
Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 1 of 27

SEVENTH FRAMEWORK PROGRAMME
THEME

FET proactive 1: Concurrent Tera-Device
Computing (ICT-2009.8.1)

PROJECT NUMBER: 249013

Exploiting dataflow parallelism in Teradevice Computing

D2.3– Initial report on applications already ported to the new dataflow
based programming model

Due date of deliverable: 31st December 2012
Actual Submission: 20th December 2012

Start date of the project: January 1st, 2010 Duration: 48 months

Lead contractor for the deliverable: BSC

Revision: See file name in document footer.
Project co-founded by the European Commission

within the SEVENTH FRAMEWORK PROGRAMME (2007-2013)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 2 of 27

Change Control
Version# Date Author Organization Change History
0.1 26-11-2012 Tomasz Patejko and

partners
BSC Initial version with input

from partners
0.2 30-11-2012 Rosa M. Badia BSC Edition of introduction

and conclusions.

Release Approval
Name Role Date
Tomasz Patejko Originator 26-11-2012
Rosa M. Badia WP Leader 30-11-2012
Roberto Giorgi Project Coordinator for formal deliv erable 14-12-2012

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 3 of 27

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 6

1 INTRODUCTION ... 7

1.1 DOCUMENT STRUCTURE .. 7

1.2 RELATION TO OTHER DELIVERABLES .. 7

1.3 ACTIVITIES REFERRED BY THIS DELIVERABLE .. 7

2 STATUS OF REFERENCE APPLICATIONS PORTING ... 8

3 INTEROPERABILITY BETWEEN PROGRAMMING MODELS: OPENSTREAM AND STARSS (INRIA, BSC) 10

4 APPLICATION PORTING ... 13

4.1 DFSCALA AND MUTS (UNIMAN) ... 13

4.1.1 Applications .. 13

4.1.2 Performance results .. 14

4.2 LEE ROUTING ALGORITHM PORTING TO STARSS (BSC) ... 14

4.2.1 Task identification with Tareador ... 14

4.2.2 Lee-routing algorithm: a divide and conquer implementation ... 15

4.2.3 Analysis of the implementation .. 15

4.3 GRAPH500 IMPLEMENTATION IN STARSS ... 21

4.4 PEDESTRIAN DETECTION IMPLEMENTATION ... 22

4.4.1 Evaluating parallelization schemes ... 24

4.4.2 Evaluation and Testing ... 25

5 CONCLUSIONS ... 26

REFERENCES .. 27

LIST OF FIGURES

FIGURE 1 GAUSS-SEIDEL KERNEL IMPLEMENTATION IN STARSS AND ITS GRAPHICAL REPRESENTATION... 11

FIGURE 2 OPENSTREAM IMPLEMENTATION OF THE GAUSS-SEIDEL KERNEL .. 12

FIGURE 3 SCALABILITY OF APPLICATIONS PORTED TO SCALA-BASED PROGRAMMING MODELS .. 14

FIGURE 4 EXPANSION AND TRACEBACK AS A COARSE-GRAINED OMPSS TASK.. 16

FIGURE 5 PARAVER VISUALIZATION WITH INFORMATION ABOUT TASKS’ DEPENDENCIES.. 16

FIGURE 6 SIMULATED EXECUTION OF TASKS .. 17

FIGURE 7 REAL EXECUTION OF THE APPLICATION .. 17

FIGURE 8 LEE ROUTING ALGORITHM USING OMPSS PARALLEL PROGRAMMING MODEL .. 19

FIGURE 9 DEPENDENCY GRAPH OF TASKS .. 19

FIGURE 10 SIMULATED EXECUTION OF THE APPLICATION ... 20

FIGURE 11 REAL EXECUTION OF THE APPLICATION .. 20

FIGURE 12 PEDESTRIAN DETECTION CONTROL-FLOW GRAPH .. 22

FIGURE 13 - CASCADING ALGORITHM .. 23

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 4 of 27

LIST OF TABLES

TABLE 1. REFERENCE APPLICATIONS. ... 8

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 5 of 27

The following list of authors will be updated to reflect the list of contributors to the writing of the
document.

Rosa M. Badia, Rahul Gayatri, Tomasz Patejko and Nacho Navarro
BSC

Albert Cohen, Antoniu Pop and Feng Li
INRIA

Daniel Goodman, Salman Khan, Behram Khan,
Mikel Lujan and Ian Watson

UNIMAN

Sylvain Girbal, Philippe Bonnot
THALES

© 2009 TERAFLUX Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the TERAFLUX Consortium, on the www.teraflux.eu web site
and can be distributed to the Public.
The list of author does not imply any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the TERAFLUX License Agreement (the "License") and may only be used or
copied in accordance with the terms of the License. The information in this document is a work in progress, jointly
developed by the members of TERAFLUX Consortium ("TERAFLUX") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to TERAFLUX Partners. The partners reserve all rights with respect to such technology and related materials.
Any use of the protected technology and related material beyond the terms of the License without the prior written consent
of TERAFLUX is prohibited. This document contains material that is confidential to TERAFLUX and its members and
licensors. Until publication, the user should assume that all materials contained and/or referenced in this document are
confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of TERAFLUX or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of
TERAFLUX, its members and its licensors. The copyright and trademarks owned by TERAFLUX, whether registered or
unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by
TERAFLUX, and may not be used in any manner that is likely to cause customer confusion or that disparages TERAFLUX.
Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or
right to use any copyright without the express written consent of TERAFLUX, its licensors or a third party owner of any
such trademark.
Printed in Siena, Italy, Europe.
Part number: please refer to the File name in the document footer.

DISCLAIMER
EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE TERAFLUX SPECIFICATION IS PROVIDED BY
TERAFLUX TO MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
TERAFLUX SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA
OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE
SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY
OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 6 of 27

Executive Summary
This document is the third deliverable of WP2, Benchmarks and Applications. The objective of this
workpackage is to understand the runtime behavior of applications in order to establish a guideline in
the design of the other components of the computing system in TERAFLUX. As TERAFLUX
explores the design of highly parallel tera-device systems, a key step in the project is understanding
the fundamental requirements of highly parallel applications and their implications on all layers of a
computing system that supports a data-flow programming and execution model – from the
programming model itself, down to extensions to commodity architecture.

The deliverable describes the results of the third year of the project in task T2.3. The activities
performed in task T2.3 relate to the porting of applications to the project programming models. The
deliverable gives an update on the status of the porting of the project applications. Additionally, the
deliverable presents how two of the project programming models (OpenStream and StarSs) can be
made interoperable to better support the software stack on top of the TERAFLUX architecture. The
deliverable also reports on the methodology used for porting the applications and experiences on this
process, together with performance results.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 7 of 27

1 Introduction
This is the third deliverable of WP2, Benchmarks and Applications. While during the two first years
of the project the objective was to understand and characterize the behavior of the applications, the
last two years of the project focus on the porting of the project reference applications to the project
programming models.

In deliverable D2.2 the partners listed the set of reference applications to be ported to the project
programming models. As it is presented in the table that summarizes the status of the applications, the
project partners have done good progress during this year in the porting of application. This
deliverable reports in the more interesting aspects of the applications’ porting.

1.1 Document structure
The document is organized as follows: section 2 gives an update of the project applications status,
section 3 presents the research performed in the integration between two of the project programming
models: OpenStream and StarSs; section 4 presents several experiences in the porting of project
applications to different programming models; finally section 5 concludes the document.

1.2 Relation to other deliverables
This deliverable has relation with D2.2 and D3.4.

1.3 Activities referred by this deliverable
This deliverable refers to the activities performed task T2.3 during the third year of the project.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 8 of 27

2 Status of reference applications porting
Deliverable D2.2 presented the list of reference applications to be ported to the project programming
models. The applications are listed below, and for each of them there is the Status column that reports
on the status of the applications.

The status can be:

• Porting pending: the port of this application will be performed during Y4
• In progress: the partners are working on the porting of this application
• Available: the porting finished and the application is available in the project application

repository.

Table 1. Reference applications.

Benchmark Responsible partner Programming
model

Status

Matmul BSC
INRIA
UCY
UNIMAN

StarSs
OpenStream
DDM
Scala + TM

Available
Available
Available
Available

Radix Sort INRIA OMP In progress
Lonestar - TBC INRIA OpenStream Undecided
Barnes-Hut BSC StarSs Pending
Cholesky BSC

UCY
INRIA

StarSs
DDM
OpenStream

Available
Available
Available

Sparse LU BSC
INRIA
UCY
UNIMAN

StarSs
OpenStream
DDM
Scala +TM

Available
Available
Available
In progress

FFT2D BSC
INRIA

StarSs
OpenStream

Available
Available

SPECFEM3D BSC
UNIMAN

StarSs
Scala + TM

Available
In progress

N Queens BSC StarSs Available

Lee’s Routing
(Labyrinth)

UNIMAN
BSC
INRIA
UNIMAN + UCY

Scala +TM
StarSs
OpenStream
DDM + TM

Available
Available
In progress
In progress

Kmeans UNIMAN
BSC

Scala + TM
StarSs

In progress
Available

Ssca2 UNIMAN Scala + TM In progress
STAMP – Vacation INRIA OpenStream In progress
FFT 1D INRIA OpenStream Available
Fmradio INRIA OpenStream Available

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 9 of 27

802.11a INRIA OpenStream In progress
SimDiasca INRIA OpenStream,

Sync
Cancelled

Picture-in-picture INRIA OpenStream,
Sync

In progress

Ad-hoc software
radio

INRIA OpenStream,
Sync

In progress

Conv2d UCY DDM Available

IDCT UCY DDM Available

Trapez UCY DDM Available
Graph 500 BSC

UD
StarSs
Codelet

Available
Pending

Flux
(object tracking)

BSC StarSs Available

GROMACS BSC StarSs Available

PEPC BSC StarSs Available

WRF BSC StarSs Available
STAP (Radar) Thales

BSC
INRIA

Seq. code
StarSs

Available
In progress
Pending

Viola & Jones
(Pedestrian
detection)

THALES
INRIA

Seq. code
OpenStream

Available
In progress
Pending

HPL Linpack BSC StarSs Available

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 10 of 27

3 Interoperability between programming models:
OpenStream and StarSs (INRIA, BSC)

The OpenStream language (a data-flow streaming extension of OpenMP) is the main entry point to
the TERAFLUX compiler. Applications written in the efficiency languages of the project have to be
either written directly in OpenStream, or translated source-to-source, or manually adapted to fit the
dedicated programming model: pragma syntax, and streams of the language. In particular, this
translation is needed for StarSs, HMPP, and TFLUX applications.

In this deliverable, we propose a systematic methodology to express the array region semantics of
StarSs, and translate it using a dedicated dependence resolver to streaming synchronizations. This
methodology can be automated [2]. One of the design requirements of OpenStream was indeed to
support all the efficiency programming models of the project without significant overhead. The
automation of this translation is possible, and it will be implemented in the fourth year of the project,
in collaboration between BSC and INRIA. More examples from the HMPP and TFLUX programming
models will also be provided in the future.

While OpenStream makes the task-to-task dependences and communications through a dedicated
stream object explicit, StarSs describes the memory accesses of each task, from which inter-task
dependences are inferred. Dependences are much more implicit in StarSs than in OpenStream. In
addition, StarSs accesses are specified with dynamic array regions, providing a lot of flexibility to
programmers and an incremental path to parallelize existing programs. The price for this rich, implicit
dependence abstraction is paid through the need for a sophisticated runtime algorithm. A runtime
dependence resolver detects the effective overlaps between the memory accesses of different task
instances and the ordering constraints deriving from the task creation order.

The StarSs clauses of the task directive allow specifying three types of accesses (read, write or
read/write) taking a list of parameters that define the memory regions where accesses occur. The
parameters of these clauses are of the form A[lo1:up1][lo2:up2], which means that memory
accesses occur within the region delimited by the lower and upper bounds (both inclusive) on each
dimension of array A.

To better understand how the StarSs programming model works, let us study the Gauss-Seidel kernel
implemented in StarSs, together with a graphical representation of the regions described by the StarSs
annotations and the data dependences present in this code (Figure 1).

This important kernel performs a heat transfer simulation over a rectangular plane, computing a 5-
point stencil over a tiled array, data.

The task annotation uses five access regions on array data, one in read/write mode, using the inout

clause, and four in read mode, using the input clause. The read/write region corresponds to the body
of the tile, represented in yellow in the graphical representation on Figure 1, while the read regions
correspond to the accesses that overlap neighboring tiles, in green. The semicolon notation defines a
region as a starting index and a length: data[i-1;1][j:j+B-1] represents a region one element

wide at index i-1 on one dimension and spanning between j and j+B-1 on the other dimension.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 11 of 27

The dynamic dependence resolution uses the declared access regions and evaluates possible overlaps
between regions to provide the set of dependences that need to be enforced to preserve the semantics
of the program. In order to efficiently compute these overlaps, the dependence resolver relies on a
linearized representation of memory regions based on the actual addresses of elements that belong to
the region. The representation consists of a number in base 3, where each digit is encoded as 0, 1 or X.
The length of the region representation depends on the binary width of the architecture. The intuition
here is that an address belongs to a region if and only if each digit of the address; binary
representation is either equal to the corresponding digit in the region's representation or the region's
digit is X.

The key property is that the runtime implementation of this dependence resolver provides precise
dependence information at the region level. This information enables the compilation-time translation
of StarSs directives to OpenStream directives. In other words, OpenStream constructs can be used to
capture the dependences between tasks working on shared data, using the dependence information
provided by the StarSs resolver. We will show that such an embedding can be implemented at
compilation time, generating the adequate synchronizations with data-flow streaming constructs. Our
choice of the translation of StarSs directives, to showcase the expressiveness of our programming
language, was primarily motivated by the closeness of StarSs annotations and programming style with
OpenMP, which makes this translation easier to understand. However, this process applies more
generally to any higher-level language (HLL) for parallel-programming that handles dynamic
dependences between tasks, including HMPP and TFLUX.

Figure 1 Gauss-Seidel kernel implementation in StarSs and its graphical representation

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 12 of 27

The result of the OpenStream translation for the Gauss-Seidel kernel is provided on Figure 2.

Interestingly, this translation is much simpler than one would anticipate given the semantic gap
between dynamic array regions and data-flow streams. Since it has not yet been implemented, we only
provide a limited coverage of StarSs applications adapted to the OpenStream language and
programming model. These can be found in the examples directory of the OpenStream repository.
[3].

The applications ported to OpenStream in WP2 have been packaged as stand-alone benchmarks with
multiple data sets and autotuning scripts to facilitate the adaptation of the grain of parallelism to the
target. The current list of distributed OpenStream programs is:

• cholesky,
• fmradio,
• seidel,
• fft-1d,
• jacobi,
• strassen,
• fibo,
• knapsack,
• matmul,
• bzip2 (SPEC CPU 2000),

• ferret (PARSEC).

For some of these programs, multiple versions are provided, to compare data-flow-style, Cilk/join-
style, and barrier-style implementations.

Figure 2 OpenStream implementation of the Gauss-Seidel kernel

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 13 of 27

4 Application porting

4.1 DFScala and MUTS (UNIMAN)

4.1.1 Applications
Over the course of the past year we have increased our set of benchmarks built on top of the dataflow
library (DFScala [4] [5]) and the transactional memory library (MUTS [6] [7] [8]) constructed in work
package 3. This set now includes the following standalone benchmarks:

• Matrix Multiplication
• Monte Carlo Tree Search for Artificial Intelligent (AI)

• Knapsack

Matrix Multiplication benchmark performs block wise multiplication of arbitrary sized matrices.

0-1 Knapsack is an optimisation problem requiring items to be picked from a bag such that their
weight does not exceed a given amount while maximising the overall value of the items picked. This
benchmark solves the problem through the use of dynamic programming.

Monte-Carlo Tree Search is a randomised technique used to search a state space for a best guess at
an optimum solution. It is used in situations where searching exhaustively is too costly. In this
instance it is used by a computer player to look for moves in a game of Go.

These complement our existing set of standalone benchmarks, the complete set is now:

• Genome
• K-Means
• Labyrinth/Lee (various versions)
• Matrix Multiplication
• Monte Carlo Tree Search for AI
• Vacation

• Knapsack

In addition to these standalone benchmarks we have started with the implementations of Google’s
MapReduce [9] and Pregel [10] frameworks. This is an ongoing activity for which we will provide
more information next year.

Finally we have constructed a set of benchmarks that can be run directly on the simulated hardware to
test cache properties. These are:

• Labyrinth/Lee
• Matrix Multiplication
• Motion Estimation via Iterative Refinement of 3D images

• Shared Brother Son Index searching

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 14 of 27

4.1.2 Performance results
While the benchmarks constructed on the MapReduce and Pregel frameworks still require attention to
produce representative results, we are able to present results generated for K-Means, Matrix
Multiplication, Monte Carlo Tree Search for AI (see in legend as Go) and 0-1 Knapsack. These results
were presented at Data-Flow Execution Models for Extreme Scale Computing (DFM 2012) [4]. These
benchmarks were run on a machine supporting dual 6 core 2.2 GHz AMD Opteron processors and
32GB of RAM. They were run using Scala 2.9 on Hot Spot Java 1.6 virtual machine (build 20.1-b02,
mixed mode) supporting a 4GB heap.

Figure 3 Scalability of applications ported to Scala-based programming models

4.2 Lee routing algorithm porting to StarSs (BSC)

4.2.1 Task identification with Tareador
Tareador is a framework that helps programmers estimate parallelism gain from particular
taskification scheme that can be achieved using a task-based programming model. The tools based in
Valgrind, executes the application with code blocks and functions potentially marked by the
programmer as tasks, records the execution and analyses data accesses in the tasks to derive data-
dependencies between them. It allows further analysis of the execution of the application by
generating task-dependency graph and Dimemas trace files that feed the Dimemas simulator, being
able to derive possible parallel executions of the application based on the data dependencies among
the tasks.

The whole process on the Tareador environment is done in the following steps:

1. The applications are executed following an in-order execution of the tasks of their
instantiation;

2. The framework intercepts tasks’ memory accesses;
3. Tareador identifies dependencies between executed tasks;
4. Tareador collects information about tasks’ dependencies and generate a task graph and trace

files that can be used to simulate their parallel execution.

The execution process is based on the tool chain consisting of the following components:

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 15 of 27

1. Tareador takes an input code and passes it to Mercurium source-to-source translator. The
input code uses compiler directives to mark the potential tasks. Mercurium translates the
annotations into calls to Tareador hooks.

2. When translated code is being executed, a Valgrind-based tool is used. The tool intercepts
calls to Tareador hooks to track the order in which tasks are being executed. It also tracks
memory accesses to identify data dependencies among tasks. Based on the collected
information the tool creates a trace file of the tasks and data dependencies among them.

3. Traces generated in previous step are processed by Dimemas simulator to generate a
prediction of the behavior of the application when run with a given number of threads. The
predicted trace file can be visualized and analyzed with Paraver.

In the next sections, we describe how we used Tareador to find possible parallelism in the OmpSs
implementation of the Lee routing algorithm.

4.2.2 Lee-routing algorithm: a divide and conquer implementation
The starting code that is being used for developing the application is Labyrinth, an application from
the STAMP benchmark suite. It implements the parallel Lee routing algorithm using transactional
memory. For our implementation we choose a divide-and-conquer version of the algorithm.

The main data structure in the computation is performed on a three-dimensional grid. In our
implementation, for the sake of simplicity, we use a two-dimensional grid whose height and width are
equal and are power of 2. In the divide phase, the grid is recursively divided into two subgrids. The
division continues until the size of a grid to be divided is one (1x1). In the conquer phase, a list of
pairs of path endpoints are taken as input. For each of the paths, the computation is divided into two
subphases: expansion and traceback. During expansion subphase, a path between each endpoint is
searched. In the traceback phase, the final path is marked.

There are two main data structures: grid and path_grid_list. In our implementation grid is represented
as a pointer. path_grid_list is a list of pairs of endpoints for which expansion was successful.

4.2.3 Analysis of the implementation
In this section we will analyze two implementations of the algorithm that emerged one after another in
the process of applying gradual improvements. A first attempt implements expansion and traceback
as a single coarse-grained task. In the second attempt, expansion and traceback have been separated
into two tasks. The analysis focuses mainly on potential parallelism and data dependencies among
tasks.

For this analysis we used Tareador. The information collected by the framework allowed us to
identify points to improve in first invocation of the algorithm and validate the applications of these
improvements in second attempt.

Analyses were made for a grid of size 128 points wide and 128 points high for 128 paths to route. The
applications were run for 8 threads.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 16 of 27

4.2.3.1 First attempt: expansion and traceback as single coarse-grained
task

We start with an implementation in which expansion and traceback are implemented as single OmpSs
task. The pseudocode in lines 10-20 from Figure 8 can be replaced with the one from Figure 4.

Here, we have single task that encapsulates both expansion and traceback actions that are performed
sequentially. In our implementation there are two data structures shared among tasks: grid that, is
updated in conquer phase with points forming a path, and a list containing successfully routed paths.
In our implementation the access to these data structure is synchronized by Nanos++ runtime system
that resolves dependencies among tasks.

The Paraver view on Figure 5 shows the dependencies among tasks.

As it is shown on the Figure 5 tasks compute paths are depicted with red color and described as
compute_paths; tasks expand traceback are marked with purple and described as

expand_traceback. Yellow lines depict dependencies between tasks. Each single instance of task

compute_paths has dependencies with each single instance of task expand_traceback that

has been spawned by it, and with its children: two subtasks compute_paths. As it has been already

1. #pragma omp task input (my_work_list) inout (grid)
2. for((src, dest) <- my_work_list))
3. expansion_queue = allocate_queue
4. local_grid = copy_grid(grid)
5. if(expand(local_grid, expansion_queue, src, dest))
6. path = traceback(grid, src, dest)
7. if(not_empty?(path))
8. update(grid, path)

Figure 4 Expansion and traceback as a coarse-grained OmpSs task

Figure 5 Paraver visualization with information about tasks’ dependencies

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 17 of 27

mentioned these dependencies are created by two data structures shared among tasks: instance of grid
and a list of found paths successfully routed, the data structure further used for verification.

The picture on Figure 6 shows Paraver trace file with the execution of tasks simulated by Dimemas. It
shows the potential parallelism the programmer can get using this implementation. The conclusion is
that there is not much potential parallelism lying in this implementation. expand_traceback tasks
are coarse-grained tasks. Although they vary in duration of their execution, the full program execution
is dominated by few tasks that have the higher number of paths to route.

These same conclusions can be drawn from the real execution trace files reflected in the Paraver trace
file shown on Figure 7.

We can see again that the execution of the application is dominated by coarse-grained tasks that
perform traceback and expansion (here depicted with white color). Although many of them run in
parallel, execution of the biggest tasks (those with many paths to route) is in fact sequential and does
not improve scalability of the algorithm.

Figure 6. Simulated execution of tasks.

Figure 7. Real execution of the application.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 18 of 27

4.2.3.2 Second attempt: expansion and traceback as separate tasks
Based on the analysis presented in previous section, we decided to divide expand and traceback into
two more fine-grained tasks. This led us to implementation shown on pseudocode on Figure 8.

In the divide phase, the recursive nested task router_grid_task task creates two subtasks by dividing
the grid into two subgrids. The division continues until the size of a grid to be divided is one (1x1). In
the conquer phase, the tasks created at divide phase perform a computation on each of the subgrids in
two different tasks: expansion and traceback. The problem stated in this way forms a perfectly
balanced binary tree with partial solutions represented by nodes.

The router_grid_task takes as input a list of pairs of path endpoints. The pairs are divided into three
sets: one for each of the endpoints of paths lying entirely inside one of two subgrids and another one
for the endpoints that pass the boundaries of both subgrids.

The computation of the paths is divided into two subphases: expansion and traceback. During
expansion subphase, an expansion task is created for each pair of endpoints. Traceback is
implemented as a single task that iterates over the list of pairs of endpoints for which expansion was
successful.

There are two data structures that are shared among tasks: grid and path_grid_list. In our

implementation grid is represented as a pointer that is passed from parent task to its children. At

divide phase grid is read and in conquer phase it is both read (in expansion phase its content is
copied to a local grid; this local grid is then used by task to mark the results of expansion) and
updated with points that form a path. We use OmpSs directionality marks that are part of pragma
statements, to indicate synchronized access to this data structure.

path_grid_list is a list of pairs of endpoints for which expansion was successful. It is shared
among tasks that perform expansion and a task that runs traceback. Update is done by each task
during expansion phase. In our implementation it is performed inside the critical section. We use
OpenMP critical pragma to mark the code as critical section. If we were to use only OmpSs
pragma, tasks that perform expansion would be executed sequentially.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 19 of 27

Graph on Figure 9 is a Paraver tracefile showing dependencies among tasks.

There is high number of dependencies among expand tasks (here depicted as single_expand).
The dependencies are defined by a list that stores endpoint pairs for which expansion ended
successfully (on pseudocode on Figure 8 this data structure is called path_grid_list). This data
structure is read and updated by each instance of the task. Dimemas recognizes these dependencies
and reports a possible scheduling scheme of the tasks with respect to this dependency. In our
implementation the dependency can be relaxed by using OmpSs concurrent clause in the compiler

directive of the task. Access to the list is synchronized using OpenMP critical statement.

Figure 9 Dependency graph of tasks

1. #pragma omp task inout (grid) input (work_list)
2. // Compute paths
3. def router_task(grid, work_list) =
4. (subgrid_1, subgrid_2) = halve(grid)
5. (work_sublist_1, work_sublist_2, my_work_list) = assign_paths(work_list)
6. if(size(subgrid_1) > 1 and not_empty?(work_sublist_1))
7. router_task(subgrid_1, work_sublist_1)
8. if(size(subgrid_2) > 1 and not_empty?(work_sublist_2))
9. router_task(subgrid_2, work_sublist_2)
10. path_grid_list = allocate_list
11. for((src, dest) <- my_work_list))
12. expansion_queue = allocate_queue
13. local_grid = copy_grid(grid)
14. #pragma omp task concurrent (path_grid_list) input (grid)
15. //expand
16. if(expand(local_grid, expansion_queue, src, dest))
17. list_insert(path_grid_list, (src, dest))
18. #pragma omp task inout(grid) input (path_grid_list)
19. //traceback
20. for((src, dest) <- path_grid_list)
21. path = traceback(grid, src, dest)

Figure 8 Lee routing algorithm using OmpSs parallel programming model

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 20 of 27

Figure 10 shows the simulated parallel execution of the application. We can see that our effort has led
to generation of much smaller tasks which might lead to exposing more parallelism in a real
execution.

Figure 11 shows the real parallel execution of the application.

The executed implementation contains fine-grained expand tasks (here shown as single_expand)
and relaxed dependency tracking for list storing paths with successful expansion
(path_grid_list). The observations that have been drawn based on analysis of Tareador-
generated Paraver traces are reflected in the execution. Although, as it was a case in previous
incarnations of the algorithm, execution of the application is dominated by expansion tasks, they run
in parallel; threads are not idling waiting for tasks to be scheduled (we can see this happening in
previous version of the algorithm on Figure 7). It is also visible that implementing synchronized
accesses to the list of expanded paths contributes to the improvement: expansion is performed on a
local copy of the original grid by each task and can be safely performed in parallel; the only piece of
code that requires synchronization during expansion is insertion of the endpoint pair to the back of the
list; expansion is much more costly than list insertion.

Figure 10 Simulated execution of the application

Figure 11 Real execution of the application

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 21 of 27

4.3 Graph500 implementation in StarSs
The Graph500 benchmark1 evaluates machine performance while running data-intensive analytic
applications and is a measure of the machine’s communications capabilities and computational power.
This section briefly reports its porting to StarSs. The benchmark performs the following steps:

1. Generate the edge list: The data generator constructs a list of edge tuples containing vertex
identifiers. They are of the form <Startvertex, Endvertex>

2. Construct a graph from the edge list. From these edge tuples, a graph is constructed. It also
assigns a weight to each edge representing the cost of traversing this edge.

3. Randomly sample 64 unique search keys with degree at least one. For every search key,
generate a BFS graph depending with the search key as the source vertex.

4. For each search key:
• Compute the parent array.
• This array contains a valid BFS parent for every vertex. The parent of the search key

is itself. The parent of isolated vertices's are marked as -1.
• Validate that the parent array is a correct BFS search tree for the given search tree.

5. Compute and output performance information

Steps where the benchmark has been taskified.
1. Generating the edge The edge-tuples have been generated in parallel. This part of the

benchmark is embarrassingly parallel. The graph generator is a Kronecker generator similar to
Recursive Matrix (R-MAT) scale free graph generation algorithm.

2. The BFS of a graph starts with a single source vertex, finds its neighbors and then neighbors
of its neighbors and so on, until all the nodes that can be reached from the source vertex have
been marked as visited.

• A BFS loop-iteration which explores the unvisited nodes encountered in previous
iteration has been taskified. Initially a single task was generated for every unvisited
node. But in such a case the tasks were very small. Hence the code has been modified
to explore multiple nodes in a single task. In every iteration the number of tasks
spawned vary, depending on the number of unvisited nodes encountered in previous
iteration. At the end of every iteration a check is made to determine whether the
algorithm has terminated or not. Basically the algorithm terminates if no unvisited
nodes have been encountered in the previous iteration. Before making this check a
wait has to be performed, so that the tasks in this iteration have terminated.

• In order to avoid this wait, the speculation clause has been used (see deliverable
D3.4). The main thread speculates that the next iteration will be executed and spawns
more tasks instead of waiting for the tasks from the previous iteration to finish
execution. Initial results to this benchmarks with task speculation is presented in
deliverable D3.4.

Initial experiments with Graph500 were performed on COTSon and reported in D2.2 and D3.4.

1 http://www.graph500.org

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 22 of 27

4.4 Pedestrian Detection Implementation
In deliverable D2.2 Thales characterized the Pedestrian Detection application providing an acyclic
dataflow graph and the associated control flow graph. While being a dataflow application, this
application has proven not to be a classical pipeline-shaped application as shown on the control flow
graph presented in Figure 12. Thanks to our internal co-design environment, SpearDE, we identified
four different parallelization axis including scale axis, image tile axis, filter axis and classification
stage axis.

Figure 12 Pedestrian Detection control-flow graph

Each of these parallelization axes has been furthermore characterized considering the implication on
the implementation, including computation and communication overhead.

The classical implementation of this Pedestrian Detection algorithm consist into a Cascading
algorithm presented in Figure 13, where parts of the original image are consecutively discarded has
they are proven not to contain any pedestrian.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 23 of 27

Figure 13 - Cascading algorithm

The detection algorithm is applied to a single image that is scanned with tiles of different sizes, as a
pedestrian closer to the camera will appear bigger as a pedestrian more far away. For a given tile size,
the image is then scanned on a per-tile basis, the cascading classification algorithm being applied to
each tile, discarding non-matching tiles.

This cascading algorithm consists of applying various filters on those tiles resulting into a single value
to be compared to a threshold. If the value is below the threshold the tile is considered as not
containing a pedestrian, and therefore is eliminated from the list of tiles to consider. As a
consequence, further classification stages will not be run on these eliminated tiles.

The computation workload varies across this classification algorithm: The first stages of the algorithm
consist of applying very simple filters to nearly all the tiles composing the image only eliminating
obvious cases, whereas the last stages of the algorithm are applying very complex computation
consuming filters, but only to the few surviving tiles where a pedestrian is very likely to be.

At the end of the algorithm, the only surviving tiles are the one where pedestrians were detected.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 24 of 27

4.4.1 Evaluating parallelization schemes
To perform an efficient implementation of the above-mentioned algorithm on a many core
architecture, an efficient methodology would have been to start back from the specification and
propose a new parallelism aware algorithm that could be completely different from the original
sequential algorithm.

One of the focuses of Thales in this project is to evaluate the cost of porting existing applications in
accordance with the industry requirements concerning legacy software, validation and certification
concerns. Another focus is to evaluate models based on transactions for the wide brand of dataflow
applications Thales is involved into, such as radar, image processing, and avionics applications. As a
consequence, rather than developing a new parallel algorithm, we restricted ourselves to porting the
existing sequential algorithm, parallelizing it among the above mentioned parallelization axis: the
scale axis, the image tile axis, the filter axis and the classification stage axis.

Each of these axes has been studied relatively to the required implementation effort, the expected
speedup benefit, the extra communication costs, the extra data manipulations and the extra
computation costs.

4.4.1.1 Parallelizing across the scale (tile size) axis
Parallelizing across the scale axis has several advantages: First, as illustrated by Figure 13, there is no
communication required between the different scales (tile size). Therefore there is no data-
dependency that would reduce the benefits of parallelizing. Concerning communications, even though
the system has to deal with much more concurrent communications, the only extra communications
are about the original image, so the overhead should be kept minimal, and not impact the speedup
negatively. However the parallelism opportunity remains relatively low due to the few number of
different tile size, leading to massive under-utilization of the 1000 core architecture.

4.4.1.2 Parallelizing across the tile axis
Parallelizing across the tile axis corresponds to running the classification algorithm on all the tiles in
parallel at each classification stage. As there is no data dependency between tiles, we again have a
large parallelization opportunity that is only decreasing with the tile size (the original image is
composed of less larger tiles). However, there is a risk of communication flooding as all the tiles need
to be sent nearly synchronously to all the associated cores. This implementation is therefore massively
parallel, with a risk of the speedup being impaired by communication arbitration overhead.

4.4.1.3 Parallelizing across the filter axis
Parallelizing across the filter axis corresponds to running in parallel the different set of filters to be
applied at each classification stage on every image tile. As a consequence, data dependencies may
exist between successively applied filters, even though it is not necessarily the case (successive filters
may work on different dimensions of the input matrix data). However to send the corresponding data
between filter threads, some additional data manipulation (usually transposition) is required to
minimize the communication costs, and the benefits could be dampened by the fact that the filters
increase in complexity at the same time as the number of image tiles decreases: on early classification
stages, the filters are very simple and the benefits from parallelization will be far below the

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 25 of 27

communication costs and the extra data manipulations. On late classification stages, the filters are
becoming much more complex, but are applied to a very small set of surviving tiles, not providing a
wide parallelism opportunity. Therefore, due to the impact on dependency, data manipulation and
extra communication, this parallelization axis is not likely to benefits from the many core architecture.

4.4.1.4 Parallelizing across the cascading axis
Parallelizing across the cascading axis corresponds to running all the classification stage at once for a
particular image tile. Assuming an image tile could be discarded in the early classification stages, it
does mean that some extra computations are performed: the algorithm will run a late classification
stage on the image tile prior to knowing if this tile could achieve such a classification stage. This is
therefore a slight modification of the algorithm. However some benefits could be expected out of it:
First, as on the early parallelization schemes, there few data dependencies between the running
threads (each thread runs on a different tile). Second there is no extra communications (The algorithm
only carry on the computation on the current set of data even if it will be proven to be useless later).
The idea is to exploit the spatial aspect of the many-core architecture without flooding the architecture
with costly communications. Therefore an overhead should only appear if many of the tiles are
discarded in the early stages, which is not the typical case.

4.4.2 Evaluation and Testing
From previous evaluation of the different parallelization schemes, we decided to focus on the
evaluation of the two most promising version of the Pedestrian Detection application: the
“Parallelizing across the tile axis” and “Parallelizing across the cascading axis” versions.

The first version runs in a massively parallel mode at the cost of a large amount of communication, its
performance should therefore only be communication bounded. The second version exploits the
spatial aspect of the architecture at the cost of extra computation, its performance should therefore
only be computation bounded, but the large number of core should balance this aspect.

Implementation of both these version has been started on the Teraflux architecture, and evaluation
metrics will be provided in deliverable D2.4 due at M48.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 26 of 27

5 Conclusions
This deliverable reports on the status of the porting of the project applications to the project
programming models. During this year, there has been good progress in the porting of applications, as
it can be seen in section 2. The deliverable presents also research work performed in the project
towards the integration of project programming models. This integration will enable a complete
software stack between programming models and architecture. Additionally to experiences on porting
the applications, the deliverable presents the methodologies used in the porting.

Overall the WP has experienced good progress and the partners expect to finish timely the porting of
all applications.

Project: TERAFLUX - Exploiting dataflow parallelism in Teradevice Computing
Grant Agreement Number: 249013
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1)

Deliverable number: DX.Y
Deliverable name: Initial report on applications already ported to the new dataflow based
 programming model
File name: TERAFLUX-D23-v5 Page 27 of 27

References

[1] C. Christofi, G. Michael, P. Trancoso and P. Evripidou, "Exploring HPC Parallelism with Data-
Driven Multithreading," in DFM 2012, Minneapolis, 2012.

[2] A. Pop and A. Cohen, "OpenStream: Expressiveness and Data-Flow Compilation of OpenMP
Streaming Programs," ACM Transactions on Architecture and Code Optimization, January 2013.

[3] "OpenStream repository," [Online]. Available: http://www.di.ens.fr/StreamingOpenMP.

[4] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján and I. Watson, "DFScala: High
level dataflow support for Scala," in Second International Workshop on Data-Flow Models For
Extreme Scale Computing (DFM), 2012.

[5] "DFScala website," [Online]. Available: http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala/.

[6] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Luján and I. Watson, "Software transactional
memories for Scala," Journal of Parallel and Distributed Computing, no. in press DOI
http://dx.doi.org/10.1016/j.jpdc.2012.09.015, 2012.

[7] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Luján and I. Watson, "MUTS: Native Scala
Constructs for Software Transactional Memory," in Scala Days, 2011.

[8] "MUTS website," [Online]. Available: http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/.

[9] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," in
OSDI'04: Sixth Symposium on Operating System Design and Implementation, 2004.

[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser and G. Czajkowski,
"Pregel: a system for large-scale graph processing," in 2010 ACM SIGMOD International
Conference on Management of Data, 2010.

[11] Vladimir Subotic, Roger Ferrer, José Carlos Sancho, Jesús Labarta, Mateo Valero: Quantifying
the Potential Task-Based Dataflow Parallelism in MPI Applications. Euro-Par (1) 2011: 39-51

