
20/06/2012

1

The Teraflux approach for
massive parallel processing
on-die

Prof. Avi Mendelson,
Technion & Microsoft R&D, Israel

2nd Workshop on Future Architecture Support for Parallel
Programming (FASPP12)

Agenda

� Introduction

� What is Teraflux?

� General design approach

�SW

�HW

� System level

�Faults

�OS

Prof. Avi Mendelson - FASPP12

2 6/10/2012

20/06/2012

2

Moore’s Law – historical note

� Two of the many versions of Moore’s Law

� Number of transistors on a die doubles every 18
months (the original form)

� Measured performance of computer systems doubles
every two years (one of many variations)

� Implications:

� Enables adding value to the user

� Enables innovation

� Enables new applications and markets

�Allows to maintain prices and
revenue

Prof. Avi Mendelson - FASPP123 6/10/2012

What’s had been changed?

� Process stop scale “ideally”; we can still get the growth in
transistor budget but with cost of power luck of frequency
scale.

� Small sizes of transistors implies (1) higher rate of
soft-errors increases and (2) process variation in respect to
power and performance

� In order to meet the expectation of constant growth of
“benefit to the user”, number of cores on die increases.

� It is expected that in the near future we could put tens or
even hundreds of cores on the same die (Silicon)

� How many cores SW can use?

It is mostly depends on
software/OS/algorithms/developing environment/etc.,
rather then on HW capabilities.

Prof. Avi Mendelson - FASPP12
4

6/10/2012

20/06/2012

3

Exploiting Dataflow Parallelism
in Teradevice Computing

University of Cyprus

University of Manchester

University of Siena

University of Augsburg

INRIA

Barcelona
Supercomputing Center

TERA LUX.EUF

5

What is TERAFLUX about?

Architecture + Programmability+ Reliability
of Future (single chip) Many-cores
(targeting 1000+ cores)

6/10/2012Prof. Avi Mendelson - FASPP12

6

Teraflux in a nutshell
● An EU research project (FET).

● Assumes 1000’s processors on die

● Connected through a NoC

● No system-wide support for HW coherency

● HW components can become faulty

● Transient errors

● Stuck at faults

● SW needs to make sure it works transparency to potential faults

● Resource allocation and scheduling should be distribution

Disclaimer: The project examine different potential solutions, this presentation
presents my approach

20/06/2012

4

7

Abstraction Layer

and Reliability Layer

Compilation

Tools

Source code

Programming

Model

Data

dependencies
Transactional

memory

Teradevice

hardware

(simulated)

Threads

Virtual CPUs

Extract TLP Locality optimizations

T1

T2T2

possibly

1,000-10,000 cores...

WP2

WP3

WP4

WP5

WP7

WP6

VCPU VCPU VCPU VCPU VCPU

PC PC PC P PCPU PCPU PCPUPCPUPC PCPU PCPUPCPU

APPLICATIONSAPPLICATIONS

• 1000 Billion- or 1 TERA-

device computing

platforms pose new

challenges:
– (at least)

programmability,

complexity of design,

reliability

• TERAFLUX context:
– High performance

computing and

applications (not

necessarily embedded)

• TERAFLUX scope:
– Exploiting a less

exploited path

(DATAFLOW) at each

level of abstraction

Working Hypothesis

TERA LUX.EUF

Prof. Avi Mendelson - FASPP12 6/10/2012

Basic SW assumptions

6/10/2012Prof. Avi Mendelson - FASPP128

20/06/2012

5

Fundamental approach (General):

General Purpose
� Target to run any program

in a reasonable
performance and power
consumption

� Mostly assume to be
latency sensitive

� Use “reverse engineering”
(e.g., branch prediction) to
unveil the internal
structure of the program

Special purpose

� Targeted specific class of
applications

� Applications the don’t fit
into this category may
not run or run in a very
inefficient way.

� Usually Use SW/HW
co-design

� Can be an order of
magnitude more efficient
than general purpose
architectures for specific
class of applicationProf. Avi Mendelson - FASPP129 6/10/2012

Fundamental approach (Teraflux):

� The system is dynamically partitioned
between cores that can run General
purpose applications and cores that can
run “special purpose” accelerator code,
A.K.A Teraflux cores/

� The code for the Teraflux cores is based
on Special branch of the DataFlow
paradigm, called Task-Parallelism (similar
to Actors)

� The Teraflux cores subsystem is built as
SW/HW codesign

6/10/2012Prof. Avi Mendelson - FASPP1210

20/06/2012

6

Data-Flow is back

Prof. Avi Mendelson - FASPP1211

� Dataflow can extracts massive parallelism out of
sequential code

� HW only methods; e.g., OOO, are not sufficient.
Parallelism needs to be exposed at all levels, such as
compilers, algorithms, tools, etc.

� Dataflow languages are limited. Needs to apply DF
techniques for procedural and shared memory based
languages such as C, OpenMP and hybrid languages such

as Scala and Heterogeneous OpenMP (OpenMP+MPI)

� Use of modern HW techniques to overcome performance
power and reliability issues

6/10/2012

Back to the future

Data Flow model

� DataFlow was defined by Prof. Dennis as “A Scheme of
Computation in which an activity is initiated by presence of
the data it needs to perform its function”

� Data flow preserves “pure execution”; i.e., no side effects

� Task parallelism reserve (1 & 2) while doing it at the level of
tasks (a collection of instructions)

� The code is generated automatically (in the future) from C,
Java , OpenMP, etc. programming languages.

� The “pure execution code is achieved by a combination of
run-time scheduling an/or transactional memory (out of the
scope of this discussion.

� Task can be suspended at any point (for any reason) and be
re-executed if needed

6/10/2012

Prof. Avi Mendelson - FASPP1212

20/06/2012

7

Basic HW assumptions

6/10/2012Prof. Avi Mendelson - FASPP1213

Future Scenarios

G. Hendry, K. Bergman, “Hybrid
On-chip Data Networks”,
HotChips-22, Stanford, CA –
Aug. 2010

== 3D stacking, 8nm, 3D transistors, Graphene

Pawloski, May 2011, Exascale Seminar, GhentProf. Avi Mendelson - FASPP1214

Fab D1X (OR), 42 (AZ) starting the 14nm node in 2013

6/10/2012

20/06/2012

8

How to fit 1000 cores on die?
The unstructured option The Structured (hierarchical) option

Platform Peripherals

Compute

Basic Architecture
� Clustered architecture

� Same ISA to all processors

� HW based coherency within the cluster and no HW based
coherency between clusters.

� Clusters can be symmetric or asymmetric;

1. Service-cluster(s): GP core that runs GP OS such as Linux.

2. Auxiliary clusters: e.g., single issue, power efficient computational cores

� NoC: Supports

1. Topological connections of resources (cores, memories, accelerators, etc.) within
a node (cluster) and among nodes (clusters)

2. The inner cluster NoC may be different than the external NoC

� Memory hierarchy

1. Globally addressable physical space to guarantee on-chip global accessibility,
possibly with variable latencies (NUMA)

2. Physical memory may be partitioned into local memory vs. global memory

20/06/2012

9

Put it all together

6/10/201217 Prof. Avi Mendelson - FASPP12

System Overview
Target System

18

Linux

L4

Configuration Page

Message Buffers

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Linux

L4

Cores View Memory View

CPU == Cluster

20/06/2012

10

Target System
OS Requirements

19

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Linu
x

L4
L4 (uKernel)

Linux (Full OS)

• Manages jobs on uKernel (uK)
cores
• Proxies uKs I/O requests
• Remote debug uKs/self
• Runs high level (system) FT

managing uK/self faults

• Each uK runs a Task (or Tasks)
• Tasks sent by full OS (FOS)
• Tasks are DF entities, no side-
effects
• Failed task simply restarted
• Runs low level FT, reporting to
FOS

Single chip
Multi cores

Memory hierarchy

� The Teraflux virtual address
space is divided into equal
disjoint “segments”
� A segment is controlled by a cluster

� Coherency is handled by HW within the
cluster (sequential consistency)

� Physical memory may be
partitioned into local
memory vs. global memory

� The “physical memory” as
was seen by the User (OS) is
the collection of all Global
Memory parts (Segments)
connected to the NOC

� Between clusters no HW
coherency

Prof. Avi Mendelson - FASPP12
20

Private Shared

6/10/2012

20/06/2012

11

How it works

� Compiler generate DF code out of sequential code

(e.g., C) or programing languages that support parallelism

(e.g., OpenMP, Java, Scala)

� The execution always starts on the service cores that

generate the Tasks (Tokens) and send them to the

different clusters.

� All tasks sent to a cluster are kept in a “safe memory”

queue and being scheduled to cores by the TSU

� After finishing the execution and assuming no fault

happen, results are written to the task-memory and the

TSU is reported it can write the results back to main

memory. After successful update of the global memory,

the Task is removed from the clustered queue.

How it works

� Threads can be generated dynamically. At that point we

assume that new threads are generated at the service cluster

and being distributed to the clusters again

�next step we will distribute the algorithm

� Health information and load balance

� Cores sends health information (e.g., speed, temperature, number

tasks completers, etc.) to the cluster-level

� The Cluster-level sends the information to the service-cluster

� The service cluster uses the health conditions of the cluster into

account when decide where to create new Tasks.

20/06/2012

12

Task life

23

A Task’sLife

�Task creation request

�TSUs handles & replies to the request

�C-TSU spawns a Thread on the L-TSU

�Thread execution

MemoryIO

N1 NxN2

Interconnection
Network

N2

C1

C2

CN

C-FDU

C-TSU

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

= Data

C1

X86-64
Core

L-FDU L-TSU

CN

X86-64
Core

X86-64
Core

L-FDUL-FDU L-TSUL-TSU

y

Frame
Memor

y

A Thread Execution

24

load
load
load

D
o

so
m

et
hi

ng

us
ef

ul

store
store
store

Three Phases

�Pre-Load
Load Data from Frame Mem.

�Execute
Execution with no further Mem. Access

�Post-Store
Writes results to Frame Mem.
and/or Main Mem.

MemoryIO

N1 NxN2

Interconnection
Network

N2

N1

N2

NN

C-FDU

C-TSU

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

N1

X86-64
Core

y

Frame
Memor

y

L-FDU L-TSU

NN

X86-64
Core

X86-64
Core

y

Frame
Memor

y

L-FDUL-FDU L-TSUL-TSU

20/06/2012

13

COTSon

Simulator

infrastructure

. . .

Simulator

“illusion”

(SW should

only assume

what seen at

this level) X86-64 ISA

cruncher-1

X86-64 ISA

cruncher-2

X86-64 ISA

cruncher-3

X86-64 ISA

cruncher-N

LINUX +

TFX scheduler patch awareness

TSU
FDU

scheduling

TFX APPS
(e.g.

GROMACS)

LEGACY APPS
(e.g. ORACLE

DB)

(x86-64 ISA & NEW Memory Model)

DF-threads L-/S-threads

Evaluating a MANY-CORE chip of the future
(2020), i.e., 1000+ cores on a chip

6/10/2012Prof. Avi Mendelson - FASPP1225

Faults in large systems

Two types of faults

6/10/2012

26 Prof. Avi Mendelson - FASPP12

Hard/Permanent faults Soft/transient faults

If re-execute – the fault remains
The same.

If re-execute – the
system behaves
correctly.

For large scale systems, one should assume that the probably
for a faulty part at any given time is significant.

A reliable system with 1000s of processing elements
should be built of non-reliable components

At Teraflux we decide to address faults, at all levels as
“first-class citizens”.

20/06/2012

14

Reliability and Fault-Tolerant – high level
� We use a SW/HW co-design in order to address the very

complicated issue

�At SW level we take advantage of the DF model that allows

to re-execute a “task” w/o causing side effects.

�At HW level we build the system to detect faults, to avoid

single point of failure and to dynamically reconfigure

� FT is implemented at all different levels of the hierarchy

�At the Global Level – the Linux OS manages the resource

partition, global scheduling, load balance, migration, etc.

�At the NoC level, an adaptive algorithm is developed to

manage failures of links

�At cluster level we manage and report statistics on failure

to upper level in order to balance the execution

�At core level we assume a detection mechanism to report

when the core, or execution of the core is faulty

Management and Reliability Components

28

At each level of the Hierarchy we have 2 dedicated
HW/SW units to help handling faults

� TSU – Task Scheduling Unit

� FDU - Fault detection Unit

At Core Level.

� L-TSU: HW scheduler of tasks (if MT at core level is
supported

� L-FDU: Detect faults, indicates that re-execution is
needed and sends Heartbeat (HB) Messages to the
C-FDU

At the Cluster level

� C-TSU: Implement the match-logic, communication,
schedule tasks and maintain load balance

� C-FDU: Part of the distributed Fault Detection
algorithm

MemoryIO

N1 NxN2

Interconnection
Network

N2

C1

C2

CN

C-FDU

C-TSU

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

Cn

X86-64 Core

L-FDU L-TSU

Frame
Memory

20/06/2012

15

Soft-Errors (Transient errors) - WIP

Prof. Avi Mendelson - FASPP1229

6/10/2012

Classification

� Detection and handling soft-errors can be relatively simple
or extremely difficult depending on the assumptions and
HW mechanisms we are introducing. At that level of the
research we are focusing on the following assumptions:

� All memory structures and buses are shielded.

� The DF mode of operations we described before allows to
terminate an execution w/o any side effects

� We assume that if the “update global memory” phase began,
eventually it will be completed

� Base of these current assumptions (that most likely will be
refined later on), at that point we are focusing on
detection errors in the control logic so we can indicate
that an error occur.

Prof. Avi Mendelson - FASPP1230

6/10/2012

20/06/2012

16

Detection mechanism – re-execution

�Can be done via space redundancy of time redundancy

�Space redundancy: execute the code on 2 cores (3 are needed

for recovery but only 2 for detection), compare the observable

outputs and raise a flag if found not to match

�Time redundancy: execute the code twice on the same core and

compare results. If dine smartly can cost only 4-10%

performance hit.

�Need to take care on endless loops and few other corner

cases

�Need to address the I\O, exceptions, etc.

Prof. Avi Mendelson - FASPP1231
6/10/2012

Future work

� Heterogeneous cores

� Same ISA

� Different ISA

� System on a chip

� Combination

� Multi-chips

� OS for heterogeneous systems

� Memory hierarchy

� Distributed I/O

� Distribute the system level algorithms.

32 Prof. Avi Mendelson - FASPP12

6/10/2012

20/06/2012

17

Exploiting Dataflow Parallelism

in Teradevice Computing

University of CyprusUniversity of Manchester

University of Siena

University of Augsburg

INRIA

Barcelona
Supercomputing Center

TERA LUX.EUF
R&D Israel

33

6/10/2012Prof. Avi Mendelson - FASPP12

Prof. Avi Mendelson - FASPP1234

Questions?

6/10/2012

20/06/2012

18

backup

35 Prof. Avi Mendelson - FASPP12 6/10/2012

