will describe the work carriedt @n the development of a high productivity
programming model based on extensions to the Swmalgramming language. Currently this work
consists of three libraries which provide trangaw memory, dataflow execution and collection
objects that take advantage of dataflow execumonnfiproved performance. Having introduced these
we will discuss several compilation strategies thatare currently considering and the advantagés an
disadvantages of each of these. We will then caleclihis section with a brief discussion of the
architecture issues that affect these extensioSsata.

3.1 Manchester University Transactions for Scala (MUTS)

In D3.2 we described the implementation of softwaa@sactional memory through modifications to
the Scalac compiler and a byte-code rewrite ofctiae at runtime [1]. This has now been redesigned
to allow the modifications to the Scala compilerbi replaced with a novel mechanism reliant on
closures for marking the transactional areas of dbde. The transactions provided by this new
extended version are interoperable with the traimacadded through the modified Scalac compiler.
However, the closure based transactions allovhalléquired code for transactions to be distributed

a single jar file. This jar file contains both &rkry to support atomic blocks and a Java agent to
perform the rewriting required to instrument th&eoThis removes the need for programmers using
this model to use a special version of the Scatapder, so making this work more widely applicable.

The syntax provided by the closures is very sinaplé an example can be seen below.

/1 Program code before a transaction

/] The transaction
val id = atomc {
threadld += 1
t hreadl d

}

/] Nbre none transactional code

Like with all other blocks in Scala, transactioblicks return a value that can be used as an argume
to other expressions, in this case assigning the\af ‘id’.

3.2 Dataflow Library (DFLib)

To compliment MUTS and allow us to construct dataflcode for a number of the applications
selected in work package 2 we have constructeiraryi to support the creation and execution of
dataflow threads. Much of the functionality providey this library will ultimately be provided byeh
underlying hardware, but this work allows us to exkpent with different models in order to inform
the design of the underlying hardware and to pmwadocation to support extended functionality that
may be required but not supported directly by thedtvare.

The DFLib library is constructed from two princigtemponents a dataflow manager that controls the
executions of a given dataflow graph and a setatdiftbw thread classes. For any given graph there
will be one manager and one or more threads (ndrmmalny more).

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 16 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3.2.1 Thread Creation and Argument Setting

Threads are created via a call to the manager whlas the function to be executed as an argument.
This call produces a thread that takes the argwsierihe function as arguments. These arguments are
strongly typed to ensure that a program is typeectr The arguments can be set in one of two ways:

they can be set directly as seen in this exampla firead that executes the functfaro(x: | nt,

y: String),

val t = DFManager.createThread(foo)
\\ Ot her code with t potentially being passed into other functions before
\\ the argunents are set.

t.argl = 10
t.arg2 = bar

Alternatively because passing threads around castemproblems with function type signatures and
determining which argument should be set an alteengechnique is provided where tokens can be
retrieved from the thread. These tokens can thgpabeed around freely and set. While they are still
strongly typed as tokens always take just one aegairthey can be passed into functions freely
without constraining the function signature.

val t = DFManager.createThread(foo)

val token = t.tokenl

\\ Ot her code with token potentially being passed into other functions
\\ before the argunents are set.

token(10)

While the syntax of setting arguments and tokeneskppears as a basic assignment, setter methods
are used to ensure that no values escape a theéae bhe thread completes. This means no thread
created or assigned to in another thread can Is&dare the assigning and creating threads have
successfully terminated.

3.2.2 Nested Dataflow Graphs

While only one manager may exist per graph, towaltbe construction of component code it is
necessary to be able to nest dataflow graphs imsideanother. This is achieved through the creation
of additional managers with each manager handlisiggle graph. Without this functionality it would
not be possible for threads to include functiora t#xecute in parallel and return a value to theaith
Instead the thread would have to be split at timetfan call. This would not only incur great expens

if the thread contains large quantities of threahl data, but would also require that transactares
able to span multiple threads. Allowing transaditém span multiple threads is not desirable asther
may be a long delay between the first thread exagaind the last thread executing especially if ynan
splits are needed. This not only increases thdiliked of collisions, but also increases the amaint
data that has to be maintained both to commit tdwestiction, but also to be able to execute all the
threads it has occupied in the event of a failure.

3.3 Dataflow Collections (DFCollections)

The insertion of parallel execution into a prograhnould be assisted where possible by the program
detecting through the stronger semantics of thetfomal language the possibility for parallelisnmdan
automatically inserting it. This can occur in tways

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 17 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. By the compiler creating dataflow threads for theaution of functions within a piece of
code, and using tokens to pass the arguments betilvese functions. This can be achieved
by modifications to the parser similar to those enteken to introduce the first version of
transactional memory, by an additional phase irctimepiler or by a byte code rewrite.

2. Replacement of existing sequential libraries witlraiel code. This can be added for
collections such as lists and maps, and rangestoonatically add parallelism. This can either
be through the user explicitly requesting it, ordmanging the contents of the scala-library jar
file. The replacement of Range with a parallel imr&xtends the parallelism to most foreach
loops for free.

We have made a first attempt at the library apgraamugh the construction of a set of dataflow

collection libraries. These follow a similar struiet to that of the Scala Parallel Collections, only

instead of being built on top of a thread pool, asglociated job queue they are built on a dataflow
manager and construct dataflow threads to perfberequired work when functions are invoked

on them.

3.4 Architecture considerations in Scala

Currently we are aware of two architecture consitlens that will ultimately affect the structure of
the language. These are the allocation and typimtifferent categories of memory, and the extent of
the support for nesting threads within other thee&de will look at each of these in turn.

3.4.1 Memory Types

There are various properties that we wish to eeforcthe memory types of the proposed architecture.
These include that transactional data can only bdified within a transaction and thread local data
can only be modified by the owning thread. Whilest rules can be trivially enforced at runtime, by
simply detecting incorrect accesses, their typedsde be determined before they are accessed to
allow the allocation of the correct memory typeisTproblem is complicated further when it comes to
data structures as different instances of the sdatee structure may require different data types, fo
example one instance may be used where membersquiged to be transactional while another is
used where members are required to be local. O@sir dittempt at addressing this issue will be
conducted through the use of the type system ¢& tad enforce the correct memory creation and use
at compile time.

3.4.2 Nested Threads

As discussed in the description of the dataflowecomh order to have efficient parallelizable
component code without splitting threads at evenycfion call it is necessary to be able to start
threads within another thread and retrieve theltrasduits computation. Normally such behaviour
would be prohibited by the dataflow programming milods it removes the guarantees of deadlock
freedom. However allowing nested threads to exeadtenction is different, because they are merely
an optimization of the splitting of a thread at gwent that the function call is made. More spexilly

the difference is that there is a guarantee thahalinputs required to execute the nested thezad
present when the thread is created, so the thmgdtsaresultant graph will always run to its natur
completion without further interaction with the sgang parent graph or any other threads.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 18 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

At the architecture level this could be provided dither allowing the spawning of a new graph
through the same mechanism that will allow différerograms to interact with each other or by the
prevision of a mechanism to efficiently backup ampby local state between threads to allow for
efficient restarts.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 19 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 Synchronous concurrency

This section reports on activities conducted indbetext of Task 3.2.

The dataflow principle has well known advantageerawost alternative parallel programming and
execution models, including the determinism of temcurrent semantics and the scalability and
latency-hiding properties of the execution model.

Yet it does not provide enough guarantees for &-t@gel programming language, and needs to be
complemented with additional concurrency propelitiour important areas:

» static resource allocation is not possible in galheesource deadlocks can only be eliminated
at the expense of dynamic allocation, which may Ibetconvenient on some real-time
applications, and improper scheduling of datafldweads may induce memory usage
overhead;

» application deadlocks are not detected at comeilatime, resulting in additional runtime
bugs not present in sequential applications; otaftav extension of OpenMP alleviates this
problem by forcing a default sequential executidea@dlock-free by construction), but at the
expense of expressiveness and programmer comfooetter solution is expected for a
productivity language;

* in the presence of cyclic dataflow graphs or wresks are nested in complex control flow,
the compiler is unable to perform static task fosamd scheduling for locality improvement
and synchronization grain adaptation.

All three properties can be provided throughgymehronous principle of concurrency, a restriction of
the dataflow principle. In this context, synchrosaxecution does not mean blocking (the UNIX-
derived interpretation of the term); synchronouscexion means that all taséan be scheduled w.r.t.
a single global clock, task activations occurringtantaneously at discrete ticks of this clocks ibf
course not the necessary way to execute a synaisqrogram, only a hypothesis that it must satisfy.

The synchronous principle can be enforced at catipil time with a dedicated type system, called a
clock calculus. This calculus rejects dataflow programs where aglcltype cannot be inferred or
verified for all expressions in the program. Weglbéd dataflow programs are calletaflow
synchronous. Each stream in a dataflow synchronous programsiscieted with a unique clock, itself
obtained by sampling a common, global clock. Bystarction of the clock type system and of the
associated compilation methods, the program segidiie three above-mentioned properties.

An introduction to synchronous programming was e in D3.2. In this deliverable, we elaborate
on language extensions to facilitate the expressiodata parallelism in a dataflow synchronous
language, and to provide the user with an expliegynchronization construct to compile a dataflow
synchronous program to an asynchronous dataflosutios model.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 20 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.1 Controlled desynchronization

Dataflow synchronous expose a great amount pdsafieby their dataflow nature. Yet the traditional
means of distributing a synchronous program oveltiphel processors remains a manual process.
There are two main reasons for this:

» finding the right partitioning of fine-grain concent tasks into coarse-grain parallel dataflow
threads is highly sensitive to dynamic executioth Bardware parameters;

» since the main application of synchronous programgnis for real-time embedded computing,
the need to control the Worst-Case Execution Time aesource (memory) usage is
paramount.

For these two reasons, language constructs areedeiedlet the programmer express the most
appropriate way to desynchronize a given dataflgneisronous program.

Our idea is to leverage the old concept of futwemf MultiLISP, now ubiquitous in modern
concurrent shared-memory languages. Coupled witdisgnchronous function call, it is a natural way
to exploit parallelism in a computing pipeline. The best of our knowledge, it has not been apjtied
the context of synchronous languages yet.

We demonstrate formally and via several examplas ttie interaction between the logically timed
semantics of synchronous languages and the asyrmisacomputations expressed through futures
allows for a precise control of the parallelism ameimory resources. In particular, we propose simple
language constructs to control the tradeoff betwkdency (exploitation of slack in a dataflow
program), memory usage for intermediate waitingakls or buffers, and degree of parallelism.

Moreover, these asynchronous calls are proven &sepve the original program's functional
semantics: adding or removing them does not chamgerogram results. This allows verifying a
program independently of its parallelization. Tlhsence of deadlock (functional or resource-based) i
also guaranteed on the synchronous program source.

Here is a simple illustrating example, called thk@dck controller”. It consists of a feedback loop
running on an embedded control unit for electraaisoline injection.

{ - : () 0

i sense(r)T Sensor [J,O
compute (i) ;

r = 0 fby (0 fby o0); Lr

The syntax and intuitive semantics was introduced3.1: in this example, we define three equations
on streamsi , r ando. Thef by operator delays its second (stream) argument bylagical instant,
inserting its first argument (on the left hand sidere0) as the first stream element. To guarantee the
causality of the feedback loop (the sensor dependtself), we need at least one fby operator &akr
the instantaneous dependence. This example uskyg Bperators: the automatic control algorithm in
the uC task is designed to react accurately detiptdonger delay. Expressed byf By operators,
this delay offers valuable slack in the feedbadplagiving us a chance to run a pair of activatiohs

o
I

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 21 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

the pC task in parallel. Our contribution consistallowing the programmer to express this choice o
exploiting this slack for asynchronous execution.

Desynchronization only happens when the programictkp filters the output of a task with an
async keyword. Its functional semantics consists in @timg a stream of values into a stream of
futures of these upcoming values. Downstream tdskending on aasync node may start running
in parallel, until they need the value of the fetulhe! operator (pronounced “bang”, or “get”)
makes explicit the consumption of the future val@aesing as a dataflow synchronization point. la th
following code, we desynchronize the main comparatiask (the async keywords in front of the
constant) is only there for typing issues; it will be madeplicit in future versions of the language
via automatic boxing of values into futures).

i = sense(!r);
o async compute (i) ;
r = (async 0) fby (async 0) fby o;

Now, the streano becomes a stream of futures. THey operators now operate on streams of futures;
this does not impact the functional semantics ef ghogram, and neither it changes the amount of
memory needed to execute it (aside from the fudiescriptors themselves, whose individual size is
constant). The good news is that it is now posdibleun two activations of theonput e task in
parallel before being blocked by the synchronizatiar in front of thesense task. In short, we are
able to explicit the degree of parallelization bk tcomputational task (here, 2), preserving the
bounded memory usage of the program.

We fully formalized the structured operational saties of our language extension as rewriting rules
and a separate transition system to capture thchsynous instantiation of future values. We proved
a preservation theorem stating that any value cosaploy the original synchronous program is either
the same in the asynchronous program, or replaged future with this value associated. As a
corollary, the preservation theorem proves that ubeal sanity checks of dataflow synchronous
programming (clocking and causality) do not neeg arodification to cope with the explicitly
desynchronized computations.

Our current implementation uses Java futures astme execution environment. Here is the output
of our Heptagon compiler for dataflow synchronotsgpams:

package Knock control;

import java.util.concurrent. Future;

i mport java.util.concurrent. Executi onException;
i mport jeptagon. AsyncNode;

i nport jeptagon. AsyncFun;

public class Main {
protected Async_factory_compute n;
protected Sense n_3;
protected Future<lnteger> r;
protected Future<lnteger> v;

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 22 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

public Main () {
this.n = new Async_factory conpute(l, 1);
this.n_3 = new Sense();
{
this.r = new j eptagon. Pervasi ves. Stati cFuture(0);
this.v new j ept agon. Pervasi ves. Stati cFuture(0);

}
}
public void step () throws InterruptedException, ExecutionException
{
int v.2 = 0;
int i = 0;
Future<integer> o = null;
v_2 =this.r.get();
i = n_3.step(v_2);
0 = n.step(i);
this.r = this.v;
this.v = o;
return ;

public void reset () {
this.r = new j eptagon. Pervasi ves. Stati cFuture(0);
this.v = new j eptagon. Pervasi ves. Stati cFuture(0);

}

It is easy to recognize the sequential executidgreparesulting from the clock-directed compilatioin
the feedback control loop. The ability to generaiiicient, bounded memory sequential code being
one key strength of synchronous programming. Theyraghronization constructs barely impact the
structure of the code. The type of thevariable has been lifted frormt to Fut ur e<I nt eger >,
and the activations of treonput e function are now run as asynchronous dataflowattse

More general computations involving automata ansampled clocks lead to more complex data
dependence patterns. These are easily captureduntities, but mapping such dynamic computations
to TStar dataflow primitives is more challenginge\dre currently investigating different methods,
from pure data-driven TStar implementations toastieg synchronization schemes that may be seen
as specialized, highly scalable I-structures.

This Java-based implementation was the shorteht tpah complete working system. We are now
porting this implementation to generate streamirqei@P pragmas, on which the semantics of
futures is being mapped. This resulted in an extensf our streaming OpenMP proposal to more
efficiently model completely dynamic dependencess ts work in progress and will be reported in
the third year deliverables.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 23 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2 Expression of data parallelism

It is easy to complement the previous desynchrdioizaconstructs with reset operations, commonly
found in synchronous languages. Resetting a tagluars to breaking any existing dependences on
values of previous activations of this task, rdastgrfrom initial values in alf by operators instead.
As a side-effect, resetting a task exposes datdl@iésm: activations of the task prior to the tesay

run in parallel with activations of the task afthe reset. While stateless tasks can be triviadiyd
parallelized, this idea allows some stateful taskdée (partially) data parallelized as well, withou
extending the language semantical primitives.

4.3 Status of the work and perspectives

A paper will be submitted in January covering tloenfal semantics and implementation of the
controlled desynchronization constructs in a symsbus program.

Future work will concentrate on revisiting the implentation the Heptagon source-to-source dataflow
synchronous compiler, targeting the efficiency fafgreaming OpenMP pragmas). We will continue
to evaluate our hypotheses and the expressiverfesise csynchronous principle on TERAFLUX
applications.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 24 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 High Performance Developers: C pragmas

5.1 Construction of Software Transactional Memory in StarSs

StarSs is a task-based programming model that emhahk exploitation of applications' inherent
parallelism at task level. To annotate the taska BtarSs application, compiler directives simitar
the OpenMP ones are used. While this is alreadgddon OpenMP 3.0, a uniqueness of StarSs tasks
are the input, output or inout clauses that appbeighsks' parameters enable the runtime to tiesist
data dependencies. A task dependence graph is algnibuilt and scheduled for execution in the
different devices. Also the clause "target deVime'specify that a given task code is tailoredato
specific device type (e.g., multiple GPUs) has b#sfimed [7, 8]

5.1.1 Use of TM to guarantee mutual exclusion in StarSs

One of the activities performed in the frameworklo$ WP is the integration of transactional memory
with the StarSs programming model. Deliverable @&@orted the initial efforts in this direction,
performed by integrating TinySTM, a STM library, twiSMPSs, an implementation of StarSs with
focus on SMP architectures.

The initial experiments described in D3.2 were @anked calling the STM calls from the SMPSs
application code. In this second period, we hategirated in the SMPSs runtime code the TinySTM
library calls that initialize the STM library, thedhat start a transaction, load a critical vagabtore
the variable back in the memory and the ones thaihat the results. In order to indicate the regions
that are to be executed atomically, we reused tmapder directives from SMPSs that guarantee
mutual exclusion accesgfr agnma css nutex | ock and#pragma css nutex unl ock)

by changing their implementation.

The behavior implemented in the SMPSs runtime ésftlowing: whenever a lock on a variable is
called, a transaction is started and the variablbet locked is loaded using the transactional calls
When the lock is released the value is stored bgekn using transactional commands and a commit
operation is performed. If a conflict occurs thke transaction is restarted.

This implementation has been tested with some SMiéSshmarks and applications, like the nqueens
problem, the matrix multiply code and the specfent@ide. Results to such experiments are shown
below:

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 25 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Nqueens performance

0.0

BO.OC %\
70.0C

£0.00 ‘{ii
50.0C
4006

30,00 7

20.00 —=Locks
1mine

0.0

ime [secs)

=F=5TM

SPECFEM3D performance

160

140 '—‘

120
\

100
80
60 =0—STM
40 - == Lock
20 i—

0 T T T T T)
0 5 10 15 20 25 30

Time (secs)

#ithreads

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture
File name: TERAFLUX-D33-v8.doc Page 26 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Matmul performance

&0
_ 50
W
§ 40
= P
g 30 —=5TM
= o
20 == Locks

o 3 10 15 A0 23 0

fthreads

For the nqueens case, the original SMPSs mechdtabeled as “Locks”) is slightly worst that when
we use STM (labeled as STM). For the SPECFEM3Dp#réormance is also a bit worst when using
STM than with the original lock mechanism, and diféerence increases with the number of threads,
but still comparable bit better with the new STM almanism, and what is more, improving when
increasing the number of threads which is promisinghe Matmul the results obtained with the STM
mechanism are slightly worst, but we are stillhia orders.

From these experiments we conclude that the uSd f can be better than the lock mechanism when
a HW transactional memory mechanism is available.

5.1.2 Use of TM to guarantee perform task speculation in StarSs

One of the non-solved issues with StarSs is thelspnization with the main program code: while the
task graph is able to drive the execution of ttekdan an asynchronous fashion whenever a result
from a task needs to be read from the main codeexticit synchronization is required. This
synchronizations in the main code are sources tiebecks, load imbalance and also stop the
generation of new work (new tasks) that reducectiences of exploiting further parallelism in the
application.

Work related to the use of STM combined with StacB®duce these issues are ongoing [2].

5.2 TFlux

Within the context of task T3.1 UCY has revised fhelux pragma directives to support more
applications and also new features in the runtingpsrt. These revisions are minor and they have
already been reported in D3.2. In the context sk t83.3 we have explored together with UNIMAN
the augmentation of the data-flow model with thppgut for transactions. In this particular case we
have done it as an extension to the TFlux systdmghawe call DDM+TM. We have used a software
TM library (TinySTM) to extend TFlux with transactial support. We have also added new pragma
directives for the support of transactions at thegpamming model level. These new directives are

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 27 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

presented in Table 1. The preliminary results & tollaboration work have been recently presented
at the First Workshop on Data-Flow Execution Models Extreme Scale Computing (DFM 2011)
[3]. The following text has been extracted fromtthablication.

Table 1 TFlux DDM pragma directives for TM support.

#pragm ddm atomic thread ID
DDM+TM thread boundaries with identifidD
and the atomic variables to monitor for either
READ or WRITE

t var (NAMVE
READ VRI TE/ READ_WRI TE)

#pragma ddm at om ¢ endt hr ead

#pragma ddm atomic for thread ID
DDM+TM loop thread boundaries with identifier
ID and the atomic variables to monitor for either
READ or WRITE

t var (NAMVE
READ VRI TE/ READ_WRI TE)

#pragm ddm at om ¢ endf or

#pragm ddm atom ¢ transaction

. (NAVE DDM+TM boundaries of a transaction that|is
var : . .

READ/ WRI TE/ READ WRI TE) smal.ler than.a thread and the atomic variables to
monitor for eitheREAD or WRITE

#pragma ddm at om ¢ endtransacti on

#pragma ddm atomic tvar(NAME ! | Declare an atomic variable to monitor either [for
READ- READ or WRITE

/ VRl TE/ READ_W\RI TE)

#pragma ddm at omi ¢ abort Manually abort a transaction

When adding support for transactions to TFlux apartant decision concerned the granularity of
transactions. The simplest approach would be téate@ whole thread as a transaction. With this
option we would enhance the system by providingglregrammer with two types of threads: pure
Data-Flow threads or transactional threads. Howeaathread may contain code that needs to be
transactional combined with non-transactional cdélgthermore, it may be appropriate to specify
several atomic regions within a thread. This cdeltl to potentially wasteful aborts when either a
transaction is only a small portion of the threadnaltiple atomic regions need to be aborted togreth
Therefore, we opted for providing new pragma divest to define the beginning and end of
transactional sections within threads. These neluxT@irectives are presented in Table 1.

Another design issue is how we identify variablekich are transactional. These variables will
require that their read and write operations argenled to form the read-set and write-set during a
speculative execution of the transaction. These se¢ used to detect conflicts. For all these
transactional variables we also need to versiorréhelts to allow a clean restart of the transaditio
necessary. One option is to monitor every memogesg that is performed within a transaction.
However, this is not necessary for unshared vagblor example those that are thread local.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 28 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Therefore, in common with other TM approaches, wplieitly declare which variables are
transactional. The directive

#pragma ddm atom ¢ tvar (NAVE : READ/ WRI TE)

offers such functionality. Note that each transawtl variable is associated within a thread with a
READ, WRITE or READ_WRITE qualifier. This qualifigorovides information on the use of the
variable within the thread, which can be used leyTtM implementation to optimize the execution.

For DDM+TM, we decided to have a complete sepandietween transactional and non-transactional
variables. Transactional variables must always dmessed within a transaction. Non-transactional
variables are normally private to a thread durirgcetion and thus cannot generate conflicts. Other
non-transactional threads will only be allowed toess a non-transactional variable if the schegulin
can guarantee independence. With this decisiorveiel ghe problems of weak isolation. Note that we
do not modify DDM by imposing this decision.

For transactional variables, we also provide tregmammer with pragmas to define them within the
declaration of a transactional thread. This is meguto support the monitoring of variables thatyma
have more than one alias (e.g. parameter varidtdéde the code of a function). The monitoring of
these variables is specified as a parameter ithtead declaration (see Table 1).

As TFlux has two pragmas for declaring threadstdb& contains
#pragma ddm atomc thread | Dand
#pragma ddm atomc for thread ID

declaring a transactional thread and a transadtimog thread, respectively. The tvar(NAME :
READ/WRITE) extension defines the thread variabllbat are transactional. The last proposed
directive

#pragm ddm atom ¢ transaction

allows the declaration of a transaction as a portba thread. For certain applications this offers

better performance. These directives are a sulbsbe @ossible ones that have been defined for TM.
However, they are enough to implement the appbioative have implemented so far and we consider
them to be the core directives. Extra transactimattionality can be added by declaring

#pragm ddm at om ¢ abort

in the case the programmer wants to manually abwensaction.

The newly proposed directives have been addedetd Elux chain as we have modified our TFlux
preprocessor tool to automatically generate this talTinySTM based on the pragma directives.

5.3 HMPP: a Directive-based Programming Model

HMPP implements a Remote Procedure Call (RPC)mdtions called codelets on GPU accelerators.
A codelet takes several scalars and arrays as pteenperforms a computation on these data and
returns the result in an argument passed as enekerof the codelet. The execution of a codelet is

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 29 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

considered atomic: it does not have an identififedrmediate state or data. The execution has o sid
effects.

HMPP directives are safe meta-information addethéapplication source code that do not change
the original code. They address the remote exat(@®&C) of functions or regions of code as well as
the transfers of data to and from the acceleratonany.

5.3.1 HMPP Accelerated Regions and Functions

The simplest form of programming with HMPP consiatgither using one single directive to declare
a GPU version of a region or two directives fordiions: one to declare the codelet function and
another one to annotate its call site. This wayirglut data are uploaded in the GPU before the
execution of the region/function and the resuttas/nloaded when the codelet has completed.

Device allocation and data transfers can be diatsttifrom codelets’ calls using the appropriate
directives. All directives are identified with aigoe label indicating the codelet they are assediat
with. Directives of same label needs to be usdtlersame compilation unit.

For instance, in the code example 1 belowepdelet directive with a ‘cuda_kernel label is inserted
line 2 to declare a CUDA version of the ‘kernelnfilion to be generated by HMPP. Call to this
codelet is indicated with @llsite directive of same label inserted just before thieto kernel line
31.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 30 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

ONOUVThA WNPRE

#pragma hmpp cuda_kernel codelet, target=CUDA, args[vout].io=inout
static void kernel(unsigned int N, unsigned int M,
float vout[N][M], float vin[N][M]){
int i, j;
for(i = 2; i < (N-2); i++) {
for(j = 2; j < (M-2); j++) {
float temp;
temp = vin[i][j]
+ 0.3f *(vin[i-1][j-1] + vin[i+1][j+1])
- 0.506f *(vin[i-2][j-2] + vin[i+2][j+2]);
vout[i][j] = temp * (vout[i][]j]);

}
}

int main(int argc, char **argv){

unsigned int n = 100;
unsigned int m = 20;
int i, j;

float resultat = 0.0f;

float out[n][m];
float in[n][m];

// init
for(i =0 ; i< n ; i++){
for(j =0 ; j < m; j++){
in[i][j] = (COEFF) * (-1.0f);
out[i][j] = (COEFF) + (j * @.01f) ;
}
¥

#pragma hmpp cuda_kernel callsite
kernel(n,m,out,in);

printf("result : %f\n",resultat);

Code example 1: basic HMPP programming.

5.3.2 HMPP Multi-GPU Partitioning

As the number of cores keeps growing, it is esakidi help developers easily distribute data and
computations over multiple CPUs and GPUs. The HNYRIgramming model version 3.0 supports
multi-GPU programming by enabling developers theagitperform array distribution or spread out a
collection of data on multiple devices.

In the C example below, two CUDA devices are attdcto a group of codelets. The loop in the main
function is indicated parallel with a clause expres defining how data and computations in the
region are to be distributed between the two davigdl the directive operations in the loop inherit
from the distribution expression.

Deliverable number: D3.3
Deliverable nameReport on the Lessons learned about the interactioof Programming Models

with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc

Page 31 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

#pragma hmpp <my_grp> group, target=CUDA, nb_device=2

#pragma hmpp <my_grp> my_cdlt codelet, args[*].io=inout, args[*].mirror
void f(float a[10000])

{ooo)

#tdefine N 20
float x[N][1e000];

int main()

{

int i;

#pragma hmpp <my_grp> parallel, device="i%2"
for (i = @; i < N; ++i)
{
#pragma hmpp <my_grp> new, data["x[i]"]
#tpragma hmpp <my_grp> allocate, data["x[i]"], data["x[i]"].size={10000}

#pragma hmpp <my_grp> my_cdlt callsite
f(x[1]);

#pragma hmpp <my_grp> release, data["x[i]"]
#pragma hmpp <my_grp> delete, data["x[i]"]

Code example 2: distributing codelet execution and data over multiple GPUs

5.4 Dataflow extensions to OpenMP and Interaction with WP4

Following the first design work on OpenMP dataflewtensions, INRIA has been conducting a more
systematic effort on the compilation algorithmspfal semantics, implementation on different targets
and expressiveness experimentation. This deliverhighlights the main results and lessons learnt,
while more details can be found in the PhD thekisndoniu Pop [4, 5], from which we plan to extract
multiple papers in 2012.

5.4.1 Lessons learnt from the dataflow extensions to OpenMP

Our efforts concentrated on the integration of steeaming dataflow paradigm in a high-level,
general-purpose parallel programming language, ®peAs introduced in the first year deliverables,
our primary goal was to maximize the impact on taxisprogramming practices, with no sacrifice in
terms of semantical and syntactical expressivenaeserving the OpenMP existing parallel and
synchronization constructs. Our experience in theosd year has been that this choice is fully
compatible with code generation towards a low-laeaghflow interface, including a hardware-based
implementation with the TStar instruction set. Riowal simulation of TStar generated from various
streaming dataflow OpenMP programs is now possible

In parallel, our effort to support stream operaigsliding windows, communication bursts, random-
access in streams) has brought entire satisfadtimst, the performance and locality optimization
benefits of the workstreaming algorithm we desigaad implemented (reported in D4.4 and D4.5).
Second, the integration potential of dataflow streageneralizing I-structures and more dynamic data
dependence patterns exposed in StarSs and TFluxd, Tine formal semantics and practical
implementation described in Antoniu Pop's thesis digarly demonstrate that arbitrary dynamic
dependences, task creation, and communication aatesompatible with strong guarantees in terms
of functional determinism, (runtime) deadlock détmt and debugging facilities, and efficient
compilation to scalable synchronization mechanigtine workstreaming algorithm). Our semantical
model is called Control-Driven Data-Flow. A tracasled operational semantics has been defined, and

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 32 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

its properties and associated compilation algothrave been proven. Much of this remains in an
early stage, implementation wise, and we will n@eus our efforts on a complete implementation,
widely disseminated with many examples and a cohgsive report.

Finally, driven by the University of Manchesteretpartners of WP3 have been pushing a joint effort
on refining the memory model of the TERAFLUX progmaing languages and TStar ISA. Two
approaches are being investigated.

1. Focusing on object-level memory management, witiiobal object-level addressing space.
This approach is favored by Microsoft and wouldelperopriate for Scala and other managed
languages.

2. Focusing on word-level pointers, with a global addrspace in virtual memory.

In both approaches, TERAFLUX departs from the reabty popular Partitionned Global Address
Space (PGAS) approach of languages like CoArrayrdmr UPC (both word-level) or X10 (object-
level). We are aiming for a non-partitioned globdtress space, leveraging dataflow synchronizations
and explicit, software controlled actions to en&moherence and consistency at the dataflow thread
level. Based on a first experiment at BSC (tfsigedias a low-level memory management framework
for COTSon, cf. deliverable D7.1), INRIA implemedtea runtime called dfrt for a word-level global
address space. A first version was built on the \MMi&ime platform designed at INRIA [6], and it
was later optimized and scaled to clusters of mdtessors as a native implementation in C++ with
MPI. This runtime is currently being evaluated aoreasingly complex applications. Based on this
experiment, the partners of WP3 will define andlanpent an integrated plan to support the global
address space memory model within the TERAFLUXcadficy languages and within the COTSon-
based implementation of the TStar ISA; this is pkhfor the third year.

5.4.2 Lessons learnt in the integration plan and compilation flow

In the second year of the project, we realized thatimplementation of the unified compilation

interface proposed in D4.3 would not be ready oretto support a sufficient number of features of
the different efficiency programming models. Indeedipporting the expansion of high-level

concurrency and control flow constructs on low-lIeS8A representation in GCC is a not for the faint
of heart. We thus decided to explore alternatiute®, still enabling every efficiency programming
notation to be compiled with GCC to TStar ISA. Speally, we studied the three following options.

» Support every programming model feature in theastirg OpenMP notation implemented in
GCC.

The impact would be very high for the INRIA partnas this option leads to the replication of the
efforts at BSC, CAPS and UCY inside GCC. On theitpas side, it would be possible to
incrementally implement the unified representavd4.3, such that the optimizations designed and
implemented in GCC would become applicable toféittiency programming models.

» Expose low-level TStar instructions as compilertms, allowing StarSs, HMPP and TFlux
source-to-source compilers to target them directhys is the proposed flow for Scala, and the
current way TFlux operates. But it makes minimad o$ the optimization framework being
implemented in GCC. Also, it leads to duplicatiohedfort at the different partners, who
would need to design and implement complex conipilaand runtime methods to map the
general dynamic dependence patterns to the mostraored data-driven semantics of TStar.
This would be particularly challenging for StarSs.

» By closely investigating the semantical differenoéthe different notations, we discovered a
third, more elaborate option.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 33 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The idea is to expand the efficiency programminglet® into streaming OpenMP tasks, converting
the high-level semantics for building complex degence patterns into monotonic, stream operations.
A clause in these programming models (e.gquput) is replaced with a stream of pointers in the
streaming OpenMP extension. Each pointer in sustrtemm contains the base address of the region
declared in the StarSs, TFlux or HMPP clause. Symihation is a result of the streaming dataflow
semantics, while communications are determinedXpjicit memory frame operations. Building on
the memory model introduced in D7.1, we will rely both Owner Writable Memory (OWM) and
Transactional Memory (TM) frames, depending ondbémantics of the clause being translated. The
OWM frames being the most obvious candidates tolement I-structures and other dynamic
dependence resolution mechanisms that naturally tmagtreaming semantics. Since neither OWM
nor TM frames implement any dataflow synchronizatiy themselves, the GCC TStar backend will
be responsible for maintaining the causal link leetv the coherence and communication actions
associated with the OWM or TM frames, and the apoading dataflow synchronizations.

Independently, the StarSs, TFlux and HMPP dynaneipeddence resolvers will be implemented
natively using streaming OpenMP constructs. Thecesto-source compilers will also have to be
modified to avoid any ad-hoc synchronization medran relying only on their associated
dependence resolver.

Option 3 is clearly more interesting as it levesatiee optimizations being performed in WP4 and does
not require CAPS, BSC and UCY to duplicate worknbadone at INRIA (unlike option 2), and it does
not require INRIA to replicate all the work beingré in WP3 by every other partner (unlike option
1).

A proof of concept implementation of Option 3 faafss, TFlux, and HMPP tasking and dependence
concepts could be presented at the review meeting.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 34 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

6 Summary

This document has described the research carriethdhe Workpackage 3 of the Teraflux project
during the second year. It is split into threeidigtsections covering the work carried out onhigh
productivity programming model, on the synchronoascurrency and on high performance models.
Within the latter models, we cover progress witdifective-based dataflow models (StarSs, TFLUX,
HMPP, OpenMP). The executive summary has prese¢heedchievements obtained during this year.
In addition, it does contain the rationale for negda means for handling shared mutable state in
dataflow models. This deliverable has covered tbegkweing carried out in T3.1, T3.2 & T3.3).

Overall, the programming models have been defineiial experiments have been completed
successfully and we have developed working prosgypble to execute on standard multi-core
platforms.

Next year, the projects partners will continue miefy the dataflow computational models (i.e. T3.4
Consolidated Dataflow Models) and learn from théenactions with WP2 (applications), WP4
(compilation tools) and WP5 (execution on the Tesafarchitecture). In addition we will start

investigating how the combined model of TM and flata gets affected once we eliminate those
restrictions used in years 1 and 2.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactioof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 35 of 36

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[1] Daniel Goodman, Behram Khan, Salman Khan, CKirkham, Mikel Lujan and lan Watson.
MUTS: Native Scala Constructs for Software Trarisaet Memory. In Scala Days 2011.

[2] A. Diavastos, P. Trancoso, M. Lujan and |. Waits“Integrating Transactions into the Data-
Driven Multi-threading Model using the TFlux Platfia’ in Proc. of the Data-Flow Execution Models
for Extreme Scale Computing (DFM) Workshop, GaleasiTexas, U.S.A., October 2011.

[3] Rahul Gayatri, "Integrating Transactional Meman StarSs", Computer Architecture PhD
program, Technical University of Catalonia, 2011.

[4] Antoniu Pop and Albert Cohen. A stream-compgtaxtension to OpenMP. In Intl. Conf. on High
Performance and Embedded Architectures and Cormgf8PEAC’11), January 2011.

[5] Antoniu Pop. Leveraging Streaming for Deterrstid Parallelization - an Integrated Language,
Compiler and Runtime Approach. PhD Thesis MINESHa&ch, September 2011.

[6] Sean Halle and Albert Cohen. A mutable hardwastraction to replace threads. In Languages
and Compilers for Parallel Computing (LCPC’11), L8IG-ort Collins, Colorado, September 2011.

[7] Alejandro Duran, Eduard Ayguadé, Rosa M. BadlasUs Labarta, Luis Martinell, Xavier
Martorell and Judit Planas, "OmpSs: A proposal foogramming heterogeneous multi-core
architectures”, in Parallel Processing Letter, ia21, Issue 2, pp. 173 - 193, June 2011.

[8] Javier Bueno, Judit Planas, Alejandro Duransdrbl. Badia, Xavier Martorell, Eduard Ayguadé,
Jesus Labarta, Productive Programming of GPU Glustéth OmpSs, 26th IEEE International
Parallel & Distributed Processing Symposium, 2abZbe published).

[9] I. Watson, V. Woods, P. Watson, R. Banach, Medhaberg, and J. Sargeant, “Flagship: A parallel
architecture for declarative programming,” in ISC888, pp. 124-130.

Deliverable number: D3.3

Deliverable nameReport on the Lessons learned about the interactiof Programming Models
with the Applications, Compiler and Architecture

File name: TERAFLUX-D33-v8.doc Page 36 of 36

