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Glossary 
BW Bandwidth  

CPI Cycles per Instruction 

DDM Data-Driven Multithreading 

DTA Decoupled Threaded Architecture 

HPC High Performance Computing 

HPEC High Performance Embedded Computing 

L Latency 

StarSs Star Superscalar 
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Executive Summary 
This document is the first deliverable of WP2, Benchmarks and Applications. The objective of this 
workpackage is to understand the runtime behaviour of applications in order to establish a guideline in 
the design of the other components of the computing system in TERAFLUX. As TERAFLUX 
explores the design of highly parallel teradevice systems, a key step in the project is understanding the 
fundamental requirements of highly parallel applications and their implications on all layers of a 
computing system that supports a data-flow programming and execution model – from the 
programming model itself, down to extensions to commodity architecture. 

The deliverable describes the results of the first year of the project in tasks 2.1 and task 2.2. While 
task 2.1 is finished, task 2.2 will continue during the second year of the project. The activities 
performed in task 2.1 relate to the selection of the applications and benchmarks to be used in the 
project. The criteria used to select the applications include aspects implicit to the application (domain, 
inherent parallelism, data-flow characteristics, transactional memory requirements) and others related 
to practical aspects (availability of the code, availability of realistic input data, previous experience of 
partners with the code...). The codes have been classified in two lists: kernels/benchmarks and full 
applications.  

In order to make the kernels, benchmarks and applications available to all partners in a uniform 
distribution, a disk image is based on a Linux installation where all the necessary libraries and 
environments have been installed (i.e. MPI, StarSs runtime). The disk contains both the compiled 
codes with all the necessary data to be able to run them, and also the source code, scripts and Makefile 
to be able to rebuild them. The format was chosen such that it would natively plug into the COTSon 
simulation platform, and the partners can therefore configure the simulation platform to simply boot 
Linux from the disk image and run the applications. 

The activities performed in task 2.2 relate to the characterization of the applications. The parameters 
that will be used to characterise the applications have been classified into resource requirements 
(memory bandwidth, network latency and bandwidth, parallelism,...) and TERAFLUX specific 
requirements (transactional memory and data flow). A description of the methodologies to be used is 
given in section 3. While some of them are based on analytical methods, a large bunch of them are 
based on tracefile generation of real runs and different types of post-processing and automatic 
analysis methods. Section 4 presents a description of initial results for some of the project 
applications.  
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1 Introduction 
This is the first deliverable of WP2, Benchmarks and Applications. Understanding the runtime 
behaviour of applications is a crucial guideline in the design of computing systems, as they are the 
effective consumers of the underlying compute power. As TERAFLUX explores the design of highly 
parallel teradevice systems, a key step in the project is understanding the fundamental requirements of 
highly parallel applications and their implications on all layers of a computing system that supports a 
data-flow programming and execution model – from the programming model themselves, down to 
extensions to commodity architecture. This exploration includes: 

• Identify applications that can serve as reference applications for a programming model based 
on data-flow principles, and that can efficiently scale to utilize teradevice system. 

• Characterize the resource requirements of these highly parallel applications, in terms of 
memory usage, bandwidth, and latency. Identify the performance requirements from 
underlying interconnection network. These characteristics will assist the architectural 
exploration performed in WP6. 

• Uncover common data-flow and data-locality patterns implicit to the reference applications 
that can be disseminated into the programming model (WP3) as either data-flow or 
transactional semantics. 

• Port a few applications to the programming models chosen by WP3. Initially, we will 
consider the StarSs (BSC) and DDM (UCY) programming model, and the DTA (UNISI) 
execution models. The ported applications will be used by the other work packages to guide 
their proposed designs. 

• Extract the interesting patterns and data accesses and that will assist other work packages 
build sensible benchmarks that can test the proposed constructs in all domains: programming 
model (WP3), compilation platform (WP4), reliability (WP5) and architecture (WP6). 

1.1 Document structure 
The deliverable is organized as follows: this section introduces the deliverable and its structure, 
section 2 describes the criteria that have been used to select the applications and benchmarks and lists 
the actual selected ones (task 2.1). Section 3 presents the parameters that will be the object of the 
applications’ characterization and explains the methodologies that will be used in this 
characterization. Section 4 presents some initial results of the characterization and finally section 5 
concludes the document.  

1.2 Relation to other deliverables 
No specific one.  

1.3 Activities referred by this deliverable 
This deliverable refers to the activities performed in tasks 2.1 and 2.2 during the first year of the 
project. Task 2.2 will continue its activities during the second year of the project.  
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2 Identification of reference applications 
The goal of task 2.1 is to identify a number of reference applications that can potentially utilize a tera-
device. As this scale of parallelism is currently only available in the High-Performance Computing 
(HPC) and High-Performance Embedded Computing (HPEC) domains, and according to what was 
defined in the description of work, we have initially focused our search on HPC and HPEC 
applications that are expected to scale with technology. Such applications include physical, biological 
and physiological simulations, and sensor data fusion applications implying sonar/radar and video. 

However, although initially it was not explicitly indicated in the description of work, only working on 
real (complete) applications can exclude more realistic research in the framework of the different 
workpackages: for example, to be able to effectively define the programming models features and to 
be able to compare different solutions, small benchmarks that expose specific behaviours are required.  

With this objective, the workpackage has worked to identify whole reference applications and small 
kernels and benchmarks.  

2.1 Criteria 
To select the project applications, different parameters have been taken into account. Among them: 

• Application domain: the task has considered applications from different domains in order to 
consider the different particularities of each type of problem 

• Inherent parallelism: the use of task-based data-flow programming model with transactional 
semantics is expected to enable applications to expose their parallelism but it is necessary that 
enough inherent concurrency is present in the algorithm in order to scale to a large number of 
cores. 

• Realistic input data: In order to convince the scientific and industrial community about the 
features of the TERAFLUX architecture and software layers real applications with real input 
data should be used. 

• Existence of open source code: This requirement twofold, to enable the availability of the 
codes to the project partners and also to enable the project to publish modified versions of the 
code that would be made available to the community.  

• Existence of research collaborations between the project partners and the code developers: 
this is not a requirement but it is a positive aspect, since it will help in the impact of the 
project and also in the progress of the research done with the applications.  

• Existence of previous versions and experience by the project partners: the project does not 
have enough effort and time to start from scratch new applications. This can be only 
considered for small kernels/benchmarks. 

• Exposure of data-flow characteristics: to enable a natural porting to data-flow programming 
model / architecture 

• Exposure of transactional memory requirements: similarly, to enable to show the benefits of 
transactional behaviour.  
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2.2 Kernels / Benchmarks 
The following table lists the kernels and benchmarks identified so far and that will be used in the 
project. For each of them we list the name, the partner that is responsible for the code, the source or 
programming model of the initial code, if the code initially presents need for transactional memory 
and which will be the performance reference used.   

Benchmark Contributing 
partner 

Initial 
code 

Need for 
TM 

Performance 
reference 

Matmul BSC StarSs  MKL 

Radix Sort UNISI SPLASH-2   

Lonestar Delaunay BSC Galois � Galois 

Lonestar Barnes-Hut BSC Galois � Galois 

Cholesky BSC StarSs  MKL 

Sparse LU BSC StarSs  MKL 

FFT2D BSC StarSs  FFTW 

SPECFEM3D BSC StarSs � Sequential 

N Queens BSC StarSs � Sequential 

Lee’s Routing 
algorithm 

UNIMAN TM � TM 

Vacation UNIMAN TM � TM 

Bayes UNIMAN TM � TM 

Genome UNIMAN  TM � TM 

Intruder  UNIMAN TM � TM 

Kmeans UNIMAN TM � TM 

Laberynth UNIMAN  See Lee-TM  

Ssca2 UNIMAN TM � TM 

Yada UNIMAN TM �  

Table 1. List of kernels and benchmarks 
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2.3 Full Applications 
The following applications have been initially selected due to their representativeness in the HPC 
world, their scalability in the current supercomputing machines, the availability of code and in some 
cases for the collaborations existent between the partners and the authors of the codes. Some of the 
codes have been initially made available with the current parallelization in MPI.  

Benchmark Contributing 
partner 

Initial code Performance reference 

GADGET BSC MPI Original code 
GROMACS BSC MPI Original code 
PEPC BSC MPI Original code 
SWEEP3D BSC MPI Original code 
WRF BSC MPI Original code 
STAP (Radar) THALES C Sequential 
Viola & Jones 
(Pedestrian detection) 

THALES C Sequential 

Table 2 List of full applications 

2.3.1 HiPEAC repository 
The TERAFLUX partners are involved in the HiPEAC Network of Excellence 
(http://www.hipeac.net). Most of them are also active participants at the Task Force on Applications 
inside HiPEAC. As other projects that are largely driven by HiPEAC partners 
(http://www.hipeac.net/related), we share the goal of selecting a set of well-characterized applications 
and input data sets. This is a practical way of source code sharing and collaboration within the 
European Projects community. 

The HiPEAC Task Force had previously proposed some of the applications selected in this WP as 
representatives of their respective domain. In TERAFLUX, we will explore their scalability by using 
our dataflow programming and execution model. 

In the opposite direction, some applications have been contributed directly by our partners; after we 
have characterized them and agreed  on their appropriateness, we will contribute them to the HiPEAC 
repository. As mentioned before, we would like other projects to use them as a reference, and 
therefore be able to compare their performance when ported and run on top of other platforms.   

2.3.2 Initial Reference Kernel/Application Disk Image 
Given the variety of kernels and applications explored in the project, which span multiple 
programming models, it is important to provide all partners with a baseline installation that can be 
used in conjunction with the simulation platform. Such a distribution was therefore prepared at BSC 
and distributed to the partners. 

In order to avoid portability and compatibility issues, the baseline distribution is packed as a raw disk 
image containing a basic Linux installation. The format was chosen such that it would natively plug 
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into the COTSon simulation platform, and the partners can therefore configure the simulation 
platform to simply boot Linux from the disk image and run the applications. 

On top of the Linux installation, the disk image contains an initial set of benchmark kernels and 
applications, both pre-compiled and in binary form, as well as all the tools needed to modify and 
recompile the source files. Furthermore, the image includes an extensible Experiment Management 
System (EMS) that manages the execution and compilation of both the benchmarks and any external 
tool required, such as the compilation tool-chains for the different programming models. EMS is 
designed with extensibility in mind, so that more benchmarks and tools can be easily added to the disk 
image, either by re-distributing a new version of the image itself, or by distributing an archive 
containing only the additions. 

The EMS is composed of a set of meta-scripts that abstracts the idiosyncrasies of the individual 
benchmarks by providing a uniform interface to build and execute benchmarks. The usage of the EMS 
script is outlined below. 

Figure 1 EMS usage information 

EMS abstracts the datasets for each benchmark into predefined names - small, medium, and large. 
These abstract names are translated by the main EMS meta-script into benchmark-specific runtime 
arguments. This translation is naïve by design and is implemented by executing sub-scripts named 
after the abstract dataset size. This enables users of the disk image to manually change dataset 
arguments and thereby utilize EMS for any additional benchmarks characterization performed. 
Moreover, upon benchmark execution, EMS creates a new run directory that stores the execution 
output thus providing a foundation for methodical comparative studies of the benchmarks. 

 

Finally, EMS uses a hierarchical directory structure to store the benchmarks and external tools, 
including their binaries, source codes, datasets, execution scripts, and build scripts. This design, in 
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turn, allows users to track script execution in order to simplify its extensibility by providing users with 
a glimpse into the internal workings of the EMS utility. 
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3 Methodologies used in the characterization and 
modeling of project kernels/benchmarks/applications 

3.1 Parameters to be measured 
Application requirements dictate the platform specification. But little is known about the resource 
requirements of current HPC applications, and how well they can utilize teradevice systems. This is 
even more critical in the evolving field of High Performance Embedded Computing (HPEC), where 
the application and platform are tailored together.  

We will study and model the demands from the interconnect network, the memory bandwidth, and 
memory locality patterns. For example, increasing the number of computing cores is already 
pressuring the memory system, thus limiting available bandwidth and increasing access latencies. A 
better understanding of the actual use of data in applications will show the variability in memory 
requirements - in terms of size, bandwidth, and susceptibility to latency - of different computations 
inside the application. Additionally, we will focus on the inherent computational tasks inside HPC and 
HPEC applications, thus gaining more concise and effective insights of the transactional and data-
flow semantics. This information will serve as a guideline in the design of asymmetric distributed 
memory systems, as well as in the mapping of computations to computing elements using 
data/computation scheduling algorithms. 

Of particular interest will be to understand the characteristics of applications using the programming 
model that combines dataflow and transactions. 

Another way to characterize applications is the usage of architecture independent metrics 
[Amesfoort10, Strohmaier04]. We briefly explain the methodology below. Some tools like Intel 
Parallel Studio XE provides ways to measure “parallelism” as defined by Leiserson [Frigo98]. This is 
discussed in subsection 3.3  

According to this, we have classified the parameters to be evaluated from the applications in Resource 
requirements and TERAFLUX execution model requirements. For these two categories, the following 
parameters have been identified:  

Resource requirements 

• Memory BW 
• CPI Breakdown 
• Interconnection: BW, L 
• Memory hierarchy 
• Memory locality patterns 

• Parallelism 

TERAFLUX execution model requirements 

• Transactional needs  
o Proportion of time spent executing transactions 
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o Characteristics of the executed transactions 
o Characteristics of the wasted work due to transaction aborts 

• Data flow needs  

We have also classified the type of evaluation as Analytic evaluation (those performed statically, in an 
analytical way) and Evaluation using performance/monitoring tools (those based on actual results of 
applications on real or simulated platforms).  

Metrics to characterize Parallel Applications 

We want a way to effectively address the problem of characterizing each parallel applications limiting 
its scale by splitting the potentially infinite application space into a limited set of application classes. 
This idea is not entirely new, as a similarity-based taxonomy has been recently proposed. We focus on 
a mostly quantitative application characterization based on [Amesfoort10, Stroghmaier04]. They 
introduce a set of metrics to characterize applications and we show how they can be evaluated for 
three case-studies. Once a wide range of applications have been characterized, we can identify a 
limited number of application classes. Next, for these classes, dedicated programming tools can be 
used to write high-performance parallel software in a productive way. In the following paragraph, we 
enumerate the set of metrics: 
 

Metrics related to Computation [Amesfoort10]:  (Available concurrency (Conc), Arithmetic 
Intensity (AI), Operation Mix (OpMix), Memory Footprint (MemFt). 

Metrics related to Communication: (Count, Direction (R/W), Length (Len), Alignment (Align)) 

Metrics related to Synchronization: (Local synchronization (LSyncs), Global Synchronization 
(GSyncs), Update Conflicts (UpdCf))  

If we assume that the data access of any code [Stroghmaier04] can be described as several concurrent 
streams of addresses which in turn can be characterized by a single, unique set of performance related 
factors. As performance factors for our characterization we chose: 
 
Main factors of performance: (Regularity, Data Set Size, Spatial locality, Temporal Locality and 
reuse).  

At the current moment, we do not have specific measurement but we consider these kind of 
characterizations very relevant to us. 

The next sections present the methodologies that will be used in the project to perform the application 
characterization. We have classified them according to their nature, differentiating analytic methods 
from methods that use performance/monitoring tools. 

3.2 Analytic evaluation 

3.2.1 Dataflow analysis 
For the purpose of analysing the STAP and Pedestrian Detection applications, Thales used the internal 
SpearDE co-design environment, allowing the implementation of signal and image processing 
dataflow applications onto heterogeneous distributed architectures. 
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We mostly used the first stages of the whole SpearDE workflow: 

Application Analysis: The first stage consists of describing the dataflow application as an acyclic 
graph within the graphical environment of PtolemyII. The nodes of this acyclic graph represent 
statically affine nests of loops to be executed over the elementary operations to be applied on the 
dataflow, whereas the edges represent the input-output flow. 

This representation uses a multi-dimensional Synchronous Data Flow-like model of computation 
based on the ArrayOL formalism, allowing to highlight several axes of parallelism beforehand. Task 
parallelism becomes obvious in the graphical representation and data parallelism is highlighted inside 
each node through the external loops to be executed. 

At this point, despite the fact that the application design is architecture agnostic, thanks to the 
information describing an elementary operation, data sizes are computed by the tool on the fly 
allowing to compute a preliminary estimation of throughput and computational load.  

This information will be later used in the SpearDE environment to prepare the user-assisted 
architectural mapping phase, to automatically generate the communications allowing to transfer data 
between processing elements, or to automatically fuse several elementary tasks together to reduce the 
communication overhead. 

In order to test the validity of the application graph, sequential, executable C code can be generated 
and its results are compared to those from the reference implementation. 

From this Application Analysis phase, the TERAFLUX project will take benefits from the data-flow 
description of the application, the associated estimated throughput, and from the sequential version of 
the application to validate against. 

Communications and the Transposition problem: For signal processing applications, the dataflow 
usually consists of multidimensional data (e.g. radar), whereas the elementary tasks consist of various 
filters, dot products, averaging, interleaving and de-interleaving to be applied to several dimensions of 
this multi-dimensional data.  

However those elementary operations make no assumptions on the data organization applying 
themselves to the first dimensions of the input data. Some extra data transpositions (or corner turns) 
are therefore necessary prior to applying the elementary operations. To avoid extra communication 
costs, those transpositions are performed alongside the communications between processing elements, 
trying both to maximize data-locality and to minimize memory occupancy. 

Within the TERAFLUX project, we will first consider those transpositions as extra elementary 
operations, allowing to directly use the TERAFLUX communication model at the cost of extra 
communications. In a second step we will consider embedding those transpositions into the 
communication scheme to reduce the communications and benefit from better data locality as 
presented above. 
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3.2.2 Task graph generation 
The StarSs programming model is based on the dynamic generation of a task graph that is used by the 
runtime to exploit the concurrency of the computation. The task graph is built taking into account the 
actual data dependences of the tasks. Although built at execution time, the StarSs runtime is able to 
generate a graphical version of this graph post-mortem in such a way that the task graph can be used 
to characterize the application. The basic characteristic that can be observed from the task graph is the 
potential concurrency, although in heterogeneous environments where given tasks may require 
specific hardware the graph may also reflect this information. Although currently not available, 
further information that could be extracted from the graph is the amount of data that flows through the 
graph and how it is transformed by each task. The next pictures show views of different task graphs 
that show the variability of their morphology: 

 

(a) 

 

(b) 

 

(c) 

Examples of StarSs Task Dependence Graphs: a) Matrix multiply; b) Check LU (composition of LU 
and check of results); c) PBPI 
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3.3 Evaluation using performance/monitoring tools 

3.3.1 Memory BW 
Consolidating multiple cores on a single chip imposes much higher bandwidth requirements on the 
shared components of the memory system — namely the off-chip memory bandwidth and the shared 
caches. Off-chip memory bandwidth is limited by the number of chip-to-board pins on one hand, and 
by the signalling frequencies of each pin on the other. On-chip caches are therefore commonly used to 
reduce the number of off-chip accesses, thereby reducing off-chip bandwidth (and access latencies), 
but are limited in size.  
 
These design issues motivate the exploration of memory requirements of real parallel applications. 
 
As we are not assuming parallel applications that explicitly target shared-memory CMPs, we base our 
predictions on the per-CPU memory requirements of distributed memory MPI applications. Although 
this methodology is imperfect (data may be replicated between nodes, which may result in pessimistic 
predictions when addressing shared-memory environments), we believe it provides a good indication 
of the requirements from a CMP memory system. 
 
Methodology 

We perform a full execution of the application, instrumented at the higher abstraction level: CPU 
bursts, synchronization and communication events. It produces a full time-stamped trace of events, 
annotated with hardware performance counters and memory usage statistics associated with each CPU 
burst. The full trace, representing hours of real execution, is still too large for processing. In order to 
reduce it to a manageable size, we apply non-linear filtering and spectral analysis techniques to 
determine the internal structure of the trace and detect periodicity of applications. Based on this 
analysis, we can cut a sample of the original trace, between 10 and 150 times smaller than the full 
trace [Casas07]. Next, we use a density-based clustering algorithm applied to the hardware counters to 
determine the most representative computation CPU bursts inside a period of the new trace 
[Gonzalez09]. At that point, we can analyse in isolation each one of the detected CPU phases (cluster 
of CPU bursts).  
 
Our evaluation platform is a cluster of JS21 blades (nodes), each hosting 4 IBM Power PC 970MP 
processors running at 2.3 GHz. Each node has 8 GB of RAM, shared among its 4 processors, and is 
connected to a high-speed Myrinet type M3S-PCIXD-2-I port, as well as two Gigabit Ethernet ports. 
In order to avoid contention on the nodes’ RAM, the benchmarks executed using only a single 
processor per node. Therefore, an application running on 64 processors actually had exclusive access 
to 64 nodes and 256 processors, of which 192 were idle (3 per node) such that each processor used by 
the application had 8 GB of memory and the full bandwidth at its disposal. 
 

3.3.2 CPI Breakdown 
A common metric used to evaluate processor performance is the average number of cycles required to 
complete the processing of a single instruction, or cycles-per-instruction (CPI). This metric, acquired 
by averaging the number of instructions processed over a period (measured in cycles), accounts for 
the different pipeline stalls that may occur during processing and provides a simple computational 
throughput metric. 
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Using hardware performance counters the basic CPI metric can be broken down to its specific 
components – the average delay induced by each of the functional units and different types of stalls. 
These include memory stalls, waiting for specific functional units, etc. Breaking down the basic 
metric into its individual components enables a better understanding the performance bottlenecks, and 
how the programming model and processor design affect performance. 

Methodology 

The results presented in next section were obtained by running selected MPI applications on the 
MareNostrum supercomputer, and sampling the different hardware performance counters throughout 
the run, thereby providing continuous performance measurement that facilitates performance analysis 
of individual computational phases. 

The design of hardware performance counters does not support a continuous tracking all the counters 
on each processor. We have therefore used a temporal sampling of different counter sets among the 
different threads, which divides the entire counter sets into separate subsets and assigns a subset to 
each of the application’s threads. Furthermore, in order to get a more accurate approximation of the 
CPI breakdown, the subset of performance counters tracked by each thread is switched regularly, 
while making sure that at any given time the different subsets are distributed among the threads such 
that the collection of subsets covers the entire set of performance counters 

The direct result of this technique is a trace file containing the performance counter readings for all 
the threads, where at any given point in the trace each thread has accurate reading for a subset of all 
the performance counters. We then use CPI-based interpolation to approximate the values for the each 
thread’s missing counters based on the accurate values sampled by other threads. This interpolation is 
based on the periodic nature on parallel scientific applications, according to which all the threads 
typically execute the same code at any given time and are therefore likely to experience the same 
behaviour. 

Finally, the interpolated counter values are used to derive a continuous CPI breakdown estimate for 
the entire runtime of the application.  

3.3.3 Interconnection: BW, L 
One of the key elements of current large-scale computers is the interconnection network, and although 
an interconnection network can be characterized by many parameters, latency (L) and bandwidth 
(BW) are the more representative. 

While latency (L) measures the time that it takes a message to travel from one node to another the 
bandwidth (BW) measures the number of bytes sent per unit of time. The characterization that we 
want to do is to evaluate the impact of the latency and bandwidth in current applications, in such a 
way that we can extrapolate the importance of these parameters in the future architectures.  

The methodology explained in this section relates to the evaluation of latency and bandwidth in MPI 
applications by means of using the Dimemas1 simulator. 

                                                      
1 http://www.bsc.es/plantillaA.php?cat_id=475 
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Methodology 

Dimemas is a performance analysis tool for message-passing programs. It enables the user to develop 
and tune parallel applications on a workstation, while providing an accurate prediction of their 
performance on the parallel target machine. The Dimemas simulator reconstructs the time behavior of 
a parallel application on a machine modelled by a set of performance parameters. Thus, performance 
experiments can be done easily. The supported target architecture classes include networks of 
workstations, single and clustered SMPs, distributed memory parallel computers, and even 
heterogeneous systems. 

Several message-passing libraries are supported, while MPI is the more well-known nowadays. For 
communication, a linear performance model is used, but some non-linear effects such as network 
conflicts are taken into account. The simulator allows specifying different task to node mappings. 

Dimemas generates trace files that can be analysed by performance analysis tools, like Paraver2, that 
enable the user to conveniently examine any performance problems indicated by a simulator run. 

The analysis module performs critical path analysis reporting the total CPU usage of different code 
blocks, as well as their importance for the program execution time. Based on a statistical evaluation of 
synthetically perturbed traces and architectural parameters, the importance of different performance 
parameters and the benefits of particular code optimizations can be analyzed. 

Figure 2 represents how Dimemas can be used and the benefits of using the Dimemas environment for 
application analysis, development and tuning. These benefits are based in the possibility of not using a 
parallel machine to run the application to get the traces and the possibility to analyze different 
application choices without changing or re-running the application itself. 

Using Dimemas instrumentation libraries, the tracefile can be obtained either in a dedicated parallel 
machine or in a shared sequential machine. Instrumentation libraries only record the CPU time in 
between communications and the communications primitives, thus the tracefile does not contain any 
record of network contention or processor preemption. With these records Dimemas will rebuild the 
application behaviour, using the tracefile and the architectural parameters defined. Per process CPU 
time is used as opposed to elapsed time. In this way, if a process suffers preemption during the 
instrumentation, Dimemas will not consider the preempted time and the predicted performance will 
approximate what would happen in a dedicated machine. In this way, Dimemas enables the analysis 
(or characterization) of applications for non-existent machines by means of using the architectural 
parameters and the traces obtained from the application runs.  

The loop involving Dimemas and Paraver, the simulator and the visualization tool, is the second 
benefit of using this environment. The user has the chance to analyze the application behavior when 
some parameters are changed, for example, what will happen to application execution time if the 
execution time of a given function is reduced by 50%? In the output information section, some 
examples describe the different possible analysis. 

                                                      
2 http://www.bsc.es/plantillaA.php?cat_id=485 
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In the description of the architectural parameters the user can define different types of parameter, like 
the architecture of the machine (processors per node, performance of the processors), but here we will 
focus on the network parameters. The interconnection network is represented with two parameters: 
number of links from a node to the network, represented by L, and number of buses in the network, 
represented by B. For each of the links, the parameters latency and bandwidth can be defined with 
different values to model heterogeneous network architectures.  

 

 

Figure 2 CEPBA-Tools3 workflow 

3.3.4 Memory hierarchy 
Performance analysis tools allow the analyst to understand the idiosyncrasies of an application to 
finally improve it. However, these tools require monitoring regions of the application to provide 
information to the analyst, leaving the non-monitored regions of code unknown to him or her, which 
can result in lack of understanding of important parts of the application. 

In TERAFLUX we will use a methodology that combining instrumentation and sampling mechanisms 
is able to enrich the performance analysis experience by supplying performance metrics on non-
monitored regions. This methodology can be applied to study other aspects besides the memory 
hierarchy impact, but it is described here as a matter of example.  

This methodology uses computation burst clustering and a mechanism called folding. While 
clustering automatically detects application structure, folding combines instrumentation and sampling 
to augment the performance analysis details. Folding provides fine grain performance information 
from coarse grain sampling on iterative applications. Folding results closely resemble the performance 

                                                      
3 CEPBA-Tools is the set of performance analysis tools from BSC, mainly the Dimemas simulator, the Paraver 
visualizer and analyzer and a set of tracing and automatic analysis tools. 
See http://www.bsc.es/plantillaF.php?cat_id=52 
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data gathered from fine grain sampling with an absolute mean difference less than 5% and taking 
benefit of the marginal overhead imposed by sampling at coarse granularity. 

Gathering information using sampling requires choosing a proper sampling rate. If the analyst does 
not know the application well enough, the election of the sampling frequency becomes a blind process 
and the analyst will first try a default frequency. If the analyst considers that the quantity of samples 
are not enough to characterize the region of interest within the application, then another execution will 
be needed with the consequent waste of computing resources. 

The sampling frequency must not be too high in order not to disturb the application behavior. The 
objective of both sampling and folding is to provide large quantity of details while keeping the 
overhead at minimum. To accomplish our objective we use large sampling periods and we apply the 
folding process on iterative applications (which are very common in scientific computing). Folding is 
a post-mortem mechanism that reports the instantaneous evolution of performance metrics (i.e., 
MFlops) along delimited regions by gathering the sampled metrics along the whole execution. 

Folding combines instrumented and sampled information contained in a tracefile to augment the 
details of the instrumented regions. In the folding process, instrumented and sampled information play 
different roles. Instrumented information is used to delimit regions and to determine to which region a 
sample belongs. Sampled information determines how the performance behaviour evolves within the 
region to which it belongs. 

Instead of dealing with the cloud of samples, we perform a polynomial adjustment using the Kriging 
contouring algorithm. We benefit from the Kriging algorithm in several ways. First, as an analytical 
model we can compute its derivative and, from the derivative, we can compute the instantaneous 
rates. Second, and to serve further analyses, we sample the Kriging result to reintroduce the folded 
metrics as synthetic events into the tracefile at a user requested rate. Finally, the contouring algorithm 
serves also as a noise reduction mechanism.  

As we have seen, the folding mechanism requires some tracefile events to delimit to which region a 
sample belongs. To delimit the regions, an option is to modify the application at compile or link time 
in order to obtain these delimiters using instrumentation. Another option is to enable the 
instrumentation package to do this automatically. In our case, the Extrae instrumentation package 
instruments MPI calls through the PMPI interface. The resulting tracefile contains information on 
entry and exit points to the MPI calls. We define a computation region as the code between a MPI exit 
point and the following MPI entry point. The computation regions are then used as delimiters in the 
folding process. In order to identify different instances of the same computation region to be folded on 
the synthetic regions we use a clustering tool. This clustering tool uses a post-mortem density-based 
clustering algorithm and groups similar computation regions using the metrics contained in the 
tracefile. The clustering tool reports two different outputs: pair-wise scatter-plots for each of the 
metrics used in the clustering process and an annotated tracefile indicating the computation clusters. 

3.3.5 Memory locality patterns 
In order to evaluate hardware and software locality aware policies, we use an application 
instrumentation tool to obtain application traces. Once we obtain the application traces, we perform 
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different experiments using a cycle-accurate simulator to study and evaluate the different locality 
policies. 

The applications evaluated in the project are large parallel applications, and they are too big to obtain 
traces of the full execution.  

For this reason, we use SimPoint/Optima [Casas07] to identify the most relevant part of the 
application. This selected representative part of the application is usually a parallel section. Once we 
identify the most relevant part of a parallel application, we use an instrumentation tool (Pin, BProber 
or Valgrind) to instrument the application code and obtain the traces.  

The traces of an application contain a set of files with information about the application basic blocks, 
instructions and memory addresses. Within this information, the simulator can reproduce the 
application behaviour. The instrumentation tool is programmed so that all thread traces maintain 
application synchronization.  

As an example, for OpenMP applications, we split each thread trace in separate files when a barrier is 
found.  Through this mechanism, execution on a simulator can reproduce the application including its 
threads’ synchronization. 

3.3.6 The parallelism 
The parallelism denotes the amount of calculations that are carried out simultaneously, operating on 
the principle that large problems can often be divided into smaller ones, which are then solved 
concurrently ("in parallel").     

The parallelism is defined as the ratio of total work to span. If you run an application on many fewer 
processors than the parallelism, then you should expect linear speedup. We need tools designed for 
general-purpose parallel programming, but also specialized effective for exploiting dynamic, highly 
asynchronous parallelism, which can be difficult to write in data-parallel or message-passing style.  
 
The philosophy behind Cilk[CILK546] is that a programmer should concentrate on structuring his 
program to expose parallelism and exploit locality, leaving the runtime system with the responsibility 
of scheduling the computation to run efficiently on the given platform. The basic Cilk language is 
simple. It consists of C with the addition of three keywords to indicate parallelism and 
synchronization. 
 

Methodology 

Let us denote by TP the execution time of a given computation on P processors. The work  of the 
computation is the total time needed to execute all threads in the dag. We can denote the work with 
T1, since the work is essentially the execution time of the computation on one processor.  
 
Notice that with T1 work and P processors, the lower bound TP ≥ T1/P must hold4. The second limit is 
based on the program's span, denoted by T∞ , which is the execution time of the computation on an 
infinite number of processors, or equivalently, the time needed to execute threads along the longest 
path of dependency.  The second lower bound is simply TP  ≥  T∞.  

                                                      
4 This abstract model of execution time ignores memory-hierarchy effects, but is nonetheless quite accurate [Blumofe95]. 
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Cilk's[CILK546] work-stealing scheduler executes a Cilk computation on P processors in time Tp ≤ 
T1/P + O(T∞), which is asymptotically optimal. Empirically, the constant factor hidden by the big O is 
often close to 1 or 2 [Blumofe95], and the formula 
 

TP ≈T1/P + T∞ 

 

is a good approximation of runtime. This performance model holds for Cilk programs that do not use 
locks. If locks are used, Cilk does not guarantee anything. (For example, Cilk does not detect 
deadlock situations.)  We can explore this performance model using the notion of parallelism, which 
is defined as Ƿ = T1/T∞.  The parallelism is the average amount of work for every step along the span. 
Whenever P ≪ Ƿ, that is, the actual number of processors is much smaller than the parallelism of the 
application, we have equivalently that T1/P ≫T∞. Thus, the model predicts that TP ≈ T1/P, and 
therefore the Cilk program is predicted to run with almost perfect linear speedup. The measures of 
work and span provide an algorithmic basis for evaluating the performance of programs over the 
entire range of possible parallel machine sizes. Cilk's timing instrumentation can measure these two 
quantities during a run of the program, no matter how many processors are used [CILK546]. 

3.3.7 TERAFLUX execution model requirements 
TM requires a programmer to mark code blocks that access shared data as transactions. Whenever a 
transaction executes, a runtime system records the transaction’s data accesses into a readset and a 
writeset. These sets are compared with the sets of other concurrently executing transactions for access 
conflicts (write/write or read/write). If conflicting accesses are detected then one of the conflicting 
transactions is aborted and restarted. A contention manager decides which transaction to abort. A 
transaction that completes execution of its code block without being aborted can commit its writeset. 
 
We instrumented our software TM library to collect execution data from the execution of the 
applications. We present those metrics commonly used to characterize applications in the TM 
literature, and introduce two new metrics not seen in the TM literature; the transaction execution time 
histograms and the Instantaneous Commit Rate (ICR). 

 
In transactions (InTX) is the percentage of total time the applications spent executing 
transactions. For the applications studied, the remaining percentage of time is spent executing 
serial code. A high InTX means an application spent most of its time executing transactions, thus 
possibly stressing the TM implementation more than an application with low InTX. 
 
Wasted work shows the percentage of transaction execution time spent executing transactions 
that subsequently aborted. It is calculated by dividing the total time spent in aborted transactions 
by the time spent in all (committed and aborted) transactions. High amounts of wasted work can 
be an indicator of poor contention management decision-making, low amounts of parallelism in 
the application. 
 
Aborts per Commit (ApC) shows the mean number of aborted transactions per committed 
transaction. ApC is not directly related to wasted work, but is an indicator for the same issues 
mentioned for wasted work. For example, high wasted work in combination with a low ApC 
(aborting a few long/large transactions, and favoring many short/small transactions) may indicate 
poor contention management decision-making, and studying the application may lead to better 
contention management policies. 
 
Abort histograms detail how the ApC is spread amongst the transactions; e.g. is the ApC due to 
a minority of transactions aborting many times before committing, or vice versa? 
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Contention Management Time (CMT) measures the percentage of time the mean committed 
transaction spends in performing contention management when conflicts are detected. In 
combination with wasted work and abort histogram data, it is possible to understand which 
contention manager may be most effective for the profiled application. 
 
Transaction execution time histograms show the spread of execution times of committed 
transactions. This metric describes how homogeneous or heterogeneous is the amount of work 
contained in transactions for a given application. 
 
Instantaneous Commit Rate (ICR) graphs show the proportion of committed transactions at 
sample points during the execution of the application. ICR includes only completed, i.e. 
committed or aborted, transactions, and does not include active transactions. Low ICR is 
indicative of wasted work. 
 
Readset & writeset sizes are a measure of the memory boundedness of committed transactions in 
an application. They can be used for selecting buffer or cache sizes for Hardware TM (HTM) 
implementations. Data from non-trivial TM applications gives higher confidence that the 
hardware will not overflow for a large proportion of transactions. In Section 4 a writeset is always 
a subset of its corresponding readset because all applications first read data before writing. For 
other applications, these sets may only overlap, or be distinct. 
 
Readset-to-writeset ratio (RStoWS) shows the mean number of reads that lead to a write in a 
committed transaction. Execution usually involves reading a number of data elements, performing 
computation, and writing a result to a data element. 
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4 Initial characterization and modelling of project 
kernels/benchmarks/applications 

This section presents results of the initial characterizations being performed using the different 
methodologies presented in the previous section.  

4.1 Analytic evaluation 

4.1.1 Dataflow analysis 
STAP 

The purpose of the Space-Time Adaptive Processing (STAP) for Radar application embedded in 
planes is to detect the position and radial speed of another flying target despite the presence of 
ground-based or flying jamming devices. 

 

 

 

 

 

 

 

 

 

Figure 3 STAP Dataflow 

The STAP algorithm, presented in Figure 3, is processing 3-dimensional input data bursts composed 
of (antenna, pulse rate and range gate), and is decomposed into the following phases: 

1. During the Pulse Compression phase, the input signal is converted into complex floating point 
number data. 

2. The Steer Vectors & STAP Filters computation phase which is preparing the necessary filters 
used by the STAP algorithm. 

3. The STAP phase responsible of applying the STAP algorithm. 
4. The CFAR Thresholding post-processing phase is responsible for reducing the number of 

false alarms. 
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Estimated Throughput / Data & Time profile: As the radar is using 5 different antennas, each with 
a pulse frequency of 0.5ms and bursts composed of 32 pulses, a full burst need to be processed in up 
to 5*0.5*32= 80ms. The estimated corresponding throughput and load is appearing on Figure 4. 
 

 

 

 

 

 

 

 

Figure 4 STAP throughput 

Viola and Jones (Pedestrian detection) 

The pedestrian detection algorithm consists of applying a cascade of simple classifiers in order to 
assess the existence of a pedestrian in a given subwindow of an image (video frame).  The cascade is 
computed offline and contains several stages. Each stage contains one strong classifier computed from 
several features. The number of features grows exponentially with the stage index in the cascade. A 
classifier consists of a thresholded weighted sum of the feature values. In their turn the feature values 
are computed as a thresholded weighted sum of different simple rectangle filters.  
The cascade is applied exhaustively on image tiles at a given scale, which represents the size of the 
detectable pedestrian. Several scales are to be handled between the smallest scale (given in the offline 
cascade file, e.g. 18x36 pixel tiles) and a maximum allowable scale (which is a function of the image 
size). Therefore the cascade file needs to be scaled in order to handle different tile sizes.  
 

 

 

 

 

 

 

Figure 5 Viola & Jones Dataflow and throughput 
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The main stages of the pedestrian detection algorithm are the following: 
1. Load one frame and original cascade file 
2. Compute intermediate representation from the original image (used in computing the rectangle 
filters efficiently) 
3. For all tiles at a given size compute tile variance (needed for normalizing classifier values). 
4. Apply first stage of the cascade on all tiles. Retain only valid tiles (according to the stage 
threshold). Apply second stage on the valid tiles. Update valid tiles list, and so on. 
5. Display valid candidate windows after the last stage in the cascade. 
6. Pass to next image tile size and repeat 3-5. 
7. Post-process results at each tile size.  
 
Estimated Throughput / Data & Time profile:  The pedestrian detection algorithm is to be applied 
with video recorder running at 15 frame per second, the search frame scanning the 32-bit image 
scaling from x1 (18x36 pixels) to x6 (108x216 pixels). The required throughput for a single frame 
therefore vary from 4 * 18 * 36 * (241-18) * (321-36) = 166MB to 4 * 108 * 216 * (241-108) * (321-
216) = 33MB. At 15FPS, the throughput varies from 2.4GB to 495MB. Figure 5 presents the 
throughput associated with each elementary operation. 
 

4.2 Evaluation using performance/monitoring tools 
 

4.2.1 Memory BW 
 

Application  Description 
GADGET2 Cosmological N-body and smoothed particle hydrodynamics simulations 
GROMACS  Molecular dynamics package simulating the Newtonian motion equations of large 

particle systems 
LESLIE3D Computational fluid dynamics code 
MILC  Large scale simulations of four dimensional SU(3) lattice gauge theory 
POP Ocean circulation model 
SOCORRO  Self-consistent electronic-structure calculations 
SPECFEM3D Southern California seismic wave propagation based upon the spectralelement 

method (SEM) 
TERA_TF 3D Eulerian hydrodynamics application 
VAC4 Solver astrophysical hydrodynamical and magnetohydrodynamical Problems 
WRF  Mesocale numerical weather prediction system 
ZEUS-MP Computational fluid dynamics for astrophysical phenomena 

Table 3 List of examined applications 

Results 

In order to predict the bandwidth requirements, we measured the per-processor bandwidth consumed 
by each benchmark at three levels: the off-chip memory bandwidth, L2 bandwidth, and L1 bandwidth. 
Figure 6 (a) and (b) depict the average per-processor off-chip bandwidth, and Figure 6 (c) and 2 
depict the bandwidth between the L1 and L2 caches. 
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For the sake of readability, the benchmarks were split into two groups, based on their bandwidth 
consumption.  As discussed Section 3, the entire execution time is divided into clusters. Phases of an 
application experiencing similar characteristics — specifically CPI, computation intensity, percentage 
of TLB misses, and bandwidth requirements — are grouped into the same cluster. For each 
benchmark, we focus our discussion on the four clusters dominating benchmark’s runtime. Therefore, 
the X axis represents the percentage of the execution time spent in each cluster, and the Y axis shows 
the measured bandwidth in MB/s.  
 
Figure 6 (a) and (b) show the off-chip memory bandwidth measured: Figure 6 (b) shows the results 
for benchmarks classified as having low memory bandwidth requirements, whereas Figure 6 (a) 
shows the results for benchmarks classified as bandwidth intensive.  
 

 
 

(a) Memory Bandwidth: High BW group 

 
 

(b) Memory Bandwidth: Low BW group 

 
 

(c) L2 Bandwidth: High BW group 

 
 

(d) L2 Bandwidth: Low BW group 

Figure 6 Bandwidth requirements 

The figures show that the low-bandwidth benchmarks experience a typical off-chip memory 
bandwidth of 50–200 MB/s, whereas the high-bandwidth group typically requires between 100 and 
400 MB/s, with peaks reaching as high as 700 MB/s. But as these values represent the per-processor 
average, they are likely to scale linearly when processors are consolidated on a single chip. Placing 
100 processors on a chip is therefore likely to require sustained off-chip memory bandwidth of 10 
GB/s to 40 GB/s, and may even peak to 70 GB/s. 
 
Compared with the off-chip bandwidth, the observed L2 cache bandwidth is an order of magnitude 
higher. This is understandable as the L2 cache hits filter bandwidth that would otherwise go off-chip 
(the same conclusion would apply for L1 vs. L2 bandwidth). To better understand the effectiveness of 
the caches, as well as variations in measured bandwidths between particular clusters, we have 
investigated three workload related metrics: frequency of memory accesses (the number of 
instructions per memory access) and the L1 and L2 miss rates. 
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Figure 7 depicts the above metrics for MILC 3(a), GADGET2 3(b), WRF 3(c) and SOCORRO 3(d), 
respectively. Each figure is split into two sub-plots — the top plot presents the bandwidth for the main 
memory, and L2 and L1 caches bandwidth, and the bottom plot shows the frequency of memory 
accesses, L2 and L1 miss rates of the respective clusters. Both sub-plots have the same X-axis, so that 
bandwidth variations can be correlated with variations in cache miss rates and/or frequency of 
memory accesses. 
 
For MILC, the first significant change in bandwidth is observed between second and third cluster, as 
the memory bandwidth decreases (note the logarithmic bandwidth scale), despite the increase in 
memory access frequency. This is explained by the reduction in L1 and L2 miss-rates, which indicates 
that more data is fetched from the caches (mainly the L1, whose bandwidth increases), suggesting the 
third cluster experiences better data locality. A similar trend is observed between the third and forth 
cluster, in which the L1 bandwidth increases even further indicating a much higher data locality. 

 
(a) MILC 

 
 (b) GADGET2 

 
(c) WRF 

 
(d) SOCORRO 

Figure 7 Memory bandwidth requirements of selected applications, and their associated 

A similar behaviour can be seen in WRF, when transitioning between second and third cluster, even 
though in this case we do not see an increase in memory access frequency. 
 
For GADGET2, we observe the effects of different efficiencies of L2 cache. Between the first and 
second cluster, we see the a large increase in L2 bandwidth accompanied by a dramatic decrease in L2 
miss-rate (and a similar, yet less noticeable effect for L1), again suggesting better data locality as L2 
hits filter away more of the memory bandwidth. This trend continues between the second and the third 
cluster. Finally, in the fourth cluster, both L1 and L2 cache miss rates remain on the same level, while 
frequency of the memory accesses decreases, which leads to decrease in bandwidth demands of all L1 
and L2 caches and main memory. 
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Finally, for SOCORRO we see a big increase in frequency of memory accesses between the first two 
clusters.  The increase is large enough that even though the L1 cache miss-rate decreases slightly, it 
cannot fully absorb the larger number of memory accesses. Still, the L2 manages to capture most of 
the memory access frequency, as attested by its decreased miss-rate. As a result, both L1 and L2 
bandwidth increase, and the main memory bandwidth decreases. 
 
The results suggest that despite the fact that memory bandwidth requirements are seemingly high, in 
many cases data locality is substantial enough such that the caches capture most of the traffic. The 
evaluation suggests that, for CMPs consisting of up to ~100 processors, aggressive on-chip caching 
may suffice in bridging the gap between the memory bandwidth required by parallel applications and 
the effective off-chip bandwidth supported by current memory technologies. However, our 
observations also suggest that the tipping point lurks at ~200 processors on a chip, at which point 
existing memory technologies will not be able to provide applications with sufficient memory 
bandwidth. 

4.2.2 CPI Breakdown 
Results 

Figure 8 and Figure 9 show the CPI breakdown for WRF and GADGET2 (due to lack of space, we 
only show results for two of the applications analyzed, see [Pavlovic10] for more details). 
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Figure 8 CPI breakdown for WRF, running on 16, 32, 64, 128 processors. Results are shown for a single 
sample thread. 

Figure 8 illustrates the CPI breakdown for WRF. The CPI pattern clearly describe the data 
initialization part at the beginning of the execution, the parallel computational phase at the heart of the 
execution, followed by a termination phase. Furthermore, it is clear that the initialization and 
termination phases do not scale as the level of parallelism increases and become the dominant time 
consuming factor as the computational phase is accelerated with the increased parallelism.  

When examining the scaling of the parallel phase, it is clear that WRF is a floating-point intensive 
application, as the biggest source of pipeline stalls in WRF is the functional units, contributing 
roughly 50% of the CPI throughout the computational phase. The rest of the pipeline stalls are mostly 
associated with the memory system, and are mostly attributed to data cache misses, either directly or 
indirectly (LSU full), or due to the basic latency of the load/store units. 
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Figure 9 CPI breakdown for GADGET2, running on 32, 64, 128 processors (the dataset is too big to fit on 
a 16 processor configuration). Results are shown for a single sample thread. 

A similar CPI breakdown is observed for GADGET2 as well, as shown in Figure 9. GADGET2’s 
three parallel computational phases appear as the floating point intensive segments in mid-run. These 
phases are separated by MPI communication phases – an artifact of the programming model, rather 
than an intrinsic component of the computation. While the main causes for pipeline stalls are 
generally similar to WRF, GADGET2 also has a noticable portion of its stalls caused by the fixed-
point functional units (FXU), and miscellenious pipeline stalls (branch mispredictions, I-cache misses, 
microcoding overheads, etc.). 

Overall, these initial results are very promising in the context of the TERAFLUX project, as dataflow 
programming models are ideally suited for further parallelization of floating point and fixed point 
operations, which account for 50% of the pipeline stalls. Moreover, dataflow models facilitate 
judicious data scheduling and can typically provide highly efficient use of the memory heirarchy – 
much better than that of prevalent cache architectures that rely on demand fetching. 

4.2.3 Interconnection: BW, L 
This section presents initial characterization results that have been obtained with the application 
Gadget. The first step was to generate a tracefile of a real run in the MareNostrum supercomputer. For 
example, the tracefile on the top of the figure below shows a plot of the tracefile when using 256 
processes. The tracefile is a timeline where each line represents a process of the application (although 
the lines are collapsed to make a more compact image). Different colors represent different activities. 
The light blue represents the phase of the application when computation is performed, an all the other 
colors represent the time when the application is executing an MPI call.  

The image below is the reconstruction that Dimemas is able to perform when we simulate with an 
ideal network (latency =0, bandwidth = infinite). Different behaviours can be observed for different 
areas of the applications. For example, the first Allgather + sendrecv area is not affected by the use of 
an ideal network, denoting that the network is not limiting the performance of the application in this 
area. However, there are areas where the impact of the network is important: alltoall, sendrec and 
waitall.  
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Similarly to this analysis, with Dimemas we can perform exhaustive exploration of the sensitivity of 
the applications to network parameters, varying them and ploting the results in 2 or 3D charts.  

 

 

Figure 10 Impact of network in GADGET 

 

4.2.4 Memory hierarchy 
In the analyses we study some of the more time-consuming computation regions [Servat09, Servat11]. 
Every computation region is described by a figure of the folded hardware counters that were gathered 
in the execution using sampling. Moreover, each computation region is manually divided in different 
phases according to the variation on the slope in any of the shown metrics. Each application analysis 
contains also two informative tables per computation phase. One table contains hardware counter 
rates and phase duration. The other table describes the more time consuming code lines within the 
phase providing either file and line number locations or the name of the routine. 

The plots and the table containing the hardware counter rates allows us determining potential 
performance problems, either by direct observation or by relation between them.   

PEPC 

PEPC was executed on a machine with four Intel Dunnington hex-core processors running at 2.4GHz. 
The binary was generated by GNU C and Fortran compilers version 4.3.4 using -O3 as optimization 
parameter and run using 16 cores. The application ran with a medium size input and gathering 10 
samples per second. We show in Figure 11 the results for two of the more time consuming 
computation regions in the application, namely Cluster 3 and Cluster 4. Each plot contains the folded 
cumulative sample values for three different metrics: committed instructions, L2 cache misses and 
data TLB misses.  

The overall behaviour of the computation regions shown is very bad in terms of MIPS rates. In fact, 
several phases present extremely low MIPS rates. Even the highest MIPS rate is 1500, that represents 
an IPC of 0.6 at the processor speed, which is far from the ideal IPC of the machine (4).  
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Cluster 3 presents four different phases. The proportion of MIPS to L2 cache miss rates outlines that 5 
of every 100 instructions miss in L2. Phase B shows the better MIPS rate in this computation region. 
The L2 cache miss rate in this phase is similar to phase A. Then comes phase C, which runs at 80 
MIPS, which is the worst rate in the region. The high L2 and TLB miss rates seem to indicate that 
they are the limiting factor of this phase. We also have to mention the variability of the TLB misses in 
this phase. In contrast, L2 cache does not suffer from this issue because its size and associativity is 
larger than the TLB (TLB is 4-way with 32 entries whereas L2 cache is 12-way with 49152 entries). 
Improving the performance on this phase would include using large memory pages. Finally, phase D 
that executes a large quantity of operations. This can increase the register pressure in the innermost 
part of the loop, so improvements using loop unrolling techniques may be limited because the number 
of operations surpasses the number of registers (8). However, the nested loop may benefit from 
vectorization due to the reduction of control instructions and the availability of additional registers. 

 

 

 

 

Figure 11 Impact of L2 cache misses and D-TLB misses in performance of PEPC 

Cluster 4 is segmented in five phases. In phase A, we see a large variable increase in the number of 
data TLB misses which is derived from the large number of memory allocations done in the related 
part of the code.  Phase B shows a extremely low MIPS rate (close to 16), committing less than 10% 
of instructions of the region in 60% of the computation time. Phase C shows the highest MIPS and L2 
cache miss rates in this computation region, 400 and 4 million respectively.  Phase D makes a list of 
unfinished particles using a loop that accesses consecutive addresses controlled by an if clause. 
Finally, phase E refers to a loop with an irregular access pattern, which is caused by accessing 
different locations of a hash table. 

4.2.5 Memory locality patterns 
For this task, we have performed a series of experiments using the PARSEC/NAS suites using a 16-
core CMP configuration. We have evaluated Locality management policies using a comparison of two 
CMP architectures: a cache-based CMP architecture (L1 and L2), and a Local Memory-based 
architecture (L0 and LP as Local Memory). 
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The cache-based CMP divides its memory accesses between L1 cache, L2 cache, Remote L2 cache 
and Main Memory. The L1 cache is a 4-way 32KB cache, and the L2 is a 4-way 256KB cache. 

In this architecture, Locality aware policies are automatically achieved due to the hardware cache 
coherence protocols.  

The Local Memory-based CMP divides its memory accesses between L0 cache, LP or Local Memory, 
Remote LP, Main Memory and Page Migrations. The L0 cache is a 4-way, 4KB cache that only stores 
data on the Local Memory.  Each LP is a scratchpad memory of 256KB. In this architecture, Locality 
is achieved through page migration from off-chip memory to the on-chip local memories.  

When a page access count exceeds a certain threshold, a data page is automatically migrated to the 
on-chip memories. Figure 12 shows the data layout for all memory access for the PARSEC/NAS 
benchmarks.  

 

Figure 12 Data layout for PARSEC/NAS benchmarks 

Each benchmark is represented by two stacked-bar graphs: the left bar is the cache-based CMP 
architecture, and the right bar is the local memory-based CMP architecture.  Each bar shows stacked 
the layout of all memory accesses.  Through these bars, we can observe where most of the data is 
allocated for all applications/architecture.  

As it can be observed, using page migration, most benchmarks achieve a similar access time for the 
cache and local-memory based architectures. 

4.2.6 Transactional Memory 
This section presents the initial characterization results for the benchmark Lee-TM and a subset of the 
STAMP benchmark (Genome, KMeans, and Vacation).  

Lee-TM is a circuit router that makes connections automatically between points. Routing is 
performed on a 3D grid that is implemented as a multidimensional array, and each array element is 
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called a grid cell. The application loads connections (as pairs of spatial coordinates) from an input 
file, sorts them into ascending length order (to reduce ‘spaghetti’ routing), and then loads them into 
thread-local queues in a round-robin manner. Each thread then attempts to find a route from the first 
point to the second point of each connection by performing a breadth-first search, avoiding any grid 
cells occupied by previous routings. If a route is found, backtracking lays the route by occupying grid 
cells. Concurrent routing requires writes to the grid to be performed transactionally. Lee-TM is fully 
parallel, with conflicts at concurrent read/write or write/write accesses to a grid cell. A second version 
of Lee-TM has been implemented that uses early release. This version removes grid cells from the 
readset during the breadthfirst search. Two transactions may be routable in parallel, i.e. the set of grid 
cells occupied by their routes does not overlap, but because of their spatial locality, the breadth-first 
search of one transaction reads grid cells to which the second transaction writes its route, thus causing 
a read/write conflict. Removing grid cells from the readset during the breadth-first search eliminates 
such false-positive conflicts. 
 
Genome is a gene sequencer that rebuilds a gene sequence from a large number of equal-length 
overlapping gene segments. Each gene segment is an object consisting of a character string, a link to 
the start segment, next segment, and end segment, and overlap length. The application executes in 
three phases. The first phase removes duplicate segments by transactionally inserting them into a hash 
set. The second phase attempts to link segments by matching overlapping string subsegments. If two 
segments are found to overlap then linking the two segments (by modifying the links in each gene 
segment object, and setting the overlap length) and removing them from the hash set is done 
transactionally, as multiple gene segments may match and result in conflict. The matching is done in a 
for-loop that starts by searching for the largest overlap (length-1 characters, since duplicates were 
removed in the first phase), down to the smallest overlap (1 character). Thus, conflict is likely to rise 
as execution progresses since smaller overlaps will lead to more matches. In the third phase, a single 
thread passes over the linked chain of segments to output the rebuilt gene sequence. The execution of 
Genome is completely parallel except for the third phase. 
 
KMeans clusters objects into a specified number of clusters. The application loads objects from an 
input file, and then works in two alternating phases. One phase allocates objects to their nearest 
cluster (initially cluster centers are assigned randomly). The other phase re-calculates cluster centers 
based on the mean of the objects in each cluster. Execution repeatedly alternates between the two 
phases until two consecutive iterations generate, within a specified threshold, similar cluster 
assignments. Assignment of an object to a cluster is done transactionally, thus parallelism is 
controlled by the number of clusters. Execution consists of the parallel phase assigning objects to 
clusters, and the serial phase checking the variation between the current assignment and the previous. 
 
Vacation simulates a travel booking database in which multiple threads transactionally book or cancel 
cars, hotels, and flights on behalf of customers. Threads can also execute changes in the availability of 
cars, hotels, and flights transactionally. Each customer has a linked list holding his reservations. The 
execution of Vacation is completely parallel, but available parallelism is limited by the number of 
relations in the database and the number of customers. 
 
All experiments are performed on a 4 x dual-core 2.2GHz Opteron-based (i.e. an 8-core NUMA 
shared memory) machine with openSUSE 10.1, 16GB RAM, and using Sun Java 1.6.0 64-bit and our 
modified Software TM library. Note that the results presented will vary depending on the TM system 
implementation used for the experiments. A TM system takes non-deterministic decisions about 
scheduling and aborting specific transactions. 
 

Configuration Name Application Configuration 
Gen Genome gene length:16384, segment length:64, 

number of segments:4194304 
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KMeansL KMeans low contention min clusters:40, max clusters:40, 
threshold:0.00001, input file:random10000 12 

KMeansH KMeans high contention min clusters:20, max clusters:20, 
threshold:0.00001, input file:random10000 12 

VacL Vacation low contention relations:65536, % of relations queried:90, 
queries per transaction:4, number of transactions:1024768 

VacH Vacation high contention as above, but % of relations queried:10, 
queries per transactions:8 

Lee-TM-t Lee-TM Lee w/o early release early release:false, input file:mainboard.txt 
Lee-TM-ter Lee-TM Lee with early release early release:true, input file:mainboard.txt 

 

Table 4 Transactional memory benchmarks used in the initial characterization 

 

 
Figure 13 Transactional memory application level metrics 

Figure 13(b) shows wasted work results. Gen and Vac have little wasted work (less than 10%). 
KMeans and Lee-TM-t have large amounts of wasted work, e.g. on 8 threads the wasted work is 
between 35% and 70%. Applications with large amounts of wasted work may be suitable candidates 
for studying contention management. KMeans speedup is limited by the significant sequential phase 
seen in Figure 13(a), and large amounts of wasted work. This shows that poor scalability can have its 
root in wasted work. 
 
Figure 13(c) shows ApC results. KMeans has the highest ApC, followed by Lee-TM, Gen, and finally 
Vac. KMeansH has an ApC four times higher than Lee-TM-t, but 30% less wasted work. This 
suggests Lee-TM-t aborts large/long transactions as it has fewer aborts, yet large amounts of time 
spent in the aborted transactions. Figure 13(d) shows CMT results. CMT is negligible for Gen, Lee-
TM, and Vac. At 8 threads KMeansH has 20% CMT, KMeansL has 10% CMT, but Lee-TM-t has 
almost none. 
 
Figure 14 and Figure 15 present the histograms depicting the aborts (static view), while Figure 16 
provides a dynamic view of how the aborts are spread during the execution using ICR.  
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Figure 14 Abort histograms for TM benchmarks. Each bar represents the number of transactions that 

aborted a given number of times before actually committing. Note y-axis uses logarithmic scale. 
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.  
Figure 15 Transaction execution time histograms. The colour of each bar represents a range of elapsed 

execution times in milliseconds. The vertical axis represents the number of transactions completing within 
the time range. 
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Figure 16 Instantaneous commit rate (ICR) graphs. In our experiments we sampled at 5 second intervals. 
The commit rate for 2,4 and 8 threads are plotted. 
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5 Conclusions 
This document describes the first deliverable of TERAFLUX WP2. The activities in task 2.1 
comprised the selection of the kernels, benchmarks and applications to be used in the project and the 
preparation of a disk image that enables all partners to have a uniform environment to test the 
applications. Although task 2.1 was planned to finish on M6 of the project and its objectives have 
been accomplished, we do not rule out adding more applications to the list in case the consortium 
considers this necessary.  

Task 2.2 has begun during the second half of the first project year. The different methodologies to be 
used to characterize the applications have been identified and initial results presented. During the 
second year of the project, the task will continue its characterization activities.  
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