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Executive Summary 
This document is the third deliverable of WP2, Benchmarks and Applications. The objective of this 
workpackage is to understand the runtime behavior of applications in order to establish a guideline in 
the design of the other components of the computing system in TERAFLUX. As TERAFLUX 
explores the design of highly parallel tera-device systems, a key step in the project is understanding 
the fundamental requirements of highly parallel applications and their implications on all layers of a 
computing system that supports a data-flow programming and execution model – from the 
programming model itself, down to extensions to commodity architecture. 

The deliverable describes the results of the third year of the project in task T2.3. The activities 
performed in task T2.3 relate to the porting of applications to the project programming models. The 
deliverable gives an update on the status of the porting of the project applications. Additionally, the 
deliverable presents how two of the project programming models (OpenStream and StarSs) can be 
made interoperable to better support the software stack on top of the TERAFLUX architecture. The 
deliverable also reports on the methodology used for porting the applications and experiences on this 
process, together with performance results. 
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1 Introduction 
This is the third deliverable of WP2, Benchmarks and Applications. While during the two first years 
of the project the objective was to understand and characterize the behavior of the applications, the 
last two years of the project focus on the porting of the project reference applications to the project 
programming models.  

In deliverable D2.2 the partners listed the set of reference applications to be ported to the project 
programming models. As it is presented in the table that summarizes the status of the applications, the 
project partners have done good progress during this year in the porting of application. This 
deliverable reports in the more interesting aspects of the applications’ porting.   

1.1 Document structure 
The document is organized as follows: section 2 gives an update of the project applications status, 
section 3 presents the research performed in the integration between two of the project programming 
models: OpenStream and StarSs; section 4 presents several experiences in the porting of project 
applications to different programming models; finally section 5 concludes the document. 

1.2 Relation to other deliverables 
This deliverable has relation with D2.2 and D3.4. 

1.3 Activities referred by this deliverable 
This deliverable refers to the activities performed task T2.3 during the third year of the project. 
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2 Status of reference applications porting  
Deliverable D2.2 presented the list of reference applications to be ported to the project programming 
models.  The applications are listed below, and for each of them there is the Status column that reports 
on the status of the applications.  

The status can be: 

• Porting pending: the port of this application will be performed during Y4 
• In progress: the partners are working on the porting of this application 
• Available: the porting finished and the application is available in the project application 

repository. 

Table 1. Reference applications. 

Benchmark Responsible partner Programming 
model  

Status 

Matmul BSC 
INRIA 
UCY 
UNIMAN 

StarSs 
OpenStream 
DDM 
Scala + TM 

Available 
Available 
Available 
Available 

Radix Sort INRIA  OMP In progress 
Lonestar - TBC INRIA OpenStream Undecided 
Barnes-Hut BSC StarSs Pending 
Cholesky BSC 

UCY 
INRIA 

StarSs 
DDM 
OpenStream 

Available 
Available 
Available 

Sparse LU BSC 
INRIA 
UCY 
UNIMAN 

StarSs 
OpenStream 
DDM 
Scala +TM 

Available 
Available 
Available 
In progress 

FFT2D BSC 
INRIA 

StarSs 
OpenStream 

Available 
Available 

SPECFEM3D BSC 
UNIMAN 

StarSs 
Scala + TM 

Available 
In progress 

N Queens BSC StarSs Available 

Lee’s Routing  
(Labyrinth)  

UNIMAN 
BSC 
INRIA 
UNIMAN + UCY 

Scala +TM 
StarSs 
OpenStream 
DDM + TM 

Available 
Available 
In progress 
In progress 

Kmeans UNIMAN 
BSC 

Scala + TM 
StarSs 

In progress 
Available 

Ssca2 UNIMAN Scala + TM In progress 
STAMP – Vacation INRIA OpenStream In progress 
FFT 1D INRIA OpenStream Available 
Fmradio INRIA OpenStream Available 
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802.11a INRIA OpenStream In progress 
SimDiasca INRIA OpenStream, 

Sync 
Cancelled 

Picture-in-picture INRIA OpenStream, 
Sync 

In progress 

Ad-hoc software 
radio 

INRIA OpenStream, 
Sync 

In progress 

Conv2d UCY DDM Available 

IDCT UCY DDM Available 

Trapez UCY DDM Available 
Graph 500 BSC 

UD 
StarSs 
Codelet 

Available 
Pending 

Flux 
(object tracking) 

BSC StarSs Available 

GROMACS BSC StarSs Available 
 

PEPC BSC StarSs Available 
 

WRF BSC StarSs Available 
STAP (Radar) Thales 

BSC 
INRIA 

Seq. code 
StarSs 
 

Available 
In progress 
Pending 

Viola & Jones  
(Pedestrian 
detection) 

THALES 
INRIA 

Seq. code 
OpenStream 
 

Available 
In progress 
Pending 

HPL Linpack BSC StarSs Available 
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3 Interoperability between programming models: 
OpenStream and StarSs (INRIA, BSC)  

The OpenStream language (a data-flow streaming extension of OpenMP) is the main entry point to 
the TERAFLUX compiler. Applications written in the efficiency languages of the project have to be 
either written directly in OpenStream, or translated source-to-source, or manually adapted to fit the 
dedicated programming model: pragma syntax, and streams of the language. In particular, this 
translation is needed for StarSs, HMPP, and TFLUX applications. 

In this deliverable, we propose a systematic methodology to express the array region semantics of 
StarSs, and translate it using a dedicated dependence resolver to streaming synchronizations. This 
methodology can be automated [2]. One of the design requirements of OpenStream was indeed to 
support all the efficiency programming models of the project without significant overhead. The 
automation of this translation is possible, and it will be implemented in the fourth year of the project, 
in collaboration between BSC and INRIA. More examples from the HMPP and TFLUX programming 
models will also be provided in the future. 

While OpenStream makes the task-to-task dependences and communications through a dedicated 
stream object explicit, StarSs describes the memory accesses of each task, from which inter-task 
dependences are inferred. Dependences are much more implicit in StarSs than in OpenStream. In 
addition, StarSs accesses are specified with dynamic array regions, providing a lot of flexibility to 
programmers and an incremental path to parallelize existing programs. The price for this rich, implicit 
dependence abstraction is paid through the need for a sophisticated runtime algorithm. A runtime 
dependence resolver detects the effective overlaps between the memory accesses of different task 
instances and the ordering constraints deriving from the task creation order. 

The StarSs clauses of the task directive allow specifying three types of accesses (read, write or 
read/write) taking a list of parameters that define the memory regions where accesses occur. The 
parameters of these clauses are of the form A[lo1:up1][lo2:up2], which means that memory 
accesses occur within the region delimited by the lower and upper bounds (both inclusive) on each 
dimension of array A. 

To better understand how the StarSs programming model works, let us study the Gauss-Seidel kernel 
implemented in StarSs, together with a graphical representation of the regions described by the StarSs 
annotations and the data dependences present in this code (Figure 1). 

This important kernel performs a heat transfer simulation over a rectangular plane, computing a 5-
point stencil over a tiled array, data. 

The task annotation uses five access regions on array data, one in read/write mode, using the inout 

clause, and four in read mode, using the input clause. The read/write region corresponds to the body 
of the tile, represented in yellow in the graphical representation on Figure 1, while the read regions 
correspond to the accesses that overlap neighboring tiles, in green. The semicolon notation defines a 
region as a starting index and a length: data[i-1;1][j:j+B-1] represents a region one element 

wide at index i-1 on one dimension and spanning between j and j+B-1 on the other dimension. 
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The dynamic dependence resolution uses the declared access regions and evaluates possible overlaps 
between regions to provide the set of dependences that need to be enforced to preserve the semantics 
of the program. In order to efficiently compute these overlaps, the dependence resolver relies on a 
linearized representation of memory regions based on the actual addresses of elements that belong to 
the region. The representation consists of a number in base 3, where each digit is encoded as 0, 1 or X. 
The length of the region representation depends on the binary width of the architecture. The intuition 
here is that an address belongs to a region if and only if each digit of the address; binary 
representation is either equal to the corresponding digit in the region's representation or the region's 
digit is X. 

The key property is that the runtime implementation of this dependence resolver provides precise 
dependence information at the region level. This information enables the compilation-time translation 
of StarSs directives to OpenStream directives. In other words, OpenStream constructs can be used to 
capture the dependences between tasks working on shared data, using the dependence information 
provided by the StarSs resolver. We will show that such an embedding can be implemented at 
compilation time, generating the adequate synchronizations with data-flow streaming constructs. Our 
choice of the translation of StarSs directives, to showcase the expressiveness of our programming 
language, was primarily motivated by the closeness of StarSs annotations and programming style with 
OpenMP, which makes this translation easier to understand. However, this process applies more 
generally to any higher-level language (HLL) for parallel-programming that handles dynamic 
dependences between tasks, including HMPP and TFLUX. 

Figure 1 Gauss-Seidel kernel implementation in StarSs and its graphical representation 
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The result of the OpenStream translation for the Gauss-Seidel kernel is provided on Figure 2. 

Interestingly, this translation is much simpler than one would anticipate given the semantic gap 
between dynamic array regions and data-flow streams. Since it has not yet been implemented, we only 
provide a limited coverage of StarSs applications adapted to the OpenStream language and 
programming model. These can be found in the examples directory of the OpenStream repository. 
[3]. 

The applications ported to OpenStream in WP2 have been packaged as stand-alone benchmarks with 
multiple data sets and autotuning scripts to facilitate the adaptation of the grain of parallelism to the 
target. The current list of distributed OpenStream programs is: 

• cholesky, 
• fmradio, 
• seidel, 
• fft-1d, 
• jacobi, 
• strassen, 
• fibo, 
• knapsack, 
• matmul, 
• bzip2 (SPEC CPU 2000), 

• ferret (PARSEC). 

For some of these programs, multiple versions are provided, to compare data-flow-style, Cilk/join-
style, and barrier-style implementations. 

Figure 2 OpenStream implementation of the Gauss-Seidel kernel 
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4 Application porting 

4.1 DFScala and MUTS (UNIMAN) 

4.1.1 Applications 
Over the course of the past year we have increased our set of benchmarks built on top of the dataflow 
library (DFScala [4] [5]) and the transactional memory library (MUTS [6] [7] [8]) constructed in work 
package 3. This set now includes the following standalone benchmarks: 

• Matrix Multiplication 
• Monte Carlo Tree Search for Artificial Intelligent (AI) 

• Knapsack 

Matrix Multiplication  benchmark performs block wise multiplication of arbitrary sized matrices. 

0-1 Knapsack is an optimisation problem requiring items to be picked from a bag such that their 
weight does not exceed a given amount while maximising the overall value of the items picked. This 
benchmark solves the problem through the use of dynamic programming. 

Monte-Carlo Tree Search is a randomised technique used to search a state space for a best guess at 
an optimum solution. It is used in situations where searching exhaustively is too costly. In this 
instance it is used by a computer player to look for moves in a game of Go. 

These complement our existing set of standalone benchmarks, the complete set is now:  

• Genome 
• K-Means 
• Labyrinth/Lee (various versions) 
• Matrix Multiplication 
• Monte Carlo Tree Search for AI 
• Vacation 

• Knapsack 

In addition to these standalone benchmarks we have started with the implementations of Google’s 
MapReduce [9] and Pregel [10] frameworks. This is an ongoing activity for which we will provide 
more information next year. 

Finally we have constructed a set of benchmarks that can be run directly on the simulated hardware to 
test cache properties. These are: 

• Labyrinth/Lee 
• Matrix Multiplication 
• Motion Estimation via Iterative Refinement of 3D images  

• Shared Brother Son Index searching 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: DX.Y 
Deliverable name: Initial report on applications already ported to the new dataflow based 
                                programming model 
File name: TERAFLUX-D23-v5 Page 14 of 27 

4.1.2 Performance results 
While the benchmarks constructed on the MapReduce and Pregel frameworks still require attention to 
produce representative results, we are able to present results generated for K-Means, Matrix 
Multiplication, Monte Carlo Tree Search for AI (see in legend as Go) and 0-1 Knapsack. These results 
were presented at Data-Flow Execution Models for Extreme Scale Computing (DFM 2012) [4]. These 
benchmarks were run on a machine supporting dual 6 core 2.2 GHz AMD Opteron processors and 
32GB of RAM. They were run using Scala 2.9 on Hot Spot Java 1.6 virtual machine (build 20.1-b02, 
mixed mode) supporting a 4GB heap. 

 

Figure 3 Scalability of applications ported to Scala-based programming models 

4.2 Lee routing algorithm porting to StarSs (BSC) 

4.2.1 Task identification with Tareador 
Tareador is a framework that helps programmers estimate parallelism gain from particular 
taskification scheme that can be achieved using a task-based programming model. The tools based in 
Valgrind, executes the application with code blocks and functions potentially marked by the 
programmer as tasks, records the execution and analyses data accesses in the tasks to derive data-
dependencies between them. It allows further analysis of the execution of the application by 
generating task-dependency graph and Dimemas trace files that feed the Dimemas simulator, being 
able to derive possible parallel executions of the application based on the data dependencies among 
the tasks. 

The whole process on the Tareador environment is done in the following steps: 

1. The applications are executed following an in-order execution of the tasks of their 
instantiation; 

2. The framework intercepts tasks’ memory accesses; 
3. Tareador identifies dependencies between executed tasks; 
4. Tareador collects information about tasks’ dependencies and generate a task graph and trace 

files that can be used to simulate their parallel execution. 

The execution process is based on the tool chain consisting of the following components: 
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1. Tareador takes an input code and passes it to Mercurium source-to-source translator. The 
input code uses compiler directives to mark the potential tasks. Mercurium translates the 
annotations into calls to Tareador hooks.  

2. When translated code is being executed, a Valgrind-based tool is used. The tool intercepts 
calls to Tareador hooks to track the order in which tasks are being executed. It also tracks 
memory accesses to identify data dependencies among tasks. Based on the collected 
information the tool creates a trace file of the tasks and data dependencies among them. 

3. Traces generated in previous step are processed by Dimemas simulator to generate a 
prediction of the behavior of the application when run with a given number of threads. The 
predicted trace file can be visualized and analyzed with Paraver. 

In the next sections, we describe how we used Tareador to find possible parallelism in the OmpSs 
implementation of the Lee routing algorithm. 

4.2.2 Lee-routing algorithm: a divide and conquer implementation  
The starting code that is being used for developing the application is Labyrinth, an application from 
the STAMP benchmark suite. It implements the parallel Lee routing algorithm using transactional 
memory.  For our implementation we choose a divide-and-conquer version of the algorithm. 

The main data structure in the computation is performed on a three-dimensional grid. In our 
implementation, for the sake of simplicity, we use a two-dimensional grid whose height and width are 
equal and are power of 2. In the divide phase, the grid is recursively divided into two subgrids. The 
division continues until the size of a grid to be divided is one (1x1). In the conquer phase, a list of 
pairs of path endpoints are taken as input. For each of the paths, the computation is divided into two 
subphases: expansion and traceback. During expansion subphase, a path between each endpoint is 
searched. In the traceback phase, the final path is marked.  

There are two main data structures: grid and path_grid_list. In our implementation grid is represented 
as a pointer. path_grid_list is a list of pairs of endpoints for which expansion was successful.  

4.2.3 Analysis of the implementation 
In this section we will analyze two implementations of the algorithm that emerged one after another in 
the process of applying gradual improvements. A first attempt implements expansion and traceback 
as a single coarse-grained task. In the second attempt, expansion and traceback have been separated 
into two tasks. The analysis focuses mainly on potential parallelism and data dependencies among 
tasks.  

For this analysis we used Tareador. The information collected by the framework allowed us to 
identify points to improve in first invocation of the algorithm and validate the applications of these 
improvements in second attempt.  

Analyses were made for a grid of size 128 points wide and 128 points high for 128 paths to route. The 
applications were run for 8 threads. 
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4.2.3.1 First attempt: expansion and traceback as single coarse-grained 
task 

We start with an implementation in which expansion and traceback are implemented as single OmpSs 
task. The pseudocode in lines 10-20 from Figure 8 can be replaced with the one from Figure 4. 

Here, we have single task that encapsulates both expansion and traceback actions that are performed 
sequentially. In our implementation there are two data structures shared among tasks: grid that, is 
updated in conquer phase with points forming a path, and a list containing successfully routed paths. 
In our implementation the access to these data structure is synchronized by Nanos++ runtime system 
that resolves dependencies among tasks.  

The Paraver view on Figure 5 shows the dependencies among tasks. 

 

As it is shown on the Figure 5 tasks compute paths are depicted with red color and described as 
compute_paths; tasks expand traceback are marked with purple and described as 

expand_traceback. Yellow lines depict dependencies between tasks. Each single instance of task 

compute_paths has dependencies with each single instance of task expand_traceback that 

has been spawned by it, and with its children: two subtasks compute_paths. As it has been already 

1.         #pragma omp task input (my_work_list) inout (grid) 
2.             for((src, dest) <- my_work_list))  
3.                 expansion_queue = allocate_queue 
4.                 local_grid = copy_grid(grid) 
5.                 if(expand(local_grid, expansion_queue, src, dest)) 
6.                     path = traceback(grid, src, dest) 
7.                     if(not_empty?(path)) 
8.                         update(grid, path) 

Figure 4 Expansion and traceback as a coarse-grained OmpSs task 

Figure 5 Paraver visualization with information about tasks’ dependencies 
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mentioned these dependencies are created by two data structures shared among tasks: instance of grid 
and a list of found paths successfully routed, the data structure further used for verification. 

The picture on Figure 6 shows Paraver trace file with the execution of tasks simulated by Dimemas. It 
shows the potential parallelism the programmer can get using this implementation. The conclusion is 
that there is not much potential parallelism lying in this implementation. expand_traceback tasks 
are coarse-grained tasks. Although they vary in duration of their execution, the full program execution 
is dominated by few tasks that have the higher number of paths to route. 

These same conclusions can be drawn from the real execution trace files reflected in the Paraver trace 
file shown on Figure 7. 

We can see again that the execution of the application is dominated by coarse-grained tasks that 
perform traceback and expansion (here depicted with white color). Although many of them run in 
parallel, execution of the biggest tasks (those with many paths to route) is in fact sequential and does 
not improve scalability of the algorithm. 

Figure 6.  Simulated execution of tasks. 

Figure 7.  Real execution of the application. 
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4.2.3.2 Second attempt: expansion and traceback as separate tasks 
Based on the analysis presented in previous section, we decided to divide expand and traceback into 
two more fine-grained tasks. This led us to implementation shown on pseudocode on Figure 8. 

In the divide phase, the recursive nested task router_grid_task task creates two subtasks by dividing 
the grid into two subgrids. The division continues until the size of a grid to be divided is one (1x1). In 
the conquer phase, the tasks created at divide phase perform a computation on each of the subgrids in 
two different tasks: expansion and traceback. The problem stated in this way forms a perfectly 
balanced binary tree with partial solutions represented by nodes.  
 
The router_grid_task takes as input a list of pairs of path endpoints. The pairs are divided into three 
sets: one for each of the endpoints of paths lying entirely inside one of two subgrids and another one 
for the endpoints that pass the boundaries of both subgrids. 

The computation of the paths is divided into two subphases: expansion and traceback. During 
expansion subphase, an expansion task is created for each pair of endpoints. Traceback is 
implemented as a single task that iterates over the list of pairs of endpoints for which expansion was 
successful.  

There are two data structures that are shared among tasks: grid and path_grid_list. In our 

implementation grid is represented as a pointer that is passed from parent task to its children. At 

divide phase grid is read and in conquer phase it is both read (in expansion phase its content is 
copied to a local grid; this local grid is then used by task to mark the results of expansion) and 
updated with points that form a path. We use OmpSs directionality marks that are part of pragma 
statements, to indicate synchronized access to this data structure.  

path_grid_list is a list of pairs of endpoints for which expansion was successful. It is shared 
among tasks that perform expansion and a task that runs traceback. Update is done by each task 
during expansion phase. In our implementation it is performed inside the critical section. We use 
OpenMP critical pragma to mark the code as critical section. If we were to use only OmpSs 
pragma, tasks that perform expansion would be executed sequentially. 
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Graph on Figure 9 is a Paraver tracefile showing dependencies among tasks. 

There is high number of dependencies among expand tasks (here depicted as single_expand). 
The dependencies are defined by a list that stores endpoint pairs for which expansion ended 
successfully (on pseudocode on Figure 8 this data structure is called path_grid_list). This data 
structure is read and updated by each instance of the task. Dimemas recognizes these dependencies 
and reports a possible scheduling scheme of the tasks with respect to this dependency. In our 
implementation the dependency can be relaxed by using OmpSs concurrent clause in the compiler 

directive of the task. Access to the list is synchronized using OpenMP critical statement.  

Figure 9 Dependency graph of tasks 

1. #pragma omp task inout (grid) input (work_list) 
2. // Compute paths 
3.  def router_task(grid, work_list) =  
4.         (subgrid_1, subgrid_2) = halve(grid) 
5.         (work_sublist_1, work_sublist_2, my_work_list) = assign_paths(work_list)  
6.         if(size(subgrid_1) > 1 and not_empty?(work_sublist_1)) 
7.             router_task(subgrid_1, work_sublist_1) 
8.         if(size(subgrid_2) > 1 and not_empty?(work_sublist_2)) 
9.             router_task(subgrid_2, work_sublist_2) 
10.         path_grid_list = allocate_list 
11.         for((src, dest) <- my_work_list))  
12.             expansion_queue = allocate_queue 
13.             local_grid = copy_grid(grid) 
14.             #pragma omp task concurrent (path_grid_list) input (grid) 
15. //expand 
16.                 if(expand(local_grid, expansion_queue, src, dest)) 
17.                     list_insert(path_grid_list, (src, dest)) 
18.         #pragma omp task inout(grid) input (path_grid_list) 
19. //traceback  
20.             for((src, dest)  <- path_grid_list) 
21.                 path = traceback(grid, src, dest) 

 
Figure 8 Lee routing algorithm using OmpSs parallel programming model 
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Figure 10 shows the simulated parallel execution of the application. We can see that our effort has led 
to generation of much smaller tasks which might lead to exposing more parallelism in a real 
execution. 

Figure 11 shows the real parallel execution of the application.  

The executed implementation contains fine-grained expand tasks (here shown as single_expand) 
and relaxed dependency tracking for list storing paths with successful expansion 
(path_grid_list). The observations that have been drawn based on analysis of Tareador-
generated Paraver traces are reflected in the execution. Although, as it was a case in previous 
incarnations of the algorithm, execution of the application is dominated by expansion tasks, they run 
in parallel; threads are not idling waiting for tasks to be scheduled (we can see this happening in 
previous version of the algorithm on Figure 7). It is also visible that implementing synchronized 
accesses to the list of expanded paths contributes to the improvement: expansion is performed on a 
local copy of the original grid by each task and can be safely performed in parallel; the only piece of 
code that requires synchronization during expansion is insertion of the endpoint pair to the back of the 
list; expansion is much more costly than list insertion.  

Figure 10 Simulated execution of the application 

Figure 11 Real execution of the application 
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4.3 Graph500 implementation in StarSs 
The Graph500 benchmark1 evaluates machine performance while running data-intensive analytic 
applications and is a measure of the machine’s communications capabilities and computational power. 
This section briefly reports its porting to StarSs. The benchmark performs the following steps: 

1. Generate the edge list: The data generator constructs a list of edge tuples containing vertex 
identifiers. They are of the form <Startvertex, Endvertex> 

2. Construct a graph from the edge list. From these edge tuples, a graph is constructed. It also 
assigns a weight to each edge representing the cost of traversing this edge. 

3. Randomly sample 64 unique search keys with degree at least one. For every search key, 
generate a BFS graph depending with the search key as the source vertex.  

4. For each search key:  
• Compute the parent array.  
• This array contains a valid BFS parent for every vertex. The parent of the search key 

is itself. The parent of isolated vertices's are marked as -1.   
• Validate that the parent array is a correct BFS search tree for the given search tree.  

5. Compute and output performance information 
 

Steps where the benchmark has been taskified.  
1. Generating the edge The edge-tuples have been generated in parallel. This part of the 

benchmark is embarrassingly parallel. The graph generator is a Kronecker generator similar to 
Recursive Matrix (R-MAT) scale free graph generation algorithm.  

2. The BFS of a graph starts with a single source vertex, finds its neighbors and then neighbors 
of its neighbors and so on, until all the nodes that can be reached from the source vertex have 
been marked as visited.  

• A BFS loop-iteration which explores the unvisited nodes encountered in previous 
iteration has been taskified. Initially a single task was generated for every unvisited 
node. But in such a case the tasks were very small. Hence the code has been modified 
to explore multiple nodes in a single task. In every iteration the number of tasks 
spawned vary, depending on the number of unvisited nodes encountered in previous 
iteration. At the end of every iteration a check is made to determine whether the 
algorithm has terminated or not. Basically the algorithm terminates if no unvisited 
nodes have been encountered in the previous iteration. Before making this check a 
wait has to be performed, so that the tasks in this iteration have terminated.  

• In order to avoid this wait, the speculation clause has been used (see deliverable 
D3.4). The main thread speculates that the next iteration will be executed and spawns 
more tasks instead of waiting for the tasks from the previous iteration to finish 
execution. Initial results to this benchmarks with task speculation is presented in 
deliverable D3.4. 

Initial experiments with Graph500 were performed on COTSon and reported in D2.2 and D3.4.  

                                                      
1 http://www.graph500.org 
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4.4 Pedestrian Detection Implementation 
In deliverable D2.2 Thales characterized the Pedestrian Detection application providing an acyclic 
dataflow graph and the associated control flow graph. While being a dataflow application, this 
application has proven not to be a classical pipeline-shaped application as shown on the control flow 
graph presented in Figure 12. Thanks to our internal co-design environment, SpearDE, we identified 
four different parallelization axis including scale axis, image tile axis, filter axis and classification 
stage axis.  

 

Figure 12 Pedestrian Detection control-flow graph 

Each of these parallelization axes has been furthermore characterized considering the implication on 
the implementation, including computation and communication overhead. 

The classical implementation of this Pedestrian Detection algorithm consist into a Cascading 
algorithm presented in Figure 13, where parts of the original image are consecutively discarded has 
they are proven not to contain any pedestrian. 
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Figure 13 - Cascading algorithm 

 

The detection algorithm is applied to a single image that is scanned with tiles of different sizes, as a 
pedestrian closer to the camera will appear bigger as a pedestrian more far away.  For a given tile size, 
the image is then scanned on a per-tile basis, the cascading classification algorithm being applied to 
each tile, discarding non-matching tiles. 

This cascading algorithm consists of applying various filters on those tiles resulting into a single value 
to be compared to a threshold. If the value is below the threshold the tile is considered as not 
containing a pedestrian, and therefore is eliminated from the list of tiles to consider. As a 
consequence, further classification stages will not be run on these eliminated tiles. 

The computation workload varies across this classification algorithm: The first stages of the algorithm 
consist of applying very simple filters to nearly all the tiles composing the image only eliminating 
obvious cases, whereas the last stages of the algorithm are applying very complex computation 
consuming filters, but only to the few surviving tiles where a pedestrian is very likely to be.  

At the end of the algorithm, the only surviving tiles are the one where pedestrians were detected. 
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4.4.1 Evaluating parallelization schemes 
To perform an efficient implementation of the above-mentioned algorithm on a many core 
architecture, an efficient methodology would have been to start back from the specification and 
propose a new parallelism aware algorithm that could be completely different from the original 
sequential algorithm. 

One of the focuses of Thales in this project is to evaluate the cost of porting existing applications in 
accordance with the industry requirements concerning legacy software, validation and certification 
concerns. Another focus is to evaluate models based on transactions for the wide brand of dataflow 
applications Thales is involved into, such as radar, image processing, and avionics applications. As a 
consequence, rather than developing a new parallel algorithm, we restricted ourselves to porting the 
existing sequential algorithm, parallelizing it among the above mentioned parallelization axis:  the 
scale axis, the image tile axis, the filter axis and the classification stage axis. 

Each of these axes has been studied relatively to the required implementation effort, the expected 
speedup benefit, the extra communication costs, the extra data manipulations and the extra 
computation costs.  

4.4.1.1 Parallelizing across the scale (tile size) axis 
Parallelizing across the scale axis has several advantages: First, as illustrated by Figure 13, there is no 
communication required between the different scales (tile size). Therefore there is no data-
dependency that would reduce the benefits of parallelizing. Concerning communications, even though 
the system has to deal with much more concurrent communications, the only extra communications 
are about the original image, so the overhead should be kept minimal, and not impact the speedup 
negatively. However the parallelism opportunity remains relatively low due to the few number of 
different tile size, leading to massive under-utilization of the 1000 core architecture.  

4.4.1.2 Parallelizing across the tile axis 
Parallelizing across the tile axis corresponds to running the classification algorithm on all the tiles in 
parallel at each classification stage. As there is no data dependency between tiles, we again have a 
large parallelization opportunity that is only decreasing with the tile size (the original image is 
composed of less larger tiles). However, there is a risk of communication flooding as all the tiles need 
to be sent nearly synchronously to all the associated cores. This implementation is therefore massively 
parallel, with a risk of the speedup being impaired by communication arbitration overhead.  

4.4.1.3 Parallelizing across the filter axis 
Parallelizing across the filter axis corresponds to running in parallel the different set of filters to be 
applied at each classification stage on every image tile. As a consequence, data dependencies may 
exist between successively applied filters, even though it is not necessarily the case (successive filters 
may work on different dimensions of the input matrix data). However to send the corresponding data 
between filter threads, some additional data manipulation (usually transposition) is required to 
minimize the communication costs, and the benefits could be dampened by the fact that the filters 
increase in complexity at the same time as the number of image tiles decreases: on early classification 
stages, the filters are very simple and the benefits from parallelization will be far below the 
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communication costs and the extra data manipulations. On late classification stages, the filters are 
becoming much more complex, but are applied to a very small set of surviving tiles, not providing a 
wide parallelism opportunity. Therefore, due to the impact on dependency, data manipulation and 
extra communication, this parallelization axis is not likely to benefits from the many core architecture.  

4.4.1.4 Parallelizing across the cascading axis 
Parallelizing across the cascading axis corresponds to running all the classification stage at once for a 
particular image tile. Assuming an image tile could be discarded in the early classification stages, it 
does mean that some extra computations are performed: the algorithm will run a late classification 
stage on the image tile prior to knowing if this tile could achieve such a classification stage. This is 
therefore a slight modification of the algorithm. However some benefits could be expected out of it: 
First, as on the early parallelization schemes, there few data dependencies between the running 
threads (each thread runs on a different tile). Second there is no extra communications (The algorithm 
only carry on the computation on the current set of data even if it will be proven to be useless later). 
The idea is to exploit the spatial aspect of the many-core architecture without flooding the architecture 
with costly communications. Therefore an overhead should only appear if many of the tiles are 
discarded in the early stages, which is not the typical case.  

4.4.2 Evaluation and Testing 
From previous evaluation of the different parallelization schemes, we decided to focus on the 
evaluation of the two most promising version of the Pedestrian Detection application: the 
“Parallelizing across the tile axis” and “Parallelizing across the cascading axis” versions. 

The first version runs in a massively parallel mode at the cost of a large amount of communication, its 
performance should therefore only be communication bounded. The second version exploits the 
spatial aspect of the architecture at the cost of extra computation, its performance should therefore 
only be computation bounded, but the large number of core should balance this aspect. 

Implementation of both these version has been started on the Teraflux architecture, and evaluation 
metrics will be provided in deliverable D2.4 due at M48. 
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5 Conclusions 
This deliverable reports on the status of the porting of the project applications to the project 
programming models. During this year, there has been good progress in the porting of applications, as 
it can be seen in section 2. The deliverable presents also research work performed in the project 
towards the integration of project programming models. This integration will enable a complete 
software stack between programming models and architecture. Additionally to experiences on porting 
the applications, the deliverable presents the methodologies used in the porting.  

Overall the WP has experienced good progress and the partners expect to finish timely the porting of 
all applications.  
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