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Executive Summary 
This document is the second deliverable of WP2, Benchmarks and Applications. The objective of this 
workpackage is to understand the runtime behavior of applications in order to establish a guideline in 
the design of the other components of the computing system in TERAFLUX. As TERAFLUX 
explores the design of highly parallel teradevice systems, a key step in the project is understanding the 
fundamental requirements of highly parallel applications and their implications on all layers of a 
computing system that supports a data-flow programming and execution model – from the 
programming model itself, down to extensions to commodity architecture. 

The deliverable describes the results of the second year of the project in task 2.2 and task 2.3 and also 
the results for milestone 2.2. The objective of milestone 2.2 was to define the set of benchmarks, 
kernels and applications that the partners commit to port to the project programming models. The 
outcome of this milestone is described in section 2; this Milestone has been successfully achieved in 
m18. In the elaboration of this list, the suggestions received from the reviewers (adding graph-based 
and Recognition, Mining, Synthesis (RMS) applications) and from the Scientific Advisory Board 
were taken into account.  

The activities performed in task 2.2 relate to the characterization of the applications. In the first year 
of the project, the different characterization methodologies to be used were defined and described in 
deliverable D2.1. This year, the partners have been performing the characterization of the project 
applications using these different methodologies. Section 3 presents a selection of the results obtained 
by the partners, using different methodologies.  

Finally, although the task 2.3 was meant to start in year three of the project, the partners have started 
this task since there was a need for applications to perform the characterization and as input for other 
WPs. Section 4 presents some of the results of these porting activities.  
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1 Introduction 
This is the second deliverable of WP2, Benchmarks and Applications. Understanding the runtime 
behaviour of applications is a crucial guideline in the design of computing systems, as they are the 
effective consumers of the underlying compute power. As TERAFLUX explores the design of highly 
parallel teradevice systems, a key step in the project is understanding the fundamental requirements of 
highly parallel applications and their implications on all layers of a computing system that supports a 
data-flow programming and execution model – from the programming model themselves, down to 
extensions to commodity architecture. This exploration includes: 

• Identify applications that can serve as reference applications for a programming model based 
on data-flow principles, and that can efficiently scale to utilize teradevice system. 

• Characterize the resource requirements of these highly parallel applications, in terms of 
memory usage, bandwidth, and latency. Identify the performance requirements from 
underlying interconnection network. These characteristics will assist the architectural 
exploration performed in WP6. 

• Uncover common data-flow and data-locality patterns implicit to the reference applications 
that can be disseminated into the programming model (WP3) as either data-flow or 
transactional semantics. 

• Port a few applications to the programming models chosen by WP3. The ported applications 
will be used by the other work packages to guide their proposed designs. 

• Extract the interesting patterns and data accesses and that will assist other work packages 
build sensible benchmarks that can test the proposed constructs in all domains: programming 
model (WP3), compilation platform (WP4), reliability (WP5) and architecture (WP6). 

 

1.1 Document structure 
The deliverable is organized as follows: this section introduces the deliverable and its structure, 
section 2 describes the list of applications and benchmarks that have been selected by the project in 
milestone 2.2 to be ported to the project programming models. Section 3 presents relevant results on 
the characterization of project applications using different characterization methodologies. Section 4 
presents results on porting applications to the project programming models, and finally section 5 
concludes the document.  

1.2 Relation to other deliverables 
Along the document there are references to deliverable D3.3. Also D2.1 presented metrics for TM that 
is not repeated again. 

1.3 Activities referred by this deliverable 
This deliverable refers to the activities performed in Task 2.2 during the second year of the project. 
Task 2.3 Porting applications to include new programming models was supposed to start in the third 
year of the project has already started since there was a need for initial benchmarks and applications 
to be used in the other WPs.   
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2 Identification of subset of the reference applications 
One of the milestones of the project, M2.2 Subset of the reference applications to be ported to the 
programming models defined in WP3, was due month 18 of the project. This section presents the 
agreement of the partners involved in WP2 Benchmarks and Applications on which benchmarks and 
applications will be ported to the project programming models. The table below lists the benchmarks 
and applications, the programming model to which will be ported and the partner responsible of this 
activity. 

The list was elaborated taking into account the list of reference applications selected in milestone 2.1 
and extending it with the recommendations from the reviewers to add graph-based and Recognition, 
Mining, Synthesis (RMS) applications.  

Benchmark Responsible partner Programming 
model  

Comments 

Matmul BSC 
INRIA 
UCY 
UNIMAN 

StarSs 
OMP + Sync 
DDM 
Scala + TM 

 

Radix Sort INRIA  OMP  
Lonestar - TBC INRIA OMP + Sync  
Barnes-Hut BSC StarSs  
Cholesky BSC 

UCY 
StarSs 
DDM 

 

Sparse LU BSC 
INRIA 
UCY 
UNIMAN 

StarSs 
OMP + Sync 
DDM 
Scala +TM 

 

FFT2D BSC 
INRIA 

StarSs 
OMP + Sync 

 

SPECFEM3D BSC 
UNIMAN 

StarSs 
Scala + TM 

 

N Queens BSC StarSs  

Lee’s Routing  
(Labyrinth)  

UNIMAN 
BSC 
INRIA 
UNIMAN + UCY 

Scala +TM 
StarSs 
OMP + Sync 
DDM + TM 

 

Kmeans UNIMAN 
BSC 

Scala + TM 
StarSs 

RMS (mining) 

Ssca2 UNIMAN Scala + TM Graph algorithm 
STAMP – TBC INRIA OMP + Sync  
FFT 1D INRIA OMP  
Fmradio INRIA OMP  
802.11a INRIA OMP  
SimDiasca INRIA Sync  
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Benchmark Responsible partner Programming 
model  

Comments 

Picture-in-picture INRIA Sync  

Ad-hoc software 
radio 

INRIA OMP + Sync  

Conv2d UCY DDM  

IDCT UCY DDM  

Trapez UCY DDM  
Graph 500 BSC StarSs Graph Algorithms 

 
Flux 
(object tracking) 

BSC StarSs RMS (recognition) 

Application Responsible partner Programming 
model  

 

GROMACS BSC StarSs RMS (Synthesis) 
 

PEPC BSC StarSs RMS (Synthesis) 
 

WRF BSC StarSs  
STAP (Radar) Thales 

BSC 
INRIA 

Seq. code 
StarSs 
OMP + Sync 

RMS (Recognition) 
 

Viola & Jones  
(Pedestrian 
detection) 

THALES 
INRIA 

Seq code 
OMP + Sync 

RMS (Recognition) 
 

HPL Linkpack BSC StarSs  

Table 1 List of project reference applications 

Remarks 

OMP = OpenMP with streaming data-flow and transactional extension 

Sync = Data-flow synchronous language with transactions  

RMS = Recognition, Mining, Synthesis 

Other plans 

The consortium plans to choose one/two applications in StarSs in order to port some kernels to lower 
data-flow language (i.e. DDM). 

LINPACK and GRAPH 500 
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Between the list of applications, we propose to enrich the TERAFLUX application list with two 
“single figure” benchmarks: 
 
- LINPACK (HPL-2.0) - used in top500.org 
- GRAPH 500 - newly introduced [3] for several programming models (including MPI, OMP, etc.). 
 
Brief Introduction to LINPACK (HPL-2.0)  
 
LINPACK [1] is employed to determine performance for ranking supercomputers in TOP500 [2]. 
TOP500 lists the world´s fastest computers. LINPACK is a software library that uses Basic Linear 
Algebra Subprograms (BLAS) libraries for performing basic vector and matrix operations.  
The High Performance LINPACK benchmark (HPL-2.0) solves an N2 linear equation system. This 
benchmark is executed with increasing matrix sizes (N) with the purpose of searching for the size 
Nmax for which the maximum performance Rmax is attained. Rmax represents the floating point 
operations per second to solve the above linear system. Another measured point is when half of the 
performance (Rmax/2) is accomplished – the corresponding N is called N1/2.  
 
In the experiments carried out at UNISI, the simulated machine (provided by the COTSon simulator – 
see D7.1, D7.2) consists of a master node (in TERAFLUX called service node), which is the node that 
runs the operating system, and 1024 auxiliary cores (64 nodes of 16 cores). Currently, we are able to 
run LINPACK (HPL-2.0) experiment with MPI and the highest value we got is Rmax 2.0 GFLOPs (in 
such case: Nmax =4000, simulated time=21.04). However, we still need to carry out more extensive 
experiments. 
 
Brief Introduction to GRAPH 500 
 
The main purpose of Graph 500 [3] is to help guide the design of software systems and hardware 
architectures, because graph algorithms are a core part of many analytics workloads. The Graph 500 
aims to cover kernels common in domains like optimization (single source shortest path), concurrent 
search, and edge-oriented (maximal independent set). In the future, other graph-related computer 
industry areas will be covered like Medical Informatics, Data Enrichment, Cyber security, Social 
Networks, and Symbolic Networks.  
The benchmark consists of two stages: first a synthetic graph is generated and then some searches are 
performed on it. The number of the Traversed Edges Per Second (TEPS) is accounted and presented 
at the end for the given problem size (also called ‘scale’), defined as the logarithm base two of the 
number of vertices. 
 
In the experiments carried out at UNISI, we executed the Graph 500 in the same simulated machine 
that we used for LINPACK (1 service node, which runs the Operating System, and 1024 auxiliary 
cores). The executed command is: mpiexec.hydra –np <X> ./graph_mpi_simple <Y>, where X = 1, 
2, 4, 8, 16, 32, and 64; where X represents number of processes for the MPI launcher. Y represents the 
scale of the problem for the Graph-500. The highest value we obtained is 17 Million TEPS (for X=1, 
Y=1). However, also in this case, we still need to carry out more extensive experiments. 
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3 Applications characterization 
This section presents results on applications characterization. Different characterization 
methodologies have been used; a description of these characterization methodologies can be found in 
deliverable D2.1.  

3.1 Analytic characterization (Thales) 
For the purpose of analysing the STAP and the Pedestrian Detection applications, Thales used an 
internal co-design environment called SpearDE.  This environment allows for dataflow applications 
characterization in view of their parallelisation and code generation for heterogeneous distributed 
(embedded) architectures, by exposing relevant features both in the application and the computing 
architecture models.  
 
SpearDE workflow for application characterization and modelling: The applications are modelled 
as a dataflow graph based on the graphical interface of PtolemyII, but following a specific multi-
dimensional synchronous dataflow-like model of computation based on the ArrayOL formalism.  
Along with the application graph SpearDE, enables the modeling of different heterogeneous parallel 
architectures via a structural view (processing units/elements, memory layout, communication paths) 
as well as a performance view (such as time behavioral models of the architecture elements) of the 
architecture. 
Based on these two models a mapping strategy can be defined, addressing both task-level and data-
level parallelism. The tedious operations linked to mapping, which are also error prone when done 
manually, such as data transfers, data reordering or model consistency in general, are handled by the 
SpearDE tool. These are intrinsically linked to the target hardware and different for each 
configuration regardless the fact that the application model might be the same. SpearDE generates a 
valid scheduling, including software pipelining for the mapped application, as well as the involved 
static memory layout. This leads to rapid performance simulation on the given platform and therefore 
allows the user to iteratively choose the best design according to the imposed constraints. Finally, 
code generation is performed using back-end, processor-specific compilers. 
 
Application Analysis: The first step consists in describing the dataflow application as an acyclic 
graph whose nodes are statically affine nests of loops to be executed over some Elementary 
Transform (ET), whereas the edges represent the input-output flow as multi-dimensional arrays of 
data. Each ET is described as a C-code kernel usually operating onto a subset of the input data, and 
which will need to be repeated by the node until the entire input array has been consumed. SpearDE 
computes dynamically the needed loop bounds, provided the dimensions of the input data are known 
(non-parametric).   
 
This graphical representation highlights several axes of parallelism already at functional level before 
even considering a given parallel platform. Task parallelism becomes obvious when considering 
different branches in this graph and data parallelism is highlighted inside each node through the 
external loops to be executed. 
At this point, despite the fact that this application representation is architecture agnostic, thanks to the 
information describing an elementary operation, data sizes are computed by the tool on the fly, this 
giving a preliminary estimation of throughput and computational load.  
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This information will be later used in SpearDE to prepare the user-assisted architectural mapping 
phase, to automatically generate the communications allowing to transfer data between processing 
elements, or to automatically fuse several elementary tasks together to reduce the communication 
overhead. 
 
Communications and the Transposition problem: For image and signal processing applications, 
the dataflow usually consists of multidimensional arrays, whereas the ETs consist of various filters, 
thresholds, etc. to be applied to some dimensions of this multi-dimensional data independently.  
However an Elementary Operation makes no assumptions on the data organization applying itself 
systematically to the first dimension(s) of the input data. Therefore data reorganisation (e.g. matrix 
transpose) might be necessary prior to executing one node in the graph, which usually translates into 
an inserted communication (e.g. in architectures with distributed memory). To avoid extra 
communication costs, those transpositions are performed alongside with the communications between 
processing elements in the architecture, trying both to maximize data-locality and to minimize 
memory occupancy. 
 
In order to test the functional validity of the application graph, sequential, executable C code can be 
generated for comparison with reference implementation results if any or for functional debug. 
 
From this Application Analysis phase, the Teraflux project will take benefits from the data-flow 
description of the application, the associated estimated throughput, and from the sequential version of 
the application to validate against. 
Within the Teraflux project, we will first consider those transpositions as extra elementary operations, 
allowing to directly use the Teraflux communication model at the cost of extra communications. In a 
second step we will consider embedding those transpositions into the communication scheme to 
reduce the communications and benefits from better data locality as presented above. 
 
Pedestrian detection application 
For the pedestrian detection application characterized in D1.1 the dataflow graph contains the nodes: 

1. GrabOneFrame – reads image data  
2. Integral_rows – computes the Integral Image on the row dimension 
3. Integral_col – uses the results of the above task to accumulate the results on the column 

dimension, thus yielding the Integral Image at the end 
4. ImgDotSquare – computes the pixel-wise square image, needed for the computation of a 

normalization factor.  
5. normFactors – computes the variance of each image window, using integral images of the 

original image and the pixel-wise square image.  
6. GrabFeatures – reads the rectangle-features at each stage in the cascade, along with their 

associated thresholds and classifier decision parameters, a and b.  
7. ScaleFeatures – computes the new coordinates of the rectangles according to the actual scale 
8. GrabThresholds – reads the stage thresholds into an array.  
9. Detect – is the main task applying the detection cascade on all windows in an image at a 

given scale.  
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Parallelisation: This application is interesting because it exhibits several axes for parallelisation 
according to the scales, the image tiles as well as the stage filters in the classifier cascade. The 
SpearDE characterization immediately highlights the latter two in the corresponding nodes of the 
graph, for instance tile parallelism in Figure 1. 
 
 
 
 

 

Figure 1 Detail of one task in the application graph for image tiles of 60x60 pixels. 42x101 computations ca be done in 
parallel in order to use the entire input image. 

Then the parallelisation of the application onto a multi-cluster architecture can be done as in the 
example below.  
 

 

Figure 2 Pedestrian detection mapping onto a parallel architecture 

 
Figure 2 shows in the left-hand side the allocation of tasks onto processing elements (the different 
colours represent so-called segments and each segment executes a subset of the application graph onto 
a subset of the architecture). The right-hand side show the result (i.e. mapped application) obtained 
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when allocation is complete for the entire graph. The lower side represents the detail of one node in 
the graph in which an extra-dimension related to the architecture has been added after mapping 
(Arch0). Here Arch0 contains two processing elements which will function in SIMD fashion onto half 
of the input data each. 
 
The global control-flow graph for this application, as given in Figure 3, shows the previously 
mentioned parallelism axes. Note that in this algorithm there is a trade-off to be done between 
parallelising at filter level or at image tile level. The number of filters to apply is much smaller at 
early stages in the classifier cascade than at the last stages, while the number of image tiles is rapidly 
decreasing with the stage index.  

 

Figure 3 Pedestrian detection control-flow graph 

 
A possible parallelization option is to use the image tile axis at the beginning of the classifying 
cascade and the filter level axis at the end of the cascade. The same applies for the scale axis.  
 
According to the number of image tiles at a given scale, another option would be change the 
algorithm into applying the entire cascade on all image tiles without updating the position list at 
intermediate steps. This introduces another axis of parallelisation given by the stages in the cascade 
that can be applied in parallel. The extra computation might be compensated by the parallel 
processing power of the chosen architecture.  
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3.2 Characterizing the Memory Requirements of MPI applications 
(BSC)  

In this work, presented in [4], we characterize the memory behavior of several well-known parallel 
scientific applications. We project the performance required from the memory system, to adequately 
serve large-scale CMPs, in terms of memory size, memory bandwidth and cache size. 

We base our predictions on the per-CPU memory requirements of distributed memory MPI 
applications. Although this methodology is imperfect (data may be replicated between nodes, which 
may result in pessimistic predictions when addressing shared-memory environments), we believe it 
provides a good indication of the requirements from a CMP memory system. 

We base our analysis on a set of four applications, chosen to represent the dominant scientific 
domains in the supercomputing centers surveyed. More importantly, the analysis showed that each of 
the selected applications stress different aspects of the memory system. The selected applications 
include: 

• GADGET (GAlaxies with Dark matter and Gas intEracT). A code for cosmological 
simulations of structure formation. It computes gravitational forces with a hierarchical tree 
algorithm, optionally in combination with a particle-mesh scheme for long-range gravitational 
forces. It is one of the most often used applications, representing the area of astronomy and 
cosmology. From the four applications that we used, GADGET had the highest requirements 
of memory size. 

• MILC (MIMD Lattice Computation). A set of codes for doing simulations of four-
dimensional SU(3) lattice gauge theory, represents the area of particle physics, and in our 
analysis had the highest requirements of memory bandwidth. 

• WRF (Weather Research and Forecasting). A next-generation mesoscale numerical weather 
prediction system designed to serve both operational forecasting and atmospheric research 
needs. It is a well-known DEISA benchmark from the area of earth and climate. In our 
analysis, it is characterized as the application that is bound by the system’s computational 
resources. 

• SOCORRO — self-consistent electronic-structure calculations utilizing the Kohn-Sham 
formulation of density-functional theory. Calculations are performed using a plane wave basis 
and either norm-conserving pseudopotentials or projector augmented wave functions. This 
application mostly stresses the memory bandwidth. 

Each of the applications was executed on 16, 32, 64 and 128 processors, with the exception of 
GADGET — whose memory footprint could not fit on 16 MareNostrum blades. The input sets in all 
of the analyzed applications remained unchanged while scaling the number of processors. 
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The total memory footprint is calculated as the number of processors multiplied by the maximum per-
processor footprint. In case that the memory system does not satisfy the maximum footprint 
requirements of a given application, it would crash when left out of memory space. Our experiments 
show that doubling the number of processors does not halve the size of the per-processor memory 
footprint. For both WRF and SOCORRO, doubling the number of processors only reduces the per-
processor memory footprint by 20-40%. Scaling is somewhat better for GADGET, for which scaling 
from 32 to 64 processors reduces the per-processor footprint by 45%, while scaling further to 128 
processors reduces the footprint by only 30% more. Scaling for MILC is very good, as footprint 
reduction is very close to 50%. Our projections show that future manycores consisting of more than 
100 cores must be directly backed with a few dozen GBs of main memory in order to support 
scientific workloads.  

In order to predict memory bandwidth 
requirements, we measured the per-
processor bandwidth consumed by each 
benchmark at three levels: the off-chip 
memory, L2 cache, and L1 cache. Total 
bandwidth is calculated as the average per-
processor bandwidth multiplied by the 
number of processors. Our projections show 
that future manycore systems consisting of 
more than 100 cores may easily require 

more than 100 GB/s of main memory bandwidth. Modern architectures such as Intel Nehalem-EX or 
IBM Power7 employ 4 and 8 DDR3 channels respectively, peaking at 102.4 GB/s of bandwidth. 
Knowing that the sustained bandwidth is typically 20%–25% lower due to page and bank conflicts, 
we conclude that such large-scale systems will need to provide higher bandwidth to support high-
performance scientific computing. 

The cycles per instruction (CPI) metric is defined as the average number of processor cycles needed 
to complete one instruction. For any execution segment, it is calculated as a total of elapsed cycles 
divided by the number of completed instructions. A low CPI value means that the system resources 
are better utilized, and the architecture operates closer to its peak performance. 

The CPI stack model, which is the breakdown of CPI value to the individual latencies contributed by 
different micro-architectural resources, can therefore be used to determine the key factors that impede 
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performance. Each component in the stack describes the average number of cycles an instruction 
stalled on a particular core resource (like Load/Store unit, or Floating Point unit). 

 

GADGET’s most obvious CPI stack patterns are significant fluctuations of the overall CPI value, 
revealing three periodic iterations. Parts of each iteration with low FPU usage have an overall high 
CPI value, whereas parts with high FPU usage have low CPI value. When correlating this with the 
frequency of memory accesses, it is noticeable that high CPI value corresponds to high memory 
traffic (more specifically high number of stores). This also justifies fairly large number of LSU stalls 
(LSU reject, D-cache miss and LSU basic latency) in this part of the iteration. Therefore, each of the 
three iterations can be divided into a communication phase (low FPU usage, lots of memory accesses, 
high bandwidth, high CPI), and a computation phase (high FPU usage, few memory accesses, low 
bandwidth, low CPI). We do not see much variation in GADGET graphs for 32, 64 or 128 processors. 

In summary, LSU related stalls seem to be the most dominant CPI stack component in the 
applications tested. The exceptions are GADGET and WRF, whose computation phases are limited by 
FPU stalls. It indicates that memory hierarchy could have an exceptionally high impact on 
performance of the future manycores. It is also clear that wider superscalar approach can have a 
limited impact, and the only ones that could see the benefit are FPU intensive applications. 

System designers often use processor’s arithmetic performance measurements to dimension the 
required performance of other computer system components. Dimensioning memory bandwidth is 
often based on a ratio of maximum bandwidth and maximum theoretical rate of floating point 
operations. A common rule of thumb for obtaining optimal performance is to keep this ratio around 
0.5 bytes per flop. This means that a processor capable of achieving 9.2 GFLOPS should rely on 
memory that supplies 4.6 GB/s of bandwidth. However, our analysis show that this ratio is heavily 
overestimated, and that it should not be taken into account at all, mostly due to the underutilization of 
floating point resources in real applications. 

In light of our findings, we expect that current memory architectures based on on-chip memory 
controllers and multiple parallel DDR channels should be able to sustain multicores for the next 
decade. However, technology constraints are limiting its further scalability, and in order to support the 
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requirements of multicores consisting of several hundreds of processors, we need to explore other 
approaches. 

3.3 CPI stack characterization of StarSs applications (BSC) 
The previous section presented characterization of memory latency and bandwidth and CPI stack for 
MPI applications. Similarly, in deliverable D2.1 results for other MPI applications were presented. In 
this section, results for StarSs applications that follow a data-flow execution model are presented. 
More specifically, the research work has focused in characterizing the CPI stack for StarSs 
applications using the BSC CEPBA-Tools performance tools.  

We present a method of obtaining and analyzing CPI stack information. In this case, the CPI stack is 
built based on runtime architectural information provided by Power PowerPC 970 Performance 
Monitor Units. A clustering algorithm is used to group instances of tasks into clusters with the same 
performance characteristics. This section presents results for the STAP application. 

3.3.1 Instrumentation 
The application to be analyzed in compiled by OmpSs compiler (one of the StarSs implementations) 
with instrumentation set to on. The instrumentation package used byt the OmpSs runtime is Extrae, 
which is part of the CEPBA-tools toolset. The communication between the instrumented application 
and Extrae is managed by an instrumentation plug-in. The plug-in is a part of the OmpSs runtime 
library. The compiler inserts calls to API provided by instrumentation plug-in in task’s code. The calls 
are as follows: 

• Call for registering a task as a user function for Extrae 

• Calls that start and stop collecting values of performance counters. 

Functions that are used in the second bullet generate a registration key, set by the call from the first 
bullet, to identify task’s instance performance information that has been gathered for. Trace 
information collected by Extrae is then emitted to the trace file.  

3.3.2 Clustering and CPI Stack 
After the trace file containing values of performance counters mapped onto tasks’ instances is 
generated, a clustering algorithm is applied. It identifies and groups into clusters executed instances 
with similar performance characteristics. The clustering algorithm we used is DBSCAN. This 
algorithm builds clusters based on density of neighborhood around a given point that exceeds a 
threshold MinPts. The neighborhood is shaped with chosen distance function dist(p, q) between points 
p and q. For points p and q that lie inside a cluster the following holds: dist(p, q) <= Eps. These two 
parameters, MinPts and Eps, are parameters passed to the algorithm. 

By altering the value of Eps we can change the neighborhood of the points and by that change the 
shape of the clusters. Lower values of Eps make the algorithm generate smaller and dense clusters 
with low number of border points (points on the border of a cluster), with higher number of points that 
are considered noise. Higher values of Eps generate larger and sparse clusters with many border 
points, with lower number of points that are counted in as noise. 
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The metrics that we use are IPC (Instructions Per Cycle) combined with Instructions Completed. They 
form a distance function used for DBSCAN to cluster instances of tasks with similar performance 
characteristics.  

The output of the clustering process is data that describe the clusters grouping tasks’ instances with 
respect to the mentioned metrics, and Paraver trace file showing the tasks mapped onto clusters. Once 
the clusters grouping tasks with similar performance characteristics are determined, the CPI stack 
information is generated.  

3.3.3 Discussion of results 
STAP 

We start our discussion of the results by analyzing the clusters that were shaped from executed tasks. 
The plot with clusters containing instances of tasks with similar performance characteristics is shown 
below: 

 

Clusters 1, 2, 3 and 4 group instances of tasks that contribute the most into the overall performance of 
the application; the contribution of the clusters is at least 3% of the total execution time of the 
application. These clusters group the following instances of tasks: 

• Cluster 1 
o Apply_Filter_task 

• Cluster 2 
o Calc_Filter_task 

• Cluster 3 
o tfac_task 

• Cluster 4 
o Mat_Invert_task 
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Tasks Apply_Filter_task and Calc_Filter_task are the largest in terms of duration, and 
with the highest number of executions. Because they have high number of instances (2880 for both 
tasks), clusters grouping instances of these tasks have a large variance with IPC ranging from almost 1 
to more than 1.2 for cluster 1 and from almost 1.4 to more than 1.6 for cluster 2. A similar case can be 
observed for cluster 5 grouping instances of task Int_Dop_task (also with 2880 instances). The 

instances of this task are much smaller than instances of tasks Apply_Filter_task and 

Calc_Filter_task. However, cluster 5 has a large variance with respect to IPC ranging from 
values below 1 to 1.4.  

Size and duration of instances of tasks in clusters 1 and 2 are the main factors that contribute intothe 
high number of instructions completed by the instances of these tasks. 

The points representing instances of tasks tfac_task and Mat_Invert_task form smaller and 
denser clusters (clusters 3 and 4) with low variability with respect to the IPC. The number of instances 
is much smaller compared to tasks in clusters 1 and 2 (144 for task Mat_Invert_task and 180 for 

task tfac_task).  

However, these clusters differ when values of instructions completed are compared: instances of task 
tfac_task complete around 1 MInstructions while instances of task Mat_Invert_task 
complete more than 2 MIntructions. This indicates that cluster 4 groups computationally intensive 
instances of tasks. 

Now we analyze the CPI breakdown of clusters 1, 2, 3 and 4. CPI breakdown is shown on the plot 
below: 

 

Tasks in all the clusters perform floating-point calculations so they all experience latency related to 
FPU execution unit. As it was mentioned before, task Mat_Invert_task (cluster 4), 
although is the smallest, is the most computationally intensive: it completes the highest number of 
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instructions with high latency caused by the FPU. This task implements a matrix inversion with Gauss 
elimination method. Also two larger tasks: Calc_Filter_task (cluster 2) and 

Apply_Filter_task (cluster 1) are computationally intensive. They implement a filter 
calculation and an algorithm that reduce the clutter signal in the STAP method.  

The only task that wastes cycles on FXU (fixed-point unit) is task tfac_task grouped by cluster 3. 
This task does integral calculations on array indices. Results of these calculations are used as 
predicates in if statements. This explains the high number of cycles wasted cycles on miss-predicted 
branches. This also causes higher ratio of wasted work with highest CPI comparing to other tasks. 

SPECFEM3D 

We will start analysis of CPI stack for SPECFEM3D by examining clusters’ shapes and distribution 
of points. As it was a case for STAP, we will focus on clusters whose tasks cover more than 3% of 
execution time in total of the application. These clusters are: 

• Cluster 1 
o process_element 

• Cluster 2 
o scatter 

• Cluster 3 
o gather 

These clusters are shown on the plot below: 

 

Table below shows a description of the tasks’ instances grouped by aforementioned clusters.  
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Name of task Number of instances Total execution time [ns] 

process_element 720 7.498.931.151 

scatter 720 3.001.285.428 

gather 720 397.080.482 

 

Cluster 1 groups instances of the task process_element. As we can see in the table above, the 
task is the largest in terms of duration. The IPC of the points in the cluster varies from 0.6 to 1.3. They 
complete the largest number of instructions among task instances grouped by clusters under 
consideration (2.8 MInstructions). The cluster also achieves the highest values of IPC. These factors 
indicate that these task instances do not suffer from major issues that degrade its performance.  

Shape of cluster 3, that collects instances of task gather, is similar to cluster 1. The points that form 
the cluster are scattered in terms of IPC with values that range from 0.6 and 0.8. The value of IPC is 
lower than in cluster 1. Also, the task instances complete a lower number of instructions (0.9 
MInstructions) and they are smaller in terms of size and duration. This indicates task gather 
encounters runtime issues that degrade the performance of its instances. 

The instances of the task scatter form cluster 2. The cluster is dense and task instances are 
concentrated in one place. They share the same values of performance characteristics. Value of CPI is 
the lowest (less than 0.2) among all the clusters under examination, with small number of instructions 
completed (less than 1.7 MIntructions). That indicates that task instances suffer from the same 
performance problem that causes their inefficiency. 

Now we will analyze CPI stack of tasks whose instances are grouped in clusters 1, 2 and 3. The plot 
showing CPI stack breakdown is shown on the next page. 

As it was already mentioned the highest performance rate is achieved by instances of task 
process_element grouped in cluster 1.  Each instance of the task operates on local mesh that has 

been previously collected by instances of task gather. This provides data distribution and isolation 
among task instances. Task instances of the cluster encounter small number of d-cache misses (0.04 
MCycles wasted on handling this issue compared to total number of 23MCycles). This indicates good 
spatial and temporal locality of memory accesses each task instance performs.  
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Operations performed by task process_element are floating-point calculations (mainly addition 
and multiplication). We can see that large number stalls caused by FPU instructions (5 MCycles 
compared to total number of 23MCycles).  

Cluster 3 collects instances of task gather. The task instances feature worse performance metrics 
compared to task instances from cluster 1. The task localizes data from global displacement vector 
and, using indirect addressing, places it in local mesh. This is the task whose instances touch their 
local meshes for the first time. This generates d-cache misses (97 KCycles wasted compared to total 
number of 1.2 MCycles) and causes stalls in LSU while data from lower levels of memory hierarchy 
is being fetched (0.2 MCycles). This explains poor performance of task instances. The data is then 
reused by task instances from cluster 1. This explains good performance metrics of instances of task 
process_element. 

Cluster 2 groups instances of task scatter. The task iterates over array that is shared among threads 

that execute instances of the task. Synchronization is provided by #pragma omp atomic 
operations. The operation is compiled to assembly code that implements spin lock by emulating 
compare-and-set operation using instructions lwarx (Load Word and Reserve Indexed) and stwcx 
(Store Word Conditional Indexed). These instructions are placed in loop; they repeatedly access 
memory trying to acquire reservation. This puts additional pressure on LSU (3.2MCycles caused by 
LSU instructions compared to total number of 9.4MCycles). 

There’s one more reason why LSU encounters high latency while instances of task scatter are 
executed. PowerPC 970MP uses store-through with no-fetch-on-write policy. This means that 
whenever shared data (in our case elements of array accessed with OpenMP atomic operation) is 
written to by the core, all the other cores need to fetch this data from main memory. If they store 
copies of data being accessed to in their L1 d-cache, the cache line containing shared data is 
invalidated. When they access the data cache miss is generated and they have to fetch the correct data 



Project: TERAFLUX  - Exploiting dataflow parallelism in Teradevice Computing 
Grant Agreement Number:  249013 
Call: FET proactive 1: Concurrent Tera-device Computing (ICT-2009.8.1) 
 

 
Deliverable number: D2.2 
Deliverable name: Final report on the characterization and modeling  
of the reference applications 
File name: TERAFLUX-D22-v5.docx  Page 24 of 43 

from memory. It also explains high number of d-cache misses during scatter task’s instances 
execution (0.4 MCycles compared to total number of 9.4 MCycles). 

Cholesky 

We will now analyze clusters and CPI stack breakdown of a kernel that implements a Cholesky 
factorization. Clusters whose task instances cover more than 3% of execution time of applications are 
as follows: 

• Cluster 1 
o smpSs_sgemm_tile 

• Cluster 2 
o zz_copyBlockTransposed 

• Cluster 3 
o smpSs_strsm_tile 

• Cluster 4 
o smpSs_ssyrk_tile 

• Cluster 5 
o zz_copyBlock 

Although task instances are grouped into five clusters, we will focus on clusters 2 and 5. Cluster 1, 3 
and 4 group instances of tasks that call to BLAS routines that operate on tiles of a matrix. Results of 
the CPI stack breakdown for these tasks depend on the BLAS library being used. So analysis given in 
this section will obscure CPI stack results of execution of the application built against different other 
BLAS libraries. However, analysis of CPI stack breakdown prepared for several BLAS libraries will 
help choosing the library that is the most efficient one. 

Shape of clusters 1 and 5 is shown on the next page. Both clusters 2 and 5 encounter poor 
performance metrics. Task instances grouped in cluster 5 feature IPC value of 0.3, IPC value of task 
instances in cluster 2 ranges from 0.01 to 0.02. This indicates similar performance issues related to 
memory accesses that we have described for SPECFEM3D’s clusters 2 and 3 (grouping instances of 
tasks scatter and gather respectively). 

Both tasks implement copying elements of one array to another. The difference between these tasks is 
that task zz_copyBlockTransposed realizes in the following manner: value of element a1i,j of array 
A1 is assigned to element a2j,i of array A2; in case of task zz_copyBlock value of element a1i,j of 
array A1 is assigned to element a2i,j of array A2. These accesses, in both cases, are realized inside 
two nested loops. 

We can see that accesses to array A2 in task zz_copyBlockTransposed are realized in column-oriented 
manner. So instances of the task touch non-continuous pieces of memory.  Accessing memory this 
way does not provide good spatial locality. Also instances of task zz_copyBlockTransposed touch 
elements of the array A2 for the first time. This causes significant number of d-cache misses. 

When we look at graph showing CPI stack break down (that is shown on the next page), we see that 
instances of task zz_copyBlockTransposed encounter wide range of problems related to 
memory access, for example: d-cache misses (0.8MCycles compared to total number of 20MCycles) 
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and  ERAT misses (1.3MCycyles). This in turn results in stalls LSU encounters (6.5 MCycles). These 
memory access phenomena are caused by scheme of memory access the task implements and result in 
very high value of CPI (72 cycles per instruction, with value of 0.035 MCycles of completion cycles).  

 

Cluster 5 that contains instances of task zz_copyBlock achieves better performance characteristics 
than cluster 2. Cluster 5 features CPI of value 3.3 cycles per instruction. Although, as it was already 
mentioned, it implements straightforward functionality, the operation causes some performance 
degradation related to memory accesses. Instances of task zz_copyBlock access the same arrays as 
task instances of zz_copyBlockTransposed. These task instances are also executed just after instances 
of task zz_copyBlockTransposed complete (in between instances of task zz_makeBlockSymmetric 
touch array A1). This means that it’s likely that blocks of array A2 were evicted from cache and need 
to be load there again. This is a reason for d-cache misses (0.5 MCycles compared to total number of 
5.4 MCycles) instances of task zz_copyBlock encounter. 
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3.4 Characterisation of StarSs + TM applications (BSC) 
As described in deliverable D3.3, one of the efforts in the project deal with the integration of 
Transactional Memory with the StarSs programming model, to provide an alternative mechanism for 
accessing shared data with mutual access or to access data atomically, but also to provide a 
mechanism to enable the speculative execution of tasks in conditional and while-loop structures, 
allowing for better performance on the execution of the StarSs applications. 

While the results presented in deliverable D3.3 for a set of benchmarks are promising, we wanted to 
further understand the impact of software TM in the StarSs runtime. While StarSs runtime is already 
instrumented and Paraver tracefiles can be generated that enable to analyze both the behavior of the 
application and of the runtime, we further instrumented the runtime in those areas where the 
application was entering a transaction. The instrumentation marks when an application thread enters a 
transaction, when the thread performs a commit and when it aborts.  

With this instrumentation, tracefiles for the benchmarks queens, matmul and specfem3D have been 
generated, and we have characterized the transactions for each of them. We have analysed the 
tracefiles with regard the impact of TM using Paraver. More specifically, we have generated 
histograms of the duration of the periods when each application is in a transaction, is performing the 
commit and when it is aborting. We have analyzed these times for different numbers of threads to 
understand how TM impacts when increasing the number of threads.  

The figures below show the histogram of the duration of the periods when each application is in a 
transaction. To better understand how this time varies with the number of threads, what is shown for 
each value of time is the percentage of the number of instances that have a given duration.   
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Figure 4 Characterization of transactions time 

 
For each of the applications we observe a slightly different behavior. Both in the matrix multiply and 
the SPECFEM3D cases, the number of threads does not seem to affect severely the duration of the 
time in a transaction. It is noticeable that the duration of the time in a transaction is smaller in the 
SPECFEM3D case, but this is because fewer operations are performed. However, for the Queens 
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case, the average time in transactions increases. In all cases the time in the transaction is not very 
large (most of cases less than 1 microsecond), and we think that this time can be further reduced with 
hardware support.  

Similarly, the figures below show the histogram of the duration of the periods when each application 
is in the commit stage. Again, what is shown for each value of time is the percentage of the number of 
instances that have a given duration.   
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Figure 5 Characterization of commit time 

 
For all the applications we observe a similar behavior, with the time increasing when increasing the 
number of threads. This may represent a problem when scaling to large number of threads. It would 
be interesting to understand how this time would evolve when hardware support is provided.  

Finally, next figure shows the evolution of the number of aborts for the matrix multiply case. It is the 
only case that it is shown since for the Queens case, no aborts are observed and for the SPECFEM3D 
case, although the number of aborts increase with the number of threads, these are scattered without a 
defined trend, with values varying between 1.5 and 17 microseconds.  

In this case, the histogram of the number of instances per a given period time is shown to illustrate 
that not only the duration of the aborts increase with the number of threads but also the number of 
aborts. The duration of the abort is significantly larger than the time in transaction or in abort, 
therefore it would be more important to improve this time when implementing hardware solutions.  

 

Figure 6 Characterization of abort time 
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3.5 TFlux Data-flow model (UCY) 
During this period we continued our effort in porting more applications to the Data-flow model. We 
did this by analyzing the application code and then augmenting the code with the TFlux pragma 
directives (see Deliverable 3.2). We have now ported the following applications: 

• Cholesky: This is a blocked Cholesky decomposition. The reference code is from the SMPSs 
implementation (http://www.bsc.es/plantillaH.php?cat_id=425) 

• IDCT: This is an implementation of the inverse discrete cosine transform algorithm. The code 
is based on the IDCT kernel from the mpeg library code similar to one found in: 
http://www.irisa.fr/master/COURS/CAPS/CoursCD/HTML/Codes/ExercicesScap/exercice9/i
dct.c 

• LU: This is an application implementing the blocked LU decomposition algorithm. The 
reference code can be found in the examples from CellSs 
(http://www.bsc.es/plantillaH.php?cat_id=421) 

• MMULT: This is a matrix multiply application. We present results for two versions, the 
original and the blocked.  

• Trapez: This is an application that implements the Trapezoidal Rule of Integration. 
• LEE: Lee's routing algorithm guarantees to find a shortest interconnection between two points 

using the Expansion-Backtracking technique. It is used primarily in the process of producing 
an automated interconnection of electronic components. The reference code can be found in 
the STAMP benchmark suite. 

Notice that the last application, LEE, was ported to our data-flow model using the new TFlux+TM 
pragma directives (see Deliverable 3.3). This was a collaboration effort between UCY and UNIMAN. 

3.5.1 Characterization 
The applications presented in the previous section, as mentioned before, have been ported to the data-
flow model using the TFlux pragma directives. The applications were then passed through our source-
to-source preprocessor and then compiled with the regular gcc compiler (version 4.5.2). They are then 
linked with our Data-Driven Multithreading runtime system. They were then executed on an 8 core 
Intel Xeon E5320 1.86GHz system. Given that we are running natively using our software 
implementation of the model, we use only 7 out of the 8 cores for worker threads while the other core 
is reserved for the execution of the software TSU. The executions were performed with 4 different 
input data set sizes, which we call IDS1, IDS2, IDS3, and IDS4. For Cholesky, IDCT, LU, MMULT, 
and MMULT-Blk, these input data set sizes correspond to 512, 1024, 2048, and 4096 rows in the 
matrix, respectively. For Trapez the sizes correspond to a range of 25, 50, 100, and 150. For LEE the 
sizes correspond to a maze of dimension 32x32x3, 64x64x3, 128x128,x3, and 256x256x3. We 
collected the statistics using the perf system tool. This tool uses the system’s program counters to 
measure different events. For this work we collected enough information to report the IPC, Last-Level 
Cache and TLB miss rate, and Bandwidth. We present the different results in the following charts. 
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(a) 

 

(b) 

Figure 7 IPC for different input data sets for (a) data-flow and (b) data-flow+TM applications 

 

From Figure 7, which presents the IPC for the different applications and the different input data set 
sizes, it is possible to observe that all applications other than LU show a near constant IPC for the 
different input data sets. For LU we observe a small decrease in the IPC as the input data set is 
increased. This shows that LU becomes less efficient as the input data set is increased. As for LEE we 
observe the opposite of LU with a slight increase of the IPC as the input data set sizes increases. The 
changes in IPC for both LU and LEE are too small to be representative. 
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(a) 

 

 

 

(b) 

 

Figure 8 LLC cache misses rate for different input data sets for (a) data-flow and (b) data-flow+TM applications 

 

In Figure 8 we present the LLC miss rate for different input data sets. From these results it is possible 
to observe a general increase in the miss rate as the input sets increase. This increase is observed in a 
larger degree for both MMULT applications. This showing that LLC cache is not able to capture the 
working set. The input data set size does increase more than linearly from set to set does the relative 
increase in the miss rate is actually relatively smaller than the rate of increase of the input data. 

Interestingly, the behavior shown by LEE is the opposite as its miss rate decreases as the input set 
increases. This may be a consequence of the fact that the core of the data used by this application does 
not increase as the input data increases. It may also be that the cache is not used efficiently to start 
with for this application. We need to further study the reason for these observed behaviors.  
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Notice that even though we have measured also the data TLB miss rate, as the values observed were 
very small (<0.1%) we did not consider relevant to include in this report. 

Finally, in Figure 9 we present the Bandwidth for the different input data sets.  

 

(a) 

 

 

(b) 

Figure 9 Bandwidth for different input data sets for (a) data-flow and (b) data-flow+TM applications 

The results in Figure 9 show that the applications in general increase their bandwidth demands as the 
input data set sizes are increased, as expected. The bandwidth requirement is larger than 14Mbps for 
both the original MMULT and LU for the larger data set size. Between the two MMULT versions it is 
possible to observe the blocked version as expected has much smaller bandwidth requirement, around 
8Mbps instead of 14Mbps for the larger input data set size. Finally, IDCT does not show a large 
bandwidth requirement neither it changes for different input data set sizes. Regarding LEE, it again 
shows a different behavior. First, its bandwidth requirement is much larger than the rest of the 
applications ranging from 20 to 55 Mbps. Second, its highest point is for the smallest data set even 
though after IDS2 it starts to increase again as expected. Once more we need to take a further look 
into this application as to better understand its behavior. 
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4 Applications porting 
Although porting of applications was planned for the second half of the project, some of the partners 
have already started the porting of applications to the corresponding programming models. Some of 
the more relevant porting efforts to Scala and StarSs are reported in this section. 

4.1 Scala (UNIMAN) 
This section presents the progress in porting benchmarks to Scala using dataflow and TM. Although 
these benchmarks are also being ported to C plus pragmas, we are exploring the use of a programming 
notation based on the Scala language to cater for high productivity software developers.  

When writing in a dataflow style, we have found useful to have certain language features to ease 
dataflow (functional) composition. The ability to return tuples as function results and to match against 
them as arguments is probably the most important. The strong typing of Scala also facilitates the static 
detection of errors.  

We use only a subset of Scala omitting both conventional synchronisation and arbitrary shared state 
manipulation. Shared state manipulation only occurs within atomic sections (TM). We have 
developed a new Scala-based dataflow library which we use in conjunction with a Scala-based 
Transactional Memory library (see more information in TERAFLUX Deliverable 3.3). 

During this year we have successfully ported: matrix-matrix multiplication (no TM needed), 
Vacation, Lee Routing (Lee-TM, i.e., labyrinth) and KMeans. We have not done performance tuning 
of the libraries nor of the benchmarks yet. For Lee-TM we have attempted several approaches to 
stretch the infrastructure being developed. 

Lee-TM is a circuit router that makes connections automatically between points. Routing is 
performed on a 3D grid that is implemented as a multidimensional array, and each array element is 
called a grid cell. The application loads connections (as pairs of spatial coordinates) from an input 
file, sorts them into ascending length order (to reduce ‘spaghetti’ routing), and then loads them into 
thread-local queues in a round-robin manner. Each thread then attempts to find a route from the first 
point to the second point of each connection by performing a breadth-first search, avoiding any grid 
cells occupied by previous routings. If a route is found, backtracking lays the route by occupying grid 
cells. Concurrent routing requires writes to the grid to be performed transactionally. Lee-TM is fully 
parallel, with conflicts at concurrent read/write or write/write accesses to a grid cell. A second version 
of Lee-TM has been implemented that uses early release. This version removes grid cells from the 
readset during the breadthfirst search. Two transactions may be routable in parallel, i.e. the set of grid 
cells occupied by their routes does not overlap, but because of their spatial locality, the breadth-first 
search of one transaction reads grid cells to which the second transaction writes its route, thus causing 
a read/write conflict. Removing grid cells from the readset during the breadth-first search eliminates 
such false-positive conflicts. 
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Figure 10 Preliminary results on Scala for Lee-TM (Scalability with number of cores). 

 
Vacation simulates a travel booking database in which multiple threads transactionally book or cancel 
cars, hotels, and flights on behalf of customers. Threads can also execute changes in the availability of 
cars, hotels, and flights transactionally. Each customer has a linked list holding his reservations. The 
execution of Vacation is completely parallel, but available parallelism is limited by the number of 
relations in the database and the number of customers. 
 
Experimental Setup: Having constructed each of these benchmarks with our Dataflow and 
Transactional Memory libraries, we present some performance results. The results are obtained on a 
12 core machine (2x AMD Opteron (Six-Core) Model 2427), with 32 Gigabytes of RAM (8x 4GB 
667MHz DDR2). Scala version 2.9 is used, with the Java SE Runtime Environment 1.6, using the 
Hotspot 64 bit server VM. We have also used trace based simulation to produce expected 
performance figures for executing these codes on a processor with support for dataflow and 
transactional memory. The simulation assumes idealised dataflow hardware with no latency for the 
passing of tokens. Threads are scheduled immediately after their inputs are ready, and a free processor 
is available. For TM, we selected a non-optimal scenario. When a transaction conflicts with one 
already running, this is handled conservatively by delaying the start of the transaction so that there is 
no overlap. 
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Figure 11 Preliminary results on Scala for Kmeans (Scalability with number of cores). 

 

Figure 11 presents the first results for KMeans for a non-optimized scenario. We do not want to make 
any claims yet about the scalability (although it is looking promising), but simply illustrate the 
progress that we are making with porting applications. 

Figure 12 presents a graphical representation of a subset of the dataflow graph executed by KMeans. 
This graph is generated automatically by the dataflow library implemented in Scala to aid software 
developers. KMeans clusters objects into a specified number of clusters. The application loads 
objects from an input file, and then works in two alternating phases. One phase allocates objects to 
their nearest cluster (initially cluster centers are assigned randomly). The other phase re-calculates 
cluster centers based on the mean of the objects in each cluster. Execution repeatedly alternates 
between the two phases until two consecutive iterations generate, within a specified threshold, similar 
cluster assignments. Assignment of an object to a cluster is done transactionally, thus parallelism is 
controlled by the number of clusters. Execution consists of the parallel phase assigning objects to 
clusters, and the serial phase checking the variation between the current assignment and the previous. 
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Figure 12 A subset of the executed dataflow graph for KMeans 
 

 

4.2 Improvements of the implementation of STAP in StarSs 
The STAP (Space Time Adaptive Processing) application comes from airborne radar domain. It 
provides simplified implementation of MTI (Moving Target Indication). The original sequential 
implementation was provided by Thales in C, and a first implementation in StarSs was also written. 
This section analyzes the performance of this initial implementation and how it was optimized.      

Three different versions of the STAP algorithm are used in this section: 

• An OpenMP-based implementation with parallel loops  
• A StarSs-based implementation. It encapsulates functions that operate on data 

representing signals into tasks.  

• A sequential implementation. 

4.2.1 Initial Results 
The initial measurements show that the OpenMP implementation of STAP outperforms StarSs 
implementation. Already the StarSs using a single thread is slower than the sequential 
implementation. The reason for this is that StarSS implementation suffers from the overhead 
introduced by the StarSs runtime. Such phenomenon is not visible for OpenMP implementation.  

The largest difference between OpenMP and StarSS versions is visible in case of execution for 16 
threads. The StarSs has an speedup of 2.0 against the sequential case, while the OpenMP 
implementation has an speedup larger than 9.5. 
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In the plot above showing the execution phases of the StarSs version it can be observed that the time 
the application spends executing the tasks is inversely proportional to the number of threads. This is 
visible for both main thread and worker threads. For the main thread, the task execution drops to more 
than 80% for a single-threaded execution to 0% for execution with 12 threads. That means that for a 
number of threads larger than 11, the main thread is completely busy managing and synchronizing 
tasks.   

For worker threads this ratio drops from 70% for two thread execution to 15% for an execution with 
16 threads. In this case the threads keep idling waiting for tasks being scheduled by the main thread.  
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4.2.2 Optimization 
The optimization we applied to the StarSs implementation of STAP increases the granularity of the 
tasks with the objective of decreasing the relative overhead in the runtime.  

• For example, tasks are generated inside loops that iterate over data that is further passed to 
generated tasks. Let’s look at the call site of  task X_3_1: 

 
We can see that the body of the nested loops in line 3 is executed dim1*dim2 times. It means 
that if we change value loop variable is altered by, we change the number of tasks generated 
during loop execution: if loop variable i is altered by n, number of generated tasks is 
dim1*dim2/n. Aforementioned piece of pseudocode would look as follows: 

 
This change groups data that is processed by the task into tiles; size of data increases n times. 

• Tasks perform computation by looping over data structured into multidimensional arrays. 
Now let’s look at the body of task X_3_1: 

 
We see here that task’s execution time depends on number of iterations of the loop from line 
4. So, if we alter size of iteration space we are able to change the duration of task’s instance. 
This is achieved by increasing size of data task processes. This in turn can be achieved by 
applying changes from previous bullet. This group of changes applied to code above results in 
the following pseudocode: 

 

1. #pragma css task input(n, dim2, dim3, a) output(b) 
2. void X_3_1(int n, int dim2, int dim3 
3.            , Cplfloat a[1][dim3], Cplfloat b[1][dim3]) { 
4.     int i, j; 
5.     for (i=0; i<n; i++) { 
6.         for (j=0; j<dim3; j++) { 
7.             (*(b+i))[j].re = (*(a+i*dim2))[j].re; 
8.             (*(b+i))[j].im = (*(a+i*dim2))[j].im; 
9.         } 
10.     } 
11. } 

1. #pragma css task input(dim3, a) output(b) 
2. void X_3_1(int dim3, Cplfloat a[dim3], Cplfloat b[dim3]) { 
3.     int k; 
4.     for (k=0; k<dim3; k++) { 
5.         b[k].re = a[k].re; 
6.         b[k].im = a[k].im; 
7.     } 
8. } 

1. for (i=0; i<dim1; i+=n) { 
2.     for (j=0; j<dim2; j++) { 
3.         X_3_1(n, dim2, dim3, &a[i][j], &b[j][i]); 
4.     } 
5. } 

1. for (i=0; i<dim1; i++) { 
2.     for (j=0; j<dim2; j++) { 
3.         X_3_1(dim3, a[i][j], b[j][i]); 
4.     } 
5. } 
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What happens in this piece of code is that body of the loops is now executed n*dim3 by 
changing size of data processed times n. 

Optimization has been applied to all the tasks in StarSs-based implementation of STAP algorithm. In 
the implementation, the values that alter loop counters and change size of data processed by tasks are 
called delta and delta_nrfg.  

For each task, different values of delta and delta_nrfg were evaluated experimentally. 

4.2.3 Final Results 
After applying the optimization, the speedup improved visibly (see figure below). For the case of the 
optimized application the best speedup we achieved is almost 12 for 16 threads. This result was 
reached for StarSs implementation configured with delta_nrgf set to 5. It outperforms OpenMP 
implementation that reaches speedup of 10 for 16 threads.  

 

 

Execution phases for the StarSS-based STAP implementation configured with delta_nrgf set to 5 
also note improvement comparing to non-optimized implementation. This is shown on the following 
plot: 
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For 16 threads, the main thread contributes in tasks’ execution, it is less busy with generating and 
scheduling them. The improvement introduced by the optimization also becomes visible if we 
compare single-threaded executions: in case of non-optimized implementation, the task execution was 
performed for 82% of lifetime of main thread; in case of the optimized implementation the task 
execution takes more than 95% of the execution time.  

Improvement is also visible for worker threads. In the 16-thread execution, the workers spend 75% of 
time executing tasks; in case of non-optimized implementation, for the same number of threads, task 
execution reaches 15% and waiting for task to execute becomes threads’ main activity. In optimized 
implementation waiting for tasks covers less than 30% of running time. 
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5 Conclusions 
This document describes the results for WP2 of the TERAFLUX project in the second year. The 
activities related to the workpackage dealt with the selection of applications, characterization of the 
applications and porting of the applications to the different programming models.  

Although the project has now a consolidated list of benchmarks, kernels and applications, the addition 
of new ones under request of partners or other stakeholders in the project are not discarded.  

With regard to the characterization, relevant results have been obtained in terms of requirements for 
the characteristics of the underlying hardware. For example, aspects related to the requirements on 
memory bandwidth and latency, or to the requirements for performance of TM have been described.  

Also, several efforts to port the applications to the project programming models are ongoing. Indeed, 
some groups are already working on the optimization of these applications based on the results of 
performance analysis.  

Next year, the project partners will continue these porting activities with also performance analysis 
evaluation of the applications using the underlying architecture designed in the project.  
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