Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

SEVENTH FRAMEWORK PROGRAMME B
THEME '
FET proactive 1: Concurrent Tera-Device
SEVENTH FRAMEWORK Computing (ICT-2009.8.1)

PROGRAMME

PROJECT NUMBER: 249013

TERAFLUX

Exploiting dataflow parallelism in Teradevice Compuing

D2.3- Initial report on applications already portedto the new dataflow
based programming model

Due date of deliverable: 3December 2012
Actual Submission: 20December 2012

Start date of the project: January 2010 Duration: 48 months
Lead contractor for the deliverable: BSC

Revision: See file name in document footer.

Project co-founded by the European Commission
within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)

Dissemination Level: PU

PU Public

PP | Restricted to other programs participant (includimg Commission Services)

RE | Restricted to a group specified by the consortiunti§ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 1 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Change Control

Version# | Date Author Organization | Change History

0.1 26-11-2012 Tomasz Patejko andBSC Initial version with input
partners from partners

0.2 30-11-2012 Rosa M. Badia BSC Edition of introduion

and conclusions.

Release Approval

Name Role Date

Tomasz Patejko Originator 26-11-2012
Rosa M. Badia WP Leader 30-11-2012
Roberto Giorgi Project Coordinator for formal deliv erable | 14-12-2012

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 2 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

TABLE OF CONTENTS

EXECUTIVE SUMMARYouuuiiissiiisiisssssssssssssssssssssssss s s s s s ssssssssssssssssssssssssssssssssss 6
1 INTRODUCGTION ...iiiiiiiiiiiiiiiiiiiiiiiiiiiisiisssissnns 7
1.1 DOCUMENT STRUCTURE ... ueeteteteeeeeiitteeeeessessnreteeesesamsesnneeeeesesmsneneeeeseeannnneeeeesesannreneeeeeseesesannreneresssasnnnes 7

1.2 RELATION TO OTHER DELIVERABLES
13 ACTIVITIES REFERRED BY THIS DELIVERABLEecuviiueeitieiteeteeiee st ettt ettt st sttt et be b eab et aeebeeane s

2 STATUS OF REFERENCE APPLICATIONS PORTING........ccccitiiinnninnnniiiinnnsnnniisssnnassssssssnnssssssssesssnees 8
3 INTEROPERABILITY BETWEEN PROGRAMMING MODELS: OPENSTREAM AND STARSS (INRIA, BSC)...... 10

4 APPLICATION PORTING ...cceuuuumumnnnnnmnnmmmnmmmmmmmsemnemssnns 13

4.1 DFSCALA AND MUTS (UNIMAN) <.ceiieetiie ettt e ettt e e te e e e st e e s ate e e sasaeeenteeessntaeesnneaeesnseeesesnsseeesnnsees
3 Vo o) [ole [[4 3SR PUROE

O B - {0 g Lo T ol =l =V 1 SRS
4.2 LEE ROUTING ALGORITHM PORTING TO STARSS (BSC) ..ceiiuuriieieiiiee et e eeiteeeeite e e ettt e e et eeeareeeeeaveeeeeataeaeeaneeas
4.2.1 Task identification with Tareador
4.2.2 Lee-routing algorithm: a divide and conquer implementation

4.2.3 Analysis of the iMmpPlemeEntalioNc.ueeeeeeeeeeiieeeseee e s e e et e et a e e st e e e ssttaaesertaaessrseaeaas
4.3 GRAPHS500 IMPLEMENTATION IN STARSSnititttee ettt e e e ettt e e e e e e iiet et e e e e e s abbb e e e e e e esabeeteeeesesaanreeeaaeens
4.4 PEDESTRIAN DETECTION IMPLEMENTATION...............
4.4.1 Evaluating parallelization schemes
W B V1o 1 [V o 14 Lo T e [Yo I =231 1 o RSP US
5 CONCLUSIONSccceiiiicnneeeeieiseessnnnsessesssssssssssessssssssssssssssssssssssssssassssssssssssnssesssssssssssnsesssssssssssnnsssasssssssns 26
REFERENCES Eeeeessseeeeteeeeeesssareeteeeee st e e s s eee s e et e e e s s R Rt e e s e e esss s anateesesessssrnnnneeanes 27
LIST OF FIGURES
FIGURE 1 GAUSS-SEIDEL KERNEL IMPLEMENTATION IN STARSS AND ITS GRAPHICAL REPRESENTATION....ceevveevreereeeveesereessnennenes 11
FIGURE 2 OPENSTREAM IMPLEMENTATION OF THE GAUSS-SEIDEL KERNEL.....eevveeuteeeererreesseesseeesseessseeesseesessesssseesssesssseesnnes 12
FIGURE 3 SCALABILITY OF APPLICATIONS PORTED TO SCALA-BASED PROGRAMMING MODELSvveeuvrrereeereesreesseesseessesesseesnsens 14
FIGURE 4 EXPANSION AND TRACEBACK AS A COARSE-GRAINED OIMPSS TASK...ccuverueterererreesieesreesieeesseeesseesssseeesseesssessnseesanes 16
FIGURE 5 PARAVER VISUALIZATION WITH INFORMATION ABOUT TASKS” DEPENDENCIES...veevveerureereeereesreesseessseessseessesenssnsenes 16

FIGURE 6 SIMULATED EXECUTION OF TASKS
FIGURE 7 REAL EXECUTION OF THE APPLICATION
FIGURE 8 LEE ROUTING ALGORITHM USING OMPSS PARALLEL PROGRAMMING MODELeeuvvienereereesseesreesseesseeesseessseessnneesnes
FIGURE O DEPENDENCY GRAPH OF TASKS ...vtesuvtessteesteeesseeessessseessseesssessssesssssessssesssesssessnsessssessssesssseesssssssessssssssssessssessses
FIGURE 10 SIMULATED EXECUTION OF THE APPLICATION
FIGURE 11 REAL EXECUTION OF THE APPLICATION ..euvvtesuveeteseseesssessseessseesssesssssessnseessssessssssesansessnsessnsesssseesssesssessnssssenses

FIGURE 12 PEDESTRIAN DETECTION CONTROL-FLOW GRAPH ...cc.uteittteitesteesieesureesiteessseesseesssuesesssesssessnseessessnseessseesseessses 22
FIGURE 13 - CASCADING ALGORITHM ...cctettiauuuttteeeseaaaureteeeassaausseeeeeasaeesasausseteeeassaaussteeeeeesaaannseaeeesssaannssnnsseeeesesannnnseaeens 23

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 3 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

LIST OF TABLES

TABLE 1. REFERENCE APPLICATIONS. ..ceteteieurerereeesaaannnneeeeesssaaunerereeesseessaamnnnereeesssasnnneeeeessassaneeeeesesansrnnsnneeeeesesannraneeesssann 8

Deliverable numbeDX.Y
Deliverable nameinitial report on applications already ported to the new dataflow based

programming model
File name: TERAFLUX-D23-v5 Page 4 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The following list of authors will be updated tdfleet the list of contributors to the writing ofdeh
document.

Rosa M. Badia, Rahul Gayatri, Tomasz Patejko and Neho Navarro
BSC

Albert Cohen, Antoniu Pop and Feng Li
INRIA

Daniel Goodman, Salman Khan, Behram Khan,
Mikel Lujan and lan Watson
UNIMAN

Sylvain Girbal, Philippe Bonnot
THALES

© 2009 TERAFLUX Consortium, All Rights Reserved.

Document marked as PU (Public) is published iryJtidr the TERAFLUX Consortium, on theww.teraflux.euweb site
and can be distributed to the Public.

The list of author does not imply any claim of owsiép on the Intellectual Properties describedis tliocument.

The authors and the publishers make no expressiaaptied warranty of any kind and assume no resibdiges for errors
or omissions. No liability is assumed for inciddr@aconsequential damages in connection with siray out of the use of
the information contained in this document.

This document is furnished under the terms of tBRAFLUX License Agreement (the "License") and majyde used or
copied in accordance with the terms of the Liceree information in this document is a work in preggs, jointly
developed by the members of TERAFLUX Consortium ("RERUX") and is provided for informational use only.

The technology disclosed herein may be protecteshieyor more patents, copyrights, trademarks anidide secrets owned
by or licensed to TERAFLUX Partners. The partneserve all rights with respect to such technolagy reelated materials.
Any use of the protected technology and relateceristbeyond the terms of the License without thierpwritten consent
of TERAFLUX is prohibited. This document containsiterial that is confidential to TERAFLUX and its miers and
licensors. Until publication, the user should assuimat all materials contained and/or referencethis document are
confidential and proprietary unless otherwise iathd or apparent from the nature of such matefi@ls example,
references to publicly available forms or documgnts

Disclosure or use of this document or any matedaltained herein, other than as expressly permisgarohibited without
the prior written consent of TERAFLUX or such otlparty that may grant permission to use its progrietaterial. The
trademarks, logos, and service marks displayedhis document are the registered and unregister@dermarks of
TERAFLUX, its members and its licensors. The coglyriand trademarks owned by TERAFLUX, whether teged or
unregistered, may not be used in connection with @educt or service that is not owned, approvedistributed by
TERAFLUX, and may not be used in any manner thékédy to cause customer confusion or that dispasalERAFLUX.
Nothing contained in this document should be coestras granting by implication, estoppel, or otlieewany license or
right to use any copyright without the express teritconsent of TERAFLUX, its licensors or a thirarty owner of any
such trademark.

Printed in Siena, Italy, Europe.

Part numberplease refer to the File name in the document foote

DISCLAIMER

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUXPBECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT QHIRD PARTY RIGHTS.

TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER(INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOT BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENTCLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT,TRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF &IH DAMAGES.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 5 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Executive Summary

This document is the third deliverable of WP2, Benarks and Applications. The objective of this
workpackage is to understand the runtime beha¥iapplications in order to establish a guideline in
the design of the other components of the compusiystem in TERAFLUX. As TERAFLUX
explores the design of highly parallel tera-de\dgstems, a key step in the project is understanding
the fundamental requirements of highly parallell@pgions and their implications on all layers of a
computing system that supports a data-flow progremgnmand execution model — from the
programming model itself, down to extensions to swdity architecture.

The deliverable describes the results of the thyigdr of the project in task T2.3. The activities
performed in task T2.3 relate to the porting of lmapions to the project programming models. The
deliverable gives an update on the status of tingoof the project applications. Additionally,eth
deliverable presents how two of the project progrimy models (OpenStream and StarSs) can be
made interoperable to better support the softwaekon top of the TERAFLUX architecture. The
deliverable also reports on the methodology usegdeting the applications and experiences on this
process, together with performance results.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 6 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1 Introduction

This is the third deliverable of WP2, Benchmarkd &pplications. While during the two first years
of the project the objective was to understand @matacterize the behavior of the applications, the
last two years of the project focus on the portifighe project reference applications to the pitojec
programming models.

In deliverable D2.2 the partners listed the setedérence applications to be ported to the project
programming models. As it is presented in the t#idé summarizes the status of the applicatiors, th
project partners have done good progress during ybiar in the porting of application. This
deliverable reports in the more interesting aspeictise applications’ porting.

1.1 Document structure

The document is organized as follows: section 2gjian update of the project applications status,
section 3 presents the research performed in tegration between two of the project programming

models: OpenStream and StarSs; section 4 presewmtsat experiences in the porting of project

applications to different programming models; fipalection 5 concludes the document.

1.2 Relation to other deliverables
This deliverable has relation with D2.2 and D3.4.

1.3 Activities referred by this deliverable
This deliverable refers to the activities perforntask T2.3 during the third year of the project.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 7 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

2 Status of reference applications porting

Deliverable D2.2 presented the list of referencglieg@tions to be ported to the project programming
models. The applications are listed below, andgfmh of them there is the Status column that tepor

on the status of the applications.

The status can be:

» Porting pending: the port of this application va# performed during Y4
* In progress: the partners are working on the pgiinthis application

» Available: the porting finished and the applicatinavailable in the project application

repository.
Table 1. Reference applications.
Benchmark Responsible partner| Programming Status
model
Matmul BSC StarSs Available
INRIA OpenStream Avalilable
ucy DDM Available
UNIMAN Scala+TM Available
Radix Sort INRIA OMP In progress
Lonestar - TBC INRIA OpenStream Undecided
Barnes-Hut BSC StarSs Pending
Cholesky BSC StarSs Avalilable
Ucy DDM Available
INRIA OpenStream Available
Sparse LU BSC StarSs Avalilable
INRIA OpenStream Avalilable
Uucy DDM Available
UNIMAN Scala +TM In progress
FFT2D BSC StarSs Available
INRIA OpenStream Available
SPECFEM3D BSC StarSs Available
UNIMAN Scala+TM In progress
N Queens BSC StarSs Available
Lee’s Routing UNIMAN Scala +TM Available
(Labyrinth) BSC StarSs Available
INRIA OpenStream In progress
UNIMAN + UCY | DDM + TM In progress
Kmeans UNIMAN Scala+TM In progress
BSC StarSs Available
Ssca2 UNIMAN Scala+TM In progress
STAMP — Vacation | INRIA OpenStream In progress
FFT 1D INRIA OpenStream Available
Fmradio INRIA OpenStream Available

Deliverable numbedDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 8 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

802.11a INRIA OpenStream In progress
SimDiasca INRIA OpenStream, Cancelled
Sync
Picture-in-picture INRIA OpensStream, In progress
Sync
Ad-hoc software INRIA OpensStream, In progress
radio Sync
Conv2d UCYy DDM Available
IDCT ucy DDM Available
Trapez Ucy DDM Available
Graph 500 BSC StarSs Available
uUD Codelet Pending
Flux BSC StarSs Available
(object tracking)
GROMACS BSC StarSs Available
PEPC BSC StarSs Available
WRF BSC StarSs Available
STAP (Radar) Thales Seq. code Available
BSC StarSs In progress
INRIA Pending
Viola & Jones THALES Seq. code Available
(Pedestrian INRIA OpenStream In progress
detection) Pending
HPL Linpack BSC StarSs Available

Deliverable numbedDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based

programming model

File name: TERAFLUX-D23-v5

Page 9 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

3 Interoperability between programming models:
OpenStream and StarSs (INRIA, BSC)

The OpenStream language (a data-flow streaminghsixte of OpenMP) is the main entry point to

the TERAFLUX compiler. Applications written in thedficiency languages of the project have to be
either written directly in OpenStream, or tranglageurce-to-source, or manually adapted to fit the
dedicated programming model: pragma syntax, anehists of the language. In particular, this

translation is needed for StarSs, HMPP, and TFLppieations.

In this deliverable, we propose a systematic meilogy to express the array region semantics of
StarSs, and translate it using a dedicated depead&solver to streaming synchronizations. This
methodology can be automated [2]. One of the demeguirements of OpenStream was indeed to
support all the efficiency programming models oé tproject without significant overhead. The
automation of this translation is possible, andiit be implemented in the fourth year of the puatje

in collaboration between BSC and INRIA. More exaaspirom the HMPP and TFLUX programming
models will also be provided in the future.

While OpenStream makes the task-to-task dependearm@scommunications through a dedicated
streamobject explicit, StarSs describes thiemory accessesf each task, from which inter-task
dependences are inferred. Dependences are muchimplieit in StarSs than in OpenStream. In
addition, StarSs accesses are specified dytamic array regionsproviding a lot of flexibility to
programmers and an incremental path to parallekigting programs. The price for this rich, imglici
dependence abstraction is paid through the need fwphisticated runtime algorithm. riAintime
dependence resolvatetects the effective overlaps between the meraocgsses of different task
instances and the ordering constraints derivingnfiioe task creation order.

The StarSs clauses of thask directive allow specifying three types of acces@ead, write or
read/write) taking a list of parameters that defihne memory regions where accesses occur. The
parameters of these clauses are of the f&frinol: upl] [| 02: up2], which means that memory
accesses occur within the region delimited by tweel and upper bounds (both inclusive) on each
dimension of array.

To better understand how the StarSs programmingemearks, let us study the Gauss-Seidel kernel
implemented in StarSs, together with a graphigalagentation of the regions described by the StarSs
annotations and the data dependences presens icoithe (Figure 1).

This important kernel performs a heat transfer fatmn over a rectangular plane, computing a 5-
point stencil over a tiled arraglat a.

The task annotation uses five access regions ag@at a, one in read/write mode, using theout
clause, and four in read mode, usingith@ut clause. The read/write region corresponds to tluy b

of the tile, represented in yellow in the graphicgtresentation on Figure 1, while the read regions
correspond to the accesses that overlap neighbtilésgin green. The semicolon notation defines a
region as a starting index and a lengtht a[i - 1; 1] [j :] +B- 1] represents a region one element
wide at index - 1 on one dimension and spanning betweeamd] +B- 1 on the other dimension.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 10 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

for (iter = 0; iter < numiters; iter++)
for (i = 1; 1 < N-1; i += B)

for (j =1; j < N-1; j +=B) {
#pragma omp task inout (datali:i+B-1][j:j+B-1]1) X

input (datali-1;1][j:j+B-1], data[i+B;1]1[j:j+B-1]) \

input (data[i:i+B-1][j-1;1], datali:i+B-1][j+B;1])

{
for (k= 4i; k < i + B; ++k)
for (L = g A€ § =& By 4+1)
datal[k] [1] = 0.2 * (datal[k] [1] + datalk-1][1] + datalk+1][1]
+ datal[k] [1-1] + datalk] [1+1]);

}
}
datali][j data ; -
: EE' | dependences
= = —— same iteration
& o ! - across iterations
s El M input (R)
o [] inout (R/W)

Figure 1 Gauss-Seidel kernel implementation in St&s and its graphical representation

The dynamic dependence resolution uses the dedaass regions and evaluates possible overlaps
between regions to provide the set of dependehagsieed to be enforced to preserve the semantics
of the program. In order to efficiently compute dbeoverlaps, the dependence resolver relies on a
linearized representation of memory regions basethe actual addresses of elements that belong to
the region. The representation consists of a numbesise 3, where each digit is encoded as 0XL or
The length of the region representation dependb®minary width of the architecture. The intuition
here is that an address belongs to a region if amigt if each digit of the address; binary
representation is either equal to the correspondigi in the region's representation or the region
digit is X.

The key property is that the runtime implementatadrthis dependence resolver provides precise
dependence information at the region level. ThHigrination enables the compilation-time translation
of StarSs directives to OpenStream directives.tierowords, OpenStream constructs can be used to
capture the dependences between tasks working anedsliata, using the dependence information
provided by the StarSs resolver. We will show teath an embedding can be implemented at
compilation time, generating the adequate synchations with data-flow streaming constructs. Our
choice of the translation of StarSs directivesshowcase the expressiveness of our programming
language, was primarily motivated by the closeméstarSs annotations and programming style with
OpenMP, which makes this translation easier to rgtded. However, this process applies more
generally to any higher-level language (HLL) forragdkel-programming that handles dynamic
dependences between tasks, including HMPP and TELUX

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 11 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

The result of the OpenStream translation for thesS<5eidel kernel is provided on Figure 2.

for (iter = 0; iter < numiters; iter++)
for (i =1; i €< N-1; i += B)
for (j = 1; j < N-1; j +=B) {
starss_resolve_dependences (region_descriptors, &streams_peek, &streams_out,
gnum_streams_peek, &num_streams_out);

#pragma omp task peek (streams_peek >> peek_view[num_streams_peek] [0]) X
output (streams_out << out_view[num_streams_out] [1])
1.
for (k=4i; k < i + B; ++k)
for (1 = j; 1 < j + B; ++1)
datalk] [1] = 0.2 * (datal[k][1] + datalk-1]1[1] + datal[k+1][1]
+ datalk] [1-1] + datalk][1+1]1);
}

for (k = 0; k < num_streams_out; ++k) {
#pragma omp tick (streams_out[k] >> 1)

}

Figure 2 OpenStream implementation of the Gauss-S#l kernel

Interestingly, this translation is much simpler rthane would anticipate given the semantic gap
between dynamic array regions and data-flow stre&inse it has not yet been implemented, we only
provide a limited coverage of StarSs applicatiom@apted to the OpenStream language and
programming model. These can be found indkanpl es directory of the OpenStream repository.

[3].

The applications ported to OpenStream in WP2 haem lpackaged as stand-alone benchmarks with
multiple data sets and autotuning scripts to fitéi the adaptation of the grain of parallelisnthi
target. The current list of distributed OpenStrgangrams is:

» cholesky,
« fmradio,

e seidel,

o fft-1d,

e jacobi,

e strassen,
» fibo,

» knapsack,
e matmul,

e bzip2 (SPEC CPU 2000),
o ferret (PARSEC).

For some of these programs, multiple versions aoeiged, to compare data-flow-style, Cilk/join-
style, and barrier-style implementations.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 12 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4 Application porting
4.1 DFScala and MUTS (UNIMAN)

4.1.1 Applications

Over the course of the past year we have increaseset of benchmarks built on top of the dataflow
library (DFScala [4] [5]) and the transactional neegnlibrary (MUTS [6] [7] [8]) constructed in work
package 3. This set now includes the following dédone benchmarks:

e Matrix Multiplication
* Monte Carlo Tree Search for Artificial Intelligef#l)
» Knapsack

Matrix Multiplication benchmark performs block wise multiplication dbitnary sized matrices.

0-1 Knapsackis an optimisation problem requiring items to beked from a bag such that their
weight does not exceed a given amount while makigithe overall value of the items picked. This
benchmark solves the problem through the use cdmymprogramming.

Monte-Carlo Tree Searchis a randomised technique used to search a §tate $or a best guess at
an optimum solution. It is used in situations whseearching exhaustively is too costly. In this
instance it is used by a computer player to loskrfoves in a game of Go.

These complement our existing set of standalonetrearks, the complete set is now:

e Genome

e K-Means

* Labyrinth/Lee (various versions)
* Matrix Multiplication

* Monte Carlo Tree Search for Al
* Vacation

* Knapsack

In addition to these standalone benchmarks we btarged with the implementations of Google’s
MapReduce [9] and Pregel [10] frameworks. Thisrisoagoing activity for which we will provide
more information next year.

Finally we have constructed a set of benchmarkscdia be run directly on the simulated hardware to
test cache properties. These are:

e Labyrinth/Lee

* Matrix Multiplication

* Motion Estimation via Iterative Refinement of 3Ddges
» Shared Brother Son Index searching

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 13 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.1.2 Performance results

While the benchmarks constructed on the MapRednddPaegel frameworks still require attention to
produce representative results, we are able toepresesults generated for K-Means, Matrix
Multiplication, Monte Carlo Tree Search for Al (siedegend as Go) and 0-1 Knapsack. These results
were presented at Data-Flow Execution Models fardfme Scale Computing (DFM 2012) [4]. These
benchmarks were run on a machine supporting duaré 2.2 GHz AMD Opteron processors and
32GB of RAM. They were run using Scala 2.9 on HoedtSJava 1.6 virtual machine (build 20.1-b02,
mixed mode) supporting a 4GB heap.

12

-#-KMeans

10 Go /.

——Matrix Matrix /——‘
8 | —~-0-1Knapsack /

Speedup
= ()]

CoresUsed

Figure 3 Scalability of applications ported to Scal-based programming models

4.2 Lee routing algorithm porting to StarSs (BSC)

4.2.1 Task identification with Tareador

Tareador is a framework that helps programmersmesti parallelism gain from particular
taskification scheme that can be achieved usirgglethtased programming model. The tools based in
Valgrind, executes the application with code bloaksd functions potentially marked by the
programmer as tasks, records the execution angsasatlata accesses in the tasks to derive data-
dependencies between them. It allows further aisalg$ the execution of the application by
generating task-dependency graph and Dimemas fitasehat feed the Dimemas simulator, being
able to derive possible parallel executions ofdpplication based on the data dependencies among
the tasks.

The whole process on the Tareador environmentris dothe following steps:

1. The applications are executed following an in-ordeecution of the tasks of their

instantiation;

The framework intercepts tasks’ memory accesses;

Tareador identifies dependencies between execaséd;t

4. Tareador collects information about tasks’ depen@snand generate a task graph and trace
files that can be used to simulate their parakeketion.

w

The execution process is based on the tool chaisisting of the following components:

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 14 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

1. Tareador takes an input code and passes it to Mencusource-to-source translator. The
input code uses compiler directives to mark thecipidl tasks. Mercurium translates the
annotations into calls to Tareador hooks.

2. When translated code is being executed, a Valdraskd tool is used. The tool intercepts
calls to Tareador hooks to track the order in whitdks are being executed. It also tracks
memory accesses to identify data dependencies aresig. Based on the collected
information the tool creates a trace file of thekkaand data dependencies among them.

3. Traces generated in previous step are processeDifgmas simulator to generate a
prediction of the behavior of the application when with a given number of threads. The
predicted trace file can be visualized and analywitd Paraver.

In the next sections, we describe how we used @aret find possible parallelism in the OmpSs
implementation of the Lee routing algorithm.

4.2.2 Lee-routing algorithm: a divide and conquer implementation

The starting code that is being used for develogivegapplication is Labyrinth, an application from
the STAMP benchmark suite. It implements the pekdlee routing algorithm using transactional
memory. For our implementation we choose a digdd-conquer version of the algorithm.

The main data structure in the computation is peréal on a three-dimensional grid. In our
implementation, for the sake of simplicity, we @sevo-dimensional grid whose height and width are
equal and are power of 2. In the divide phasegtiteis recursively divided into two subgrids. The
division continues until the size of a grid to Heided is one (1x1). In the conquer phase, a list o
pairs of path endpoints are taken as input. Fon ethe paths, the computation is divided into two
subphases: expansion and traceback. During expassiophase, a path between each endpoint is
searched. In the traceback phase, the final pattaiked.

There are two main data structurgdgd andpath_grid_list In our implementatiogrid is represented
as a pointerpath_grid_listis a list of pairs of endpoints for which expamswas successful.

4.2.3 Analysis of the implementation

In this section we will analyze two implementatimighe algorithm that emerged one after another in
the process of applying gradual improvements. ét fattempt implementsxpansionandtraceback

as a single coarse-grained task. In the seconahptitexpansion and traceback have been separated
into two tasks. The analysis focuses mainly on @ik parallelism and data dependencies among
tasks.

For this analysis we used Tareador. The informatiotected by the framework allowed us to
identify points to improve in first invocation ofi¢ algorithm and validate the applications of these
improvements in second attempt.

Analyses were made for a grid of size 128 pointdeveind 128 points high for 128 paths to route. The
applications were run for 8 threads.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 15 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2.3.1First attempt: expansion and traceback as single esse-grained
task

We start with an implementation in which expansaon traceback are implemented as single OmpSs
task. The pseudocode in lines 10-20 from FigurarBhe replaced with the one from Figure 4.

#pragma onp task input (my_work_list) inout (grid)
for((src, dest) <- ny_work_list))
expansi on_queue = al | ocat e_queue
local _grid = copy_grid(grid)
i f(expand(local _grid, expansion_queue, src, dest))
path = traceback(grid, src, dest)

i f(not_enmpty?(path))
updat e(grid, path)

Figure 4 Expansion and traceback as a coarse-graid@OmpSs task

Here, we have single task that encapsulates bg@énsion and traceback actions that are performed
sequentially. In our implementation there are tvatadstructures shared among tagks: d that, is
updated inrconque phase with points forming a path, and a list aorihg successfully routed paths.
In our implementation the access to these datatstelis synchronized by Nanos++ runtime system
that resolves dependencies among tasks.

The Paraver view on Figure 5 shows the dependeamesg tasks.

What / Where | Timing Colors

Bl compute_paths

Bl =xpand_traceback ﬂ

Figure 5 Paraver visualization with information abaut tasks’ dependencies

As it is shown on the Figure 5 taskempute pathsre depicted with red color and described as
conmput e_pat hs; tasks expand tracebackare marked with purple and described as
expand_t raceback. Yellow lines depict dependencies between tas&shBingle instance of task
conmput e_pat hs has dependencies with each single instance ofetapnd t r aceback that
has been spawned by it, and with its children: swstask€ onput e_pat hs. As it has been already

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 16 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotmuu(ICT-2009.8.1)

mentioned these dependencies are created by tasulattures shared among tasks: instance of grid
and a list of found paths successfully routed déia structure further used for verification.

The picture on Figure 6 shows Paraver trace fitl tie execution of tasks simulated by Dimemas. It
shows the potential parallelism the programmerggtrusing this implementation. The conclusion is
that there is not much potential parallelism lyinghis implementationrexpand_t r aceback tasks
are coarse-grained tasks. Although they vary imtitum of their execution, the full program execatio
is dominated by few tasks that have the higher murabpaths to route.

What / Where | Timing Colors

- (=]

Main_taslk
Bl cormpute_paths
Bl =xpand_traceback

Figure 6. Simulated execution of tasks.

These same conclusions can be drawn from the xealigon trace files reflected in the Paraver trace
file shown on Figure 7.

What / Where | Timing

Bl Task router_arid_tas
Outiine from 'router.c:480' in router_grid_task’

Figure 7. Real execution of the application.

We can see again that the execution of the apjpicas dominated by coarse-grained tasks that
perform traceback and expansion (here depicted wiitite color). Although many of them run in
parallel, execution of the biggest tasks (thosé witny paths to route) is in fact sequential arekdo
not improve scalability of the algorithm.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 17 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.2.3.2Second attempt: expansion and traceback as separatesks

Based on the analysis presented in previous seetierecided to dividexpand and tracebadkto
two more fine-grained tasks. This led us to impletagon shown on pseudocode on Figure 8.

In thedivide phase, the recursive nested tesliter grid_tasktask creates two subtasks by dividing
the grid into two subgrids. The division continueil the size of a grid to be divided is one (1Xh)
the conquer phase, the tasks createativide phase perform a computation on each of the subgrid
two different tasksexpansionand traceback The problem stated in this way forms a perfectly
balanced binary tree with partial solutions repnése by nodes.

Therouter_grid_tasktakes as input a list of pairs of path endpoifite pairs are divided into three
sets: one for each of the endpoints of paths lgimtyely inside one of two subgrids and another one
for the endpoints that pass the boundaries of salbigrids.

The computation of the paths is divided into twdmhases:expansionand traceback During
expansion subphasean expansion task is created for each pair of @ntlp Traceback is
implemented as a single task that iterates ovelighef pairs of endpoints for which expansion was
successful.

There are two data structures that are shared anaskg:gri d andpath_grid_list. In our
implementationgr i d is represented as a pointer that is passed froenpgask to its children. At
divide phasegri d is read and irconquerphase it is both read (in expansion phase itsecbns
copied to a local grid; this local grid is then didey task to mark the results of expansion) and
updated with points that form a path. We use Onmgi8=ctionality marks that are part of pragma
statements, to indicate synchronized access ta#téstructure.

path_grid_|ist is a list of pairs of endpoints for which expamsiwas successful. It is shared
among tasks that perform expansion and a taskrtimst traceback. Update is done by each task
during expansion phase. In our implementation ipesformed inside the critical section. We use
OpenMPcritical pragma to mark the code as critical section. Ifware to use only OmpSs
pragma, tasks that perform expansion would be egd@equentially.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 18 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting

Grant Agreement Numbe249013

Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

#pragma onp task inout (grid)
/1 Comput e paths

def router_task(grid, work_Ilist)

(subgrid_1, subgrid_2)

if(size(subgrid_1) > 1 and
router_task(subgrid_1,
if(size(subgrid_2) > 1 and
rout er _task(subgrid_2,

i nput

(work_Iist)

= hal ve(grid)
(work_sublist_1, work sublist 2, my_work list) =

assi gn_pat hs(work_list)
not _enpty?(work_sublist_1))

wor k_sublist_1)

not _enpty?(work_sublist_2))

wor k_subl i st _2)

path_grid_Iist = allocate_list

for((src, dest) <- ny_work_list))
expansi on_queue = al | ocat e_queue
local _grid = copy_grid(grid)
#pragma onp task concurrent (path_grid_list) input (grid)
/ I expand
i f (expand(l ocal _grid, expansion_queue, src, dest))
list_insert(path_grid_list, (src, dest))

#pragma onp task inout(grid)
/ltraceback

input (path_grid_list)

for((src, dest) <- path_grid_list)

path = traceback(grid, src, dest)

Figure 8 Lee routing algorithm using OmpSs paralleprogramming model

Graph on Figure 9 is a Paraver tracefile showingeddencies among tasks.

What / Where | Timing | Colors
TR

B compute_paths
B single_expand
Ml tracebsck

Figure 9 Dependency graph of tasks

There is high number of dependencies amexgandtasks (here depicted 8$ ngl e_expand).

The dependencies are defined by a list that sterefpoint pairs for which expansion ended
successfully (on pseudocode on Figure 8 this datatare is callegpat h_gri d_I|i st). This data
structure is read and updated by each instanckeofask. Dimemas recognizes these dependencies
and reports a possible scheduling scheme of thes tagth respect to this dependency. In our
implementation the dependency can be relaxed mg@mpSsoncur r ent clause in the compiler
directive of the task. Access to the list is syocized using OpenMPEri ti cal statement.

Deliverable numbeDX.Y
Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 19 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

Figure 10 shows the simulated parallel executiothefapplication. We can see that our effort hds le
to generation of much smaller tasks which mightdléa exposing more parallelism in a real
execution.

L. mom P == moR R omEem s mR R R e R omEm R RR memom R mm R R R R B e EE R R mom Rm R pmm mopER R

-

R pm oEEe Rmom R R o ER R m e mm e o R Bom R m EmER R R R meRm mm o mom mm e meom o mER R R

-

R oEEE R = e

i-

What / Where | Timing | Colors
Main_task

Bl compute_paths
Bl single_expand
Bl traceback e

Figure 10 Simulated execution of the application

Figure 11 shows the real parallel execution ofapglication.

The executed implementation contains fine-graieguandtasks (here shown a$ ngl e_expand)

and relaxed dependency tracking for list storingthpa with successful expansion
(path_grid_Iist). The observations that have been drawn basednafysis of Tareador-
generated Paraver traces are reflected in the gaeclAlthough, as it was a case in previous
incarnations of the algorithm, execution of theleapion is dominated bgxpansiorntasks, they run

in parallel; threads are not idling waiting for kaso be scheduled (we can see this happening in
previous version of the algorithm on Figure 7)isltalso visible that implementing synchronized
accesses to the list of expanded paths contriliatdse improvement: expansion is performed on a
local copy of the original grid by each task and ba safely performed in parallel; the only pie€e o
code that requires synchronization during expanisiémsertion of the endpoint pair to the backhaf t
list; expansion is much more costly than list itiser

What { Where | Timing | Colors

Il Task router_grid_task’
Outline from router.c:519'in ‘router_grid_task’
Bl Outiine from ‘router.c:545 in ‘router_arid_task’ 8

Figure 11 Real execution of the application

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 20 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.3 Graph500 implementation in StarSs

The Graph500 benchmarlevaluates machine performance while running datmnsive analytic
applications and is a measure of the machine’s aamuations capabilities and computational power.
This section briefly reports its porting to Star¥se benchmark performs the following steps:

1. Generate the edge list: The data generator comstaulist of edge tuples containing vertex
identifiers. They are of the form <Startvertex, Eadex>
2. Construct a graph from the edge list. From thegg ddples, a graph is constructed. It also
assigns a weight to each edge representing th@twawersing this edge.
3. Randomly sample 64 unique search keys with degrdeaat one. For every search key,
generate a BFS graph depending with the searchskéye source vertex.
4. For each search key:
» Compute the parent array.
» This array contains a valid BFS parent for evemtese The parent of the search key
is itself. The parent of isolated vertices's arekad as -1.
» Validate that the parent array is a correct BF$ceimee for the given search tree.
5. Compute and output performance information

Steps where the benchmark has been taskified.

1. Generating the edge The edge-tuples have beenagethein parallel. This part of the
benchmark is embarrassingly parallel. The grapleiggar is a Kronecker generator similar to
Recursive Matrix (R-MAT) scale free graph genemagdgorithm.

2. The BFS of a graph starts with a single sourceexeftnds its neighbors and then neighbors
of its neighbors and so on, until all the nodes tiam be reached from the source vertex have
been marked as visited.

* A BFS loop-iteration which explores the unvisiteddes encountered in previous
iteration has been taskified. Initially a singlekavas generated for every unvisited
node. But in such a case the tasks were very shhatice the code has been modified
to explore multiple nodes in a single task. In gvidéeration the number of tasks
spawned vary, depending on the number of unvigitetes encountered in previous
iteration. At the end of every iteration a checkmade to determine whether the
algorithm has terminated or not. Basically the athm terminates if no unvisited
nodes have been encountered in the previous darafiefore making this check a
wait has to be performed, so that the tasks initéniation have terminated.

* In order to avoid this wait, the speculation clalss been used (see deliverable
D3.4). The main thread speculates that the nevetita will be executed and spawns
more tasks instead of waiting for the tasks froma frevious iteration to finish
execution. Initial results to this benchmarks witlsk speculation is presented in
deliverable D3.4.

Initial experiments with Graph500 were performed3fTSon and reported in D2.2 and D3.4.

! http://www.graph500.0rg

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 21 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.4 Pedestrian Detection Implementation

In deliverable D2.2 Thales characterized the PedasDetection application providing an acyclic
dataflow graph and the associated control flow lgragvhile being a dataflow application, this
application has proven not to be a classical pigethaped application as shown on the control flow
graph presented in Figure 12. Thanks to our intaroalesign environment, SpearDE, we identified
four different parallelization axis including scagis, image tile axis, filter axis and classifioat
stage axis.

integral image
computation

for each
scaling factor
for each
classifier stage
for each
position
for each
filter

apply filter

final position
list

update scale
position list

update
position list

Figure 12 Pedestrian Detection control-flow graph

Each of these parallelization axes has been furtbwer characterized considering the implication on
the implementation, including computation and comization overhead.

The classical implementation of this Pedestrianeb@in algorithm consist into a Cascading
algorithm presented in Figure 13, where parts efdhginal image are consecutively discarded has
they are proven not to contain any pedestrian.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 22 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

image

small sized tiles mid sized tiles large sized tiles

image split into

| 0
N
[]

5]
[E5]
[m]
=

=
EH<~—0@O
—N
=

[>]

][]

classification
through filtering
non-matching tiles

discarded tile

He—@©O«————20n0
H ~— 0 «——10O

4/‘

|
| B E O
l
B
3

matching tile

5] o o m-

Figure 13 - Cascading algorithm

The detection algorithm is applied to a single im#gat is scanned with tiles of different sizesaas
pedestrian closer to the camera will appear biggex pedestrian more far away. For a given tie, si
the image is then scanned on a per-tile basisgdbeading classification algorithm being applied to
each tile, discarding non-matching tiles.

This cascading algorithm consists of applying uasi@ilters on those tiles resulting into a singiéue

to be compared to a threshold. If the value is Wwetbe threshold the tile is considered as not
containing a pedestrian, and therefore is elimohateom the list of tiles to consider. As a
consequence, further classification stages willbgtun on these eliminated tiles.

The computation workload varies across this clesgibn algorithm: The first stages of the algarith
consist of applying very simple filters to nearly the tiles composing the image only eliminating
obvious cases, whereas the last stages of theithlgoare applying very complex computation
consuming filters, but only to the few survivintgt where a pedestrian is very likely to be.

At the end of the algorithm, the only survivingslare the one where pedestrians were detected.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 23 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

4.4.1 Evaluating parallelization schemes

To perform an efficient implementation of the abowmentioned algorithm on a many core
architecture, an efficient methodology would haweerb to start back from the specification and
propose a new parallelism aware algorithm that ccdag¢ completely different from the original

sequential algorithm.

One of the focuses of Thales in this project igvaluate the cost of porting existing applications
accordance with the industry requirements concgriegacy software, validation and certification
concerns. Another focus is to evaluate models baselansactions for the wide brand of dataflow
applications Thales is involved into, such as raglaage processing, and avionics applications. As a
conseguence, rather than developing a new paeddletithm, we restricted ourselves to porting the
existing sequential algorithm, parallelizing it amgothe above mentioned parallelization axis: the
scale axis, the image tile axis, the filter axid #me classification stage axis.

Each of these axes has been studied relativelpaadquired implementation effort, the expected
speedup benefit, the extra communication costs, dkiga data manipulations and the extra
computation costs.

4.4.1.1Parallelizing across the scale (tile size) axis

Parallelizing across the scale axis has severaradges: First, as illustrated by Figure 13, thereo
communication required between the different scalde size). Therefore there is no data-
dependency that would reduce the benefits of mdiatlg. Concerning communications, even though
the system has to deal with much more concurremnmnications, the only extra communications
are about the original image, so the overhead dhioalkept minimal, and not impact the speedup
negatively. However the parallelism opportunity aéms relatively low due to the few number of
different tile size, leading to massive under-gétion of the 1000 core architecture.

4.4.1.2Parallelizing across the tile axis

Parallelizing across the tile axis correspondautming the classification algorithm on all the dili@
parallel at each classification stage. As thersoidata dependency between tiles, we again have a
large parallelization opportunity that is only demsing with the tile size (the original image is
composed of less larger tiles). However, thererislkaof communication flooding as all the tilesede

to be sent nearly synchronously to all the assediabres. This implementation is therefore masgivel
parallel, with a risk of the speedup being impaisgccommunication arbitration overhead.

4.4.1.3Parallelizing across the filter axis

Parallelizing across the filter axis correspondsutaning in parallel the different set of filters be
applied at each classification stage on every intdgeAs a consequence, data dependencies may
exist between successively applied filters, eveugh it is not necessarily the case (successitegdil
may work on different dimensions of the input mattata). However to send the corresponding data
between filter threads, some additional data maaijon (usually transposition) is required to
minimize the communication costs, and the benebisld be dampened by the fact that the filters
increase in complexity at the same time as the mumbimage tiles decreases: on early classifioatio
stages, the filters are very simple and the bendfibm parallelization will be far below the

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 24 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

communication costs and the extra data manipukatiGm late classification stages, the filters are
becoming much more complex, but are applied torg small set of surviving tiles, not providing a
wide parallelism opportunity. Therefore, due to thgpact on dependency, data manipulation and
extra communication, this parallelization axis o lkely to benefits from the many core architeetu

4.4.1.4Parallelizing across the cascading axis

Parallelizing across the cascading axis corresptmdsning all the classification stage at onaeafo
particular image tile. Assuming an image tile cob&ldiscarded in the early classification stages, i
does mean that some extra computations are perdortime algorithm will run a late classification
stage on the image tile prior to knowing if thie tcould achieve such a classification stage. his
therefore a slight modification of the algorithmowkver some benefits could be expected out of it:
First, as on the early parallelization schemesretfew data dependencies between the running
threads (each thread runs on a different tile)oBSeéc¢here is no extra communications (The algorithm
only carry on the computation on the current sedaifi even if it will be proven to be useless Jater
The idea is to exploit the spatial aspect of theyrzore architecture without flooding the architeet
with costly communications. Therefore an overhehdukl only appear if many of the tiles are
discarded in the early stages, which is not the&ase.

4.4.2 Evaluation and Testing

From previous evaluation of the different paraflation schemes, we decided to focus on the
evaluation of the two most promising version of tRedestrian Detection application: the
“Parallelizing across the tile axis” and “Paraltétig across the cascading axis” versions.

The first version runs in a massively parallel matithe cost of a large amount of communicatian, it
performance should therefore only be communicabonnded. The second version exploits the
spatial aspect of the architecture at the costxthecomputation, its performance should therefore
only be computation bounded, but the large numbeoe should balance this aspect.

Implementation of both these version has beenestash the Teraflux architecture, and evaluation
metrics will be provided in deliverable D2.4 duavis8.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 25 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

5 Conclusions

This deliverable reports on the status of the pgrtof the project applications to the project

programming models. During this year, there has lgg®d progress in the porting of applications, as
it can be seen in section 2. The deliverable ptesalso research work performed in the project
towards the integration of project programming med&his integration will enable a complete

software stack between programming models andtaathie. Additionally to experiences on porting

the applications, the deliverable presents the odetlogies used in the porting.

Overall the WP has experienced good progress angdtiners expect to finish timely the porting of
all applications.

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 26 of 27

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevicer@puting
Grant Agreement Numbe249013
Call: FET proactive 1: Concurrent Tera-device Cotimuu(ICT-2009.8.1)

References

[1] C. Christofi, G. Michael, P. Trancoso and P. Evi, "Exploring HPC Parallelism with Data-
Driven Multithreading," inrDFM 2012 Minneapolis, 2012.

[2] A. Pop and A. Cohen, "OpenStream: ExpressivenedsDatar-low Compilation of OpenM
Streaming ProgramsACM Transactions on Architecture and Code Optinmrmatlanuary 2013.

[3] "OpenStream repository,” [Online]. Available: httpww.di.ens.fr/StreamingOpenMP.

[4] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khar,ujan and I. Watson, "DFScala: Hi
level dataflow support for Scala," Becond International Workshop on Dd&w Models Fo
Extreme Scale Computing (DFM)012.

[5] "DFScala website," [Online]. Available: http://agg.man.ac.uk/projects/TERAFLUX/DFScala/.

[6] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Lugmd |. Watson, "Software transactic
memories for Scala,'Journal of Parallel and Distributed Computingnio. in pess DO
http://dx.doi.org/10.1016/j.jpdc.2012.09.015, 2012.

[7] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Lujmnd I. Watson, "MUTS: Native Sc:
Constructs for Software Transactional Memory,Spala Days2011.

[8] "MUTS website," [Online]. Available: http://apt.osan.ac.uk/projects/TERAFLUX/MUTS/.

[9] J. Dean and S. Ghemawat, "MapReduce: Simplifieca bcessing on Large Clusters,
OSDI'04: Sixth Symposium on Operating System Desigrimplementatiqr2004.

[10] G. Malewicz, M. H.Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Lemisand G. Czajkowsl
"Pregel: a system for large-scale graph processimg, 2010 ACM SIGMOD Internation
Conference on Management of Da2810.

[11] Vladimir Subotic, Roger Ferrer, José Carfmncho, Jesus Labarta, Mateo Valero: Quanti
the Potential Task-Based Dataflow Parallelism inl Mpplications. Euro-Par (1) 2011: 39-51

Deliverable numbeDX.Y

Deliverable nameinitial report on applications already ported to the new dataflow based
programming model

File name: TERAFLUX-D23-v5 Page 27 of 27

